02

Оценка неоднородности распределения плотности тока и температуры в структурах биполярных и гетеробиполярных высокочастотных и сверхвысокочастотных транзисторов по рекомбинационному излучению

© В.А. Сергеев¹, И.В. Фролов¹, А.А. Казанков²

 ¹ Ульяновский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, 432011 Ульяновск, Россия
 ² Ульяновский государственный технический университет, 432027 Ульяновск, Россия
 e-mail: ilya-frolov88@mail.ru

Поступила в редакцию 11.05.2023 г. В окончательной редакции 19.06.2023 г. Принята к публикации 30.10.2023 г.

> Исследованы параметры рекомбинационного излучения, возникающего в структурах биполярных транзисторов в импульсном и стационарном режимах работы. Получены яркостные профили распределения рекомбинационного излучения структуры при включении биполярных транзисторов в диодном режиме, позволяющие оценить неоднородность распределения плотности тока вдоль дорожек металлизации. На примере транзисторов КТ504А показано, что яркостные профили рекомбинационного излучения эмиттерного перехода в диодном включении хорошо описываются выражениями для распределения плотности тока вдоль дорожек металлизации.

> Ключевые слова: биполярные и гетеробиполярные транзисторы, рекомбинационное излучение, распределение тока, неоднородность.

DOI: 10.61011/OS.2023.11.57001.5050-23

Мощные биполярные и гетеробиполярные (ГБТ) высокочастотные и сверхвысокочастотные транзисторы широко применяются в современной радиоэлектронной аппаратуре и работают, как правило, в тепловых и электрических режимах, близких к предельным, при которых распределение температуры и плотности тока в гребенчатых структурах таких приборов становится существенно неоднородным в результате падения напряжения на токоведущей металлизации [1-3]. Прямое измерение распределения плотности тока и температуры в структурах полупроводниковых приборов невозможно. Способ косвенной оценки неоднородности распределения плотности тока по падению напряжения на дорожках металлизации [1] является разрушающим и трудоемким. Эффективным инструментом для этих целей может служить регистрация рекомбинационного излучения (РИ), поскольку интенсивность РИ пропорциональна плотности тока в локальной области структуры и в структурах ГБТ практически линейно спадает с ростом температуры [4,5]. Однако в известных работах по исследованию РИ ГБТ [4,5] оценки неоднородности распределения плотности тока и температуры по площади структуры и характеристики пространственного разрешения используемых экспериментальных установок и методик не приводятся.

Для регистрации распределения РИ по площади приборных структур с пространственным разрешением порядка $1\,\mu$ т разработана экспериментальная установка, состоящая из микроскопа LevenhukD320L, охлаждаемой монохромной КМОП камеры FL-20BW, линейного источника питания UnionTestUT3005ED, компьютера. Измерения яркостных профилей РИ проводились следующим образом. Исследуемый транзистор с открытым кристаллом, закрепленный на радиаторе, располагался на предметном столике микроскопа. Ток через эмиттерный переход транзистора задавался линейным источником питания, при этом РИ структуры фокусировалось объективом и регистрировалось камерой. Спектральный диапазон чувствительности камеры составляет 300–1100 nm, максимум чувствительности достигается на длине волны излучения 495 nm. Программное

Рис. 1. Спектр РИ транзистора КТ504А.

Рис. 2. (*a*) Профиль интенсивности РИ транзистора КТ504А при токе 1.5 А в диодном режиме, (*b*) зависимости коэффициента неоднородности распределения интенсивности РИ вдоль эмиттерной дорожки от эмиттерного тока: *1* — результат измерений, *2* — результат расчета.

обеспечение позволяет устанавливать время экспозиции камеры от $3 \mu s$ до 3600 s. Монохромные изображения, полученные с камеры, с разрешением 5472×3648 пикселей и разрядностью 16 bit сохраняются в памяти компьютера [6].

На рис. 1 приведен спектр РИ транзистора КТ504А, измеренный спектрометром OceanOpticUSB2000 с оптоволоконным входом при токе эмиттера 200 mA. Спектр имеет два ярко выраженных максимума: на длине волны 930 и 1005 nm. Экспериментально установлено, что такая форма спектра РИ наблюдается у кремниевых биполярных транзисторов других типов, в частности, КТ809А, КТ903А. Основной максимум на длине волны 1005 nm определяется оптической шириной запрещенной зоны кремния $E_{gopt} \sim 1.205$ eV, а максимум на длине волны 930 nm — разностью энергий ΔE_{max} , соответствующих максимумам заселенности электронами состояний в зоне проводимости и дырками в валентной зоне кремния: $\Delta E \sim E_{gopt} + 2kT \sim 1.26$ eV, где k — постоянная Больцмана, T — абсолютная температура.

На рис. 2, а приведен профиль распределения интенсивности РИ структуры в диодном включении эмиттерного перехода транзистора при токе 1.5 А. Из рисунка видно, что интенсивность РИ, а значит и плотность эмиттерного тока, спадает от конца эмиттерных дорожек к их основанию (соответственно от основания базовых дорожек к их концу). Такое соотношение яркостей РИ наблюдается во всем диапазоне задаваемых токов. Аналогичное распределение РИ наблюдалось и в гребенчатых структурах транзисторов типа КТ809А, КТ903А. Для оценки неоднородности распределения интенсивности РИ вдоль дорожек введем коэффициент неоднородности $S_D = E_1/E_2$, где E_1 — интенсивность РИ в конце центральной эмиттерной дорожки, Е2 интенсивность РИ вблизи основания центральной эмиттерной дорожки. Графики зависимостей коэффициента неоднородности $S_D(I_E)$ от полного эмиттерного тока транзистора, изменяющегося в диапазоне 0.15-2.0 А,

приведены на рис. 2, *b*. При измерениях время экспозиции камеры устанавливалось от 10 s при силе тока 2 A до 3600 s при силе тока 0.15 A. Как видно из графика, в режиме диодного включения эмиттерного перехода зависимость коэффициента неоднородности $S_D(I_E)$ является монотонно возрастающей.

Для описания полученных зависимостей рассмотрим выражение для плотности тока $J_E(x)$ под эмиттерной дорожкой в гребенчатой структуре биполярного транзистора, полученное в [2] в изотермическом приближении, для случая диодного включении:

$$J_E(x) = \frac{2\varphi_T}{[R_{BM} + E_{EM}]S_E} B_1^2 \cos^{-2} \left[B_1 \left(\frac{x}{L_{EM}} + B_2 \right) \right],$$
(1)

где S_E — площадь эмиттерной дорожки металлизации, константы B_1 и B_2 находятся из решения системы трансцендентных уравнений:

$$B_1 \operatorname{tg} B_1 B_2 = -R_{EM} I_E / 2\varphi_T, \qquad (2a)$$

$$B_1 \operatorname{tg}[B_1(1+B_2)] = R_{BM}I_E/2\varphi_T,$$
 (2b)

где $R_{EM} = L_{EM}\rho_{EM}/d_{EM}a_{EM}$ и $R_{BM} = L_{BM}\rho_{BM}/d_{BM}a_{BM}$ — полные сопротивления, $L_{EM,BM}$, $a_{EM,BM}$, $d_{EM,BM}$ — длина, ширина и толщина, $\rho_{EM,BM}$ — удельное сопротивление материала эмиттерной и базовой дорожек металлизации соответственно, I_E — ток, втекающий в эмиттерную дорожку, $\varphi_T = kT_n/e$ — тепловой потенциал при температуре перехода T_n , e — заряд электрона, x координата эмиттерной дорожки, отсчитываемая от ее основания, L_{EM} — длина дорожки.

Поскольку интенсивность РИ пропорциональна плотности эмиттерного тока, то коэффициент неоднородности $S_D(I_E)$ можно выразить из (1) через отношение плотностей тока в конце и у основания эмиттерной дорожки:

$$S_D(I_E) = \frac{J_E(L_{EM})}{J_E(0)} = \frac{\cos^2[B_1B_2]}{\cos^2[B_1(1+B_2)]}.$$
 (3)

Решая систему уравнений (2) относительно констант B_1 и B_2 , ограничиваясь линейными членами в разложении tg и подставляя полученные выражения в (3), получим

$$S_D(I_E) \approx \frac{1 + (R_{BM}/(R_{BM} + R_{EM}))(R_{BM}I_E/2\varphi_T)}{1 + (R_{EM}/(R_{BM} + R_{EM}))(R_{EM}I_E/2\varphi_T)}.$$
 (4)

Для дальнейших расчетов заметим, что у транзистора КТ504А ширина базовой дорожки примерно в 1.9 раза меньше ширины эмиттерной и при прочих равных параметрах $R_{BM} \sim 1.9 R_{EM}$. Тогда выражение (4) можно записать в виде

$$S_D(I_E) \approx \frac{1 + 1.25(R_{EM}I_0/2\varphi_T)(I_E/I_0)}{1 + 0.35(R_{EM}I_0/2\varphi_T)(I_E/I_0)},$$
(5)

где I_0 — некоторое нормирующее значение полного эмиттерного тока транзистора.

Экспериментальные зависимости $S_D(I_E)$ хорошо описываются выражением (5) при $I_0 = 1$ A и $(R_{EM}I_0/2\varphi_T) \sim 1.5$ (штриховая линия на рис. 2, b). Учитывая, что в структуре транзистора КТ504 пять эмиттерных дорожек, условие $(R_{EM}I_0/2\varphi_T \sim 1.5$ при $\varphi_T \sim 0.026$ V соответствует сопротивлению эмиттерной дорожки $R_{EM} \sim 0.40-0.45 \Omega$, что согласуется со значениями, полученными ранее для подобных структур [1]. При среднем отношении длины эмиттерной дорожки L_{EM} к ширине a_{EM} в структуре транзистора КТ504A, равном 7, и при удельном сопротивлении алюминия порядка $3 \cdot 10^{-8} \Omega$ m это соответствует толщине металлизации $0.7-0.8 \mu$ m.

Таким образом, значение коэффициента $S_D(I_E)$ неоднородности РИ, измеренное при некотором номинальном эмиттерном токе, является информативным параметром не только для диагностики неоднородности токораспределения, но и для косвенной оценки сопротивления дорожек токоведущей металлизации в транзисторной структуре. При известном сопротивлении дорожек токоведущей металлизации этот параметр можно использовать для оценки неоднородности температуры структуры через значение теплового потенциала.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда, проект № 22-29- 01134. http://rscf.ru/project/22-29-01134.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] В.А. Сергеев. Известия вузов. Электроника, 3, 22 (2005).
- [2] В.А. Сергеев. Известия Самарского научного центра РАН, 2, 344 (2005).

- [3] V.A. Sergeev, A.M. Khodakov. J. Commun. Technol. and Electron., 67 (11), 1400 (2022).
 DOI: 10.1134/S1064226922110122
- M. Harris, B. Wagner, S. Halpern, M. Dobbs, C. Pagel, B. Stuffle, J. Henderson. 1999 IEEE International Reliability Physics Symposium Proceedings. 37th Annual (Cat. No. 99CH36296) (San Diego, CA, USA), p. 127. DOI: 10.1109/RELPHY.1999.761603
- [5] F. Schuermeyer, R. Fitch, R. Dettmer, J. Gillespie, C. Bozada, K. Nakano, J. Sewell, J. Ebel, T. Jenkins, L.L. Liou. *Proc.* 2000 IEEE/Cornell Conference on High Performance Devices (Cat. No. 00CH37122) (Ithaca, NY, USA, 2000), p. 45. DOI: 10.1109/CORNEL.2000.902518
- [6] V. Sergeev, I. Frolov, O. Radaev. 2022 VIII Int. Conf. on Information Technology and Nanotechnology (ITNT) (Samara, 2022), p. 1.