05

Влияние малоцикловой усталости на акустическое двулучепреломление в аустенитной стали 12X18H10T

© В.А. Клюшников, А.В. Гончар

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН, 603024 Нижний Новгород, Россия e-mail:ndt@ipmran.ru

Поступило в Редакцию 20 июня 2023 г. В окончательной редакции 10 ноября 2023 г. Принято к публикации 16 ноября 2023 г.

Представлены результаты исследования влияния малоцикловой усталости при температурах 20 и 60°С на акустическое двойное лучепреломление аустенитной нержавеющей стали 12X18H10T. Предложена модель, представляющая акустическое двойное лучепреломление всего материала как сумму двух отдельных составляющих для мягкой матрицы аустенита и твердых включений деформационного α' -мартенсита. Изменения акустического двойного лучепреломления, вызванные деформацией аустенита и мартенситным превращением при усталости, сравнивали с помощью расчетов, основанных на данных, полученных ранее для одноосного растяжения той же стали. Проанализирована кинетика изменения параметра акустического двулучепреломления в аустените с учетом и без учета влияния мартенситного превращения. Полученные результаты имеют практическое значение для разработки методов неразрушающего ультразвукового контроля состояния метастабильной аустенитной стали.

Ключевые слова: аустенитная нержавеющая сталь, температура испытаний, деформационное мартенситное превращение, ультразвуковой метод, акустическое двулучепреломление, вихретоковый метод.

DOI: 10.61011/JTF.2024.01.56901.152-23

Введение

Аустенитная нержавеющая сталь широко используется при создании конструкций для ядерной, химической и иных отраслей промышленности. Известно, что пластическая деформация для большинства сталей данного класса с низкой энергией дефектов упаковки даже при комнатной температуре одновременно с накоплением поврежденности сопровождается фазовым превращением аустенита в деформационный α' -мартенсит [1,2]. Интенсивность деформационный α' -мартенсит [1,2]. Интенсивность деформационного мартенситного превращения зависит от внешних факторов, таких как частота нагружения [3–5] и температура [6–8].

Разница между модулями упругости α' -мартенсита и аустенита приводит к изменению модуля упругости и акустических параметров всего объема материала. Формирование α' -мартенсита также влияет на вязкость и твердость стали [9–11] и приводит к изменению интенсивности накопления повреждений [12]. Предыдущие работы показали, что с ростом температуры при нагружении интенсивность превращения мартенсита деформации убывает вплоть до нуля [6,13,14]. В то же время в материале происходит накопление повреждений, что практически не изучается.

Существует множество работ, посвященных изучению изменений свойств во время нагружения аустенитных сталей методами магнитного или вихретокового контроля [15–19]. Однако при определении поврежденности интерес вызывают исследования изменения акустических [19–21] или электрических свойств [22,23].

В настоящей работе проведено исследование влияния статического растяжения и усталости на анизотропию упругих свойств стали 12Х18Н10Т при разных температурах испытания. Для описании анизотропии упругих свойств использовался параметр акустического двулучепреломления *B*, который определяется как:

$$B = 2\frac{t_x - t_y}{t_x + t_y},\tag{1}$$

где время распространения двух сдвиговых волн, распространяющихся между двумя плоскопараллельными площадками образца и поляризованных во взаимно перпендикулярном направлении, вдоль t_x и поперек t_y оси нагружения.

На основе экспериментальных данных параметр двулучепреломления во всем материале был представлен как сумма двух составляющих для мягкой матрицы аустенита и твердых включений деформационного α' -мартенсита.

1. Методика эксперимента

В настоящей работе исследовалась аустенитная нержавеющая сталь 12X18H10T, химический состав представлен в таблице.

Формы и размеры образцов представлены на рис. 1. На каждом образце были вырезаны плоскопараллельные площадки с обеих сторон рабочей зоны для проведения ультразвуковых и вихретоковых измерений.

Химический состав исследуемой стали 12Х18Н10Т (%)

С	Cr	Ni	Mn	Mo	Ti	Р	S	Si	Fe
0.03	17.27	9.02	0.56	0.22	0.31	0.029	0.003	0.43	Основа

Механические поэтапные испытания проводились на сервогидравлической испытательной машине BISS Nano UT-01-0025. Перед испытанием и после каждого этапа нагружения проводились ультразвуковые и вихретоковые измерения. Для измерения температуры к центру образца и нижней и верхней губкам испытательной машины крепились термопары.

Статическое растяжение проводилось со скоростью деформации $5\cdot 10^{-3}\,s^{-1}$ при температуре 20, 40 и 60°С.

Испытания на малоцикловую усталость проводились при контроле полной деформации цикла с коэффициентом асимметрии $R_{\varepsilon} = 0$ и постоянной скоростью деформации $5 \cdot 10^{-3} \, {\rm s}^{-1}$. Одноосное циклическое нагружение P направлено вдоль оси X(1) (рис. 1). Полная амплитуда деформации цикла $\Delta \varepsilon/2$ составляла 0.3 и 0.5%, температура — 20 и 60°С. Испытания останавливались при падении напряжений в цикле на 50% по сравнению с установившимся значением напряжения в соответствии с ГОСТ 25.505-85.

Для измерения времени распространения ультразвуковых волн t_x и t_y записывались амплитудно-временные диаграммы эхо-импульсов (рис. 2). Время распространения t_т ультразвуковой волны измерялось между первым t₁ и третьим t₃ сигналом. Поперечная волна возбуждалась и принималась широкополосным пьезоэлектрическим преобразователем (ПЭП) V157 Olympus с диаметром излучающей пластины 3.2 mm и центральной частотой 5 MHz. В качестве генератора электрических импульсов использовался серийно выпускаемый ультразвуковой дефектоскоп А1212 МАСТЕР. С помощью цифрового осциллографа LA-n1USB и программным обеспечением ADCLab записывались амплитудно-временные диаграммы сигналов от ПЭП на персональный компьютер. Максимальная частота дискретизации осциллогра- $\phi a - 1$ GHz, временное разрешение 1 ns.

Мультифункциональный вихретоковый прибор МВП-2М с датчиком частотой 1 kHz был использован для проведения вихретоковых измерений. Изначально он был разработан для измерения содержания

Рис. 1. Схема акустических измерений; X(1), Y(2) и Z(3) — оси симметрии образца.

Рис. 2. Амплитудно-временная диаграмма сдвиговых волн.

феррита в сталях аустенитного и перлитного классов. Устройство было откалибровано изготовителем. Так как магнитные свойства феррита и ферромагнитного α' -мартенсита различаются незначительно [24], то полученные результаты измерения содержания α' -мартенсита указывались в процентных долях феррита, аналогично [10].

2. Результаты исследования

2.1. Циклическое упрочнение и разупрочнение

При амплитуде деформации цикла 0.5% наблюдается увеличение амплитуды напряжения (циклическое упрочнение) независимо от температуры испытания (рис. 3). Циклическое упрочнение вызвано несколькими факторами: увеличение числа дефектов упаковки [25], увеличение плотности дислокаций в аустените [26], а также образованием деформационного α' -мартенсита. При амплитуде деформации 0.3% после начального упрочнения наблюдается разупрочнение. Циклическое разупрочнение проявляется в том случае, когда скорость аннигиляции дислокаций превышает скорость их генерации, вызывая общее уменьшение плотности дислокаций, или когда дислокации перестраиваются в ячеистую структуру, что приводит к увеличению длины свободного пробега дислокаций [27,28]. Стоит отметить, что уменьшение амплитуды напряжения при температуре 60° С более значительно, чем при 20° С.

После определенного количества циклов, которое зависит от условий нагружения, начинается активное

Рис. 3. Амплитуда напряжения в процессе циклического нагружения при $\Delta \varepsilon/2 = 0.5\%$ и $T = 20^{\circ}$ C (1), $\Delta \varepsilon/2 = 0.5\%$ и $T = 60^{\circ}$ C (2), $\Delta \varepsilon/2 = 0.3\%$ и $T = 20^{\circ}$ C (3), $\Delta \varepsilon/2 = 0.3\%$ и $T = 60^{\circ}$ C (4).

образование α' -мартенсита, который противодействует уменьшению плотности дислокаций аустенита [29] и приводит к вторичному упрочнению вплоть до разрушения образца.

2.2. Результаты акустических и вихретоковых измерений при статическом растяжении

При статическом растяжении наблюдается отчетливая зависимость кинетики α' -мартенсита от температуры испытания (рис. 4, *a*). Экспериментальные данные (рис. 4, *b*) согласуются с теоретическими расчетами [30]. Авторы показали, что параметр акустического двулучепреломления *B* уменьшается при статическом нагружении материала с ГЦК решеткой и увеличивается при деформации материала с ОЦК решеткой. Рис. 4, *b* показывает, что на стадии 1 в материале преобладает аустенит с ГЦК решеткой (параметр *B* уменьшается). На 2 стадии начинается интенсивное мартенситное превращение (рис. 4, *b*), которое влияет на кинетику изменения параметра *B*. Полученные зависимости отражают совокупный эффект накопления повреждений, изменения текстуры в аустените с ГЦК решеткой и образование α' -мартенсита деформации с ОЦК решеткой при различных температурах статического нагружения нержавеющей стали 12Х18Н10Т.

2.3. Результаты акустических и вихретоковых измерений при усталости

Во всех режимах нагружения наблюдается интенсивное увеличение объемной доли φ_M деформационного α' мартенсита после относительного числа циклов нагружения $N/N_f = 0.2 (N_f$ — число циклов до образования макроскопической трещины) (рис. 5, а). На рис. 3 и 5, а видно, что упрочнение материала при циклическом нагружении очень хорошо соответствует кинетике мартенситного превращения. Фактически циклическое упрочнение аустенитной стали происходит за счет мартенситного превращения [32]. Ожидаемо, что объемная доля деформационного α' -мартенсита φ_M для обеих амплитуд деформации после испытаний при температуре 60°С меньше, чем при 20°С. Отметим, что зависимость $\sqrt{\varphi_M}$ от количества циклов N можно аппроксимировать линейной функцией, причем угол наклона отражает величину амплитуды деформации цикла и температуры нагружения (вставка на рис. 5, a).

Изменение B при усталости было получено для всех условий нагрузки из ультразвуковых исследований (рис. 5, b). Следует отметить, что B увеличивается на начальных стадиях нагружения при полной амплитуде деформации 0.3% и уменьшается при дальнейшем нагружении. При полной амплитуде деформации 0.5% параметр двулучепреломления снижается на всех стадиях на-

Рис. 4. Зависимость объемной доли α' -мартенсита $\varphi_M(a)$ и $\Delta B(b)$ от пластической деформации ε для стали 12X18H10T при температурах испытания: 20 (1), 40 (2) и 60°С (3) [24].

Puc. 5. Изменение $φ_M$ (*a*) и *B* (*b*) при циклическом нагружении при $\Delta \varepsilon/2 = 0.5\%$ и $T = 20^{\circ}$ C (*I*), $\Delta \varepsilon/2 = 0.5\%$ и $T = 60^{\circ}$ C (*2*), $\Delta \varepsilon/2 = 0.3\%$ и $T = 20^{\circ}$ C (*3*), $\Delta \varepsilon/2 = 0.3\%$ и $T = 60^{\circ}$ C (*4*).

Рис. 6. Представление репрезентативного объема матрицы аустенита с включениями α' -мартенсита.

гружения при обеих температурах, а характер изменения *В* для исследованных температур совпадает. При дальнейшем нагружении наблюдается различие в характере изменения *B*, что определяется разной скоростью образования фазы α' -мартенсита. Таким образом, повышение температуры деформации способствует увеличению *B* при той же амплитуде деформации. Изменение *B* при амплитуде деформации 0.5% аналогично изменению при статическом нагружении, так как на первых стадиях нагружения кривые сливаются, а затем расходятся.

Соответственно, поскольку при амплитуде деформации 0.3% на ранних стадиях *В* увеличивается, можно сделать вывод, что и скорость образования мартенсита настолько мала, что не оказывает существенного влияния на константы упругости аустенита с ГЦК решеткой. Когда относительное число циклов нагружения достигает 0.2, α' -мартенсит с ОЦК решеткой начинает образовываться более интенсивно, что приводит к снижению *В*. Таким образом, кинетика изменения *B* отражает характер упрочнения и разупрочнения при исследуемых амплитудах деформации цикла и температур.

3. Обсуждение

Рассчитаем изменение параметра двулучепреломления B_{Aeff} с учетом мартенситного превращения в процессе статического растяжения. Для этого рассмотрим репрезентативный элемент кубического объема с ребром длиной c, на который воздействует нагрузка P(рис. 6). В нем имеется определенная объемная доля деформационного α' -мартенсита φ_M . При расчете будем руководствоваться следующими допущениями:

 двухфазный материал состоит из мягкой аустенитной матрицы и твердых мартенситных включений, случайно распределенных в матрице;

— α' -мартенсит не деформируется;

 образование мартенсита не оказывает влияние на деформацию аустенита.

Пусть эффективный размер каждого включения равен b_i , а вся фаза мартенсита занимает объем c^2b , где $b = \sum_i b_i$.

Тогда объемная доля фазы мартенсита составляет $\varphi_M = \frac{c^2 b}{c^3} = \frac{b}{c}$, объемная доля фазы аустенита — $\varphi_A = 1 - \varphi_M = \frac{a}{c}$.

Деформация ε_s , измеренная экстензометром во время испытаний, может быть записана через *a*, *b* и *c*:

$$\varepsilon_S = \frac{\Delta c}{c} = \frac{\Delta a}{a+b}.$$
 (2)

Тогда деформация аустенита ε_A может быть определена следующей формулой:

$$\varepsilon_A = \frac{\Delta a}{a}.\tag{3}$$

Отношение деформаций записывается в виде

$$\frac{\varepsilon_A}{\varepsilon_S} = \frac{1}{1 - \varphi_M}.\tag{4}$$

В формулах объемная доля α' -мартенсита приведена в долях, на рисунках в процентах, кроме вставки на рис. 5, *a*.

Изменение ΔB обусловлено не только накоплением поврежденности [21] и изменением текстуры, но и образованием α' -мартенсита. Полагая, что при статическом нагружении кинетика изменения параметра двулучепреломления в аустените остается постоянной даже при образовании α' -мартенсита, а параметр двулучепреломления в образовавшемся мартенсите зависит только от его объемной доли, запишем изменение ΔB всего материала в виде

$$\Delta B = \Delta B_A + \Delta B_M,\tag{5}$$

где ΔB_A — определяет изменение параметра двулучепреломления в аустените вследствие его деформации, ΔB_M — определяет изменение параметра двулучепреломления вследствие образования α' -мартенсита.

На первой стадии деформирования статического деформирования (стадия 1, рис. 4, b) при незначительной интенсивности мартенситного превращения изменение ΔB_1 для всего материала можно аппроксимировать линейной зависимостью от пластической деформации ε :

$$\Delta B_1 = \Delta B_A = -0.086\varepsilon. \tag{6}$$

Изменение параметра двулучепреломления B_{Aeff} (рис. 4, *b*), принимая во внимание уравнения (2), (3) и (6), можно выразить в следующем виде:

$$B_{A\text{eff}} = -\frac{0.086\varepsilon}{1-\varphi_M}.$$
(7)

Изменение параметра двулучепреломления *B*_{Meff} будет определяться как:

$$\Delta B_{M\text{eff}} = \Delta B + \frac{0.086\varepsilon}{1 - \varphi_M}.$$
(8)

В процессе растяжения увеличивается доля α'мартенсита и пластическая деформация концентрируется в более мягком аустените, что приводит к увеличению

Рис. 7. Зависимости изменения B_{Aeff} (сплошная линия) и B_{Meff} (штриховая линия) от деформации ε при T = 20 (1), 40 (2) и 60°C (3).

Рис. 8. Взаимосвязь B_M и объемной доли α' -мартенсита на 2 стадии статического нагружения стали 12X18H10T при T = 20 (1), 40 (2) и 60°C (3) [24].

интенсивности изменения параметра двулучепреломления $B_{A ext{eff}}$.

Уменьшение интенсивности мартенситного превращения в большей степени сказывается на B_{Meff} , чем на B_{Aeff} (рис. 7). Так, при разрушении ΔB_{Meff} при температуре 20°С примерно в 8 раз больше, чем при температуре 60°С, ΔB_{Aeff} примерно в 1.5 раза.

Получено, что изменение параметра двулучепреломления B_M на 2-ой стадии статического растяжения в диапазоне температур от 20 до 60°С, линейно зависит от процентного содержания α' -мартенсита φ_M (рис. 8):

$$\Delta B_M = 0.17\varphi_M. \tag{9}$$

Журнал технической физики, 2024, том 94, вып. 1

 N/N_f h 0.25 0.50 0.75 1.00 1.0 0.8 -0.010.6 N/N_f -0.02 ΔB_A 0.4 -0.03-0.04-0.050.005 0.010 0.015 0.020 0.025 $-\Delta B_{Aeff}$

Puc. 9. Изменение B_A (a) и ΔB_{Aeff} (b) при циклическом нагружении при $\Delta \varepsilon/2 = 0.5\%$ и $T = 20^{\circ}$ C (1), $\Delta \varepsilon/2 = 0.5\%$ и $T = 60^{\circ}$ C (2), $\Delta \varepsilon/2 = 0.3\%$ и $T = 20^{\circ}$ C (3), $\Delta \varepsilon/2 = 0.3\%$ и $T = 60^{\circ}$ C (4).

Исходя из предположения, что параметр B_M при усталости изменяется таким же образом, как и при статическом нагружении, определим изменение B_A в аустените при усталости, используя уравнения (5) и (9):

$$\Delta B_A = \Delta B - 0.17\varphi_M. \tag{10}$$

Величина ΔB_A показывает изменение параметра двулучепреломления в аустените без учета интенсивности образования α' -мартенсита. На рис. 5, *b* и 9 *a* видно, что ΔB_A значительно больше ΔB и превышает последний примерно в 7–10 раз при разрушении, т. е. мартенситное превращение при усталости также способствует увеличению ΔB , что соответствует рис. 4, *b*, на котором указано ожидаемое развитие *B* (штриховая линия) без фазовых превращений.

Получим изменение параметра двулучепреломления в аустените ΔB_{Aeff} при усталости, изменение которого не будет зависеть от условий нагружения, следующим образом:

$$\Delta B_{Aeff} = 36\sqrt[3]{k}(\Delta B - 0.17\varphi_M). \tag{11}$$

где k — тангенс угла наклона зависимости $\sqrt{\varphi_M}(N)$ (вставка на рис.5, a), который составляет 5.8 · 10⁻⁴ при амплитуде деформации $\Delta \varepsilon/2 = 0.5\%$ и $T = 20^{\circ}$ С, при $T = 60^{\circ}$ С $k = 3.2 \cdot 10^{-4}$. При амплитуде деформации $\Delta \varepsilon/2 = 0.3\%$ и $T = 20^{\circ}$ С $k = 6.0 \cdot 10^{-5}$, при $T = 60^{\circ}$ С $k = 4.5 \cdot 10^{-5}$. Подбор коэффициентов в выражении (11) осуществлялся таким образом, чтобы зависимость $\Delta B_{Aeff}(N/N_f)$ для всех образцов была единой при разной интенсивности фазовых превращений, обусловленной, в том числе величиной амплитуды деформации цикла и температурой.

Как видно из рис. 9, b, значения ΔB_{Aeff} , полученные для всех режимов нагружения, накладываются на одну

кривую, и при появлении трещины в материале достигают величины 0.022 ± 0.002 . Расчеты для стадии 2 проведены с допущением, что ΔB_{Aeff} на ней меняется таким же образом, как на стадии 1.

Таким образом, при решении обратной задачи с известными значениями φ_M и *B*, возможен расчет составляющей ΔB_{Aeff} , которая характеризует поврежденность и может быть использована для оценки текущего состояния материала.

Заключение

Кинетика мартенситного превращения оказывает влияние на механические свойства и на параметр акустического двулучепреломления при усталости стали 12X18H10T.

С увеличением температуры испытания наблюдается усиление разупрочнения, что наиболее ярко выражено при испытании с амплитудой деформации цикла 0.3%. Связь между изменением параметра двулучепреломления *B_M* и объемной долей α' -мартенсита на второй стадии статического нагружения подчиняется линейному закону в изученном интервале температур. В соответствии с предложенной моделью величина изменения параметра акустического двулучепреломления при образовании α' -мартенсита превышает аналогичное изменение при деформации аустенита. Была получена универсальная кривая изменения параметра акустического двулучепреломления в аустените (когда кинетика мартенситного превращения замедлена) при усталости, которая описывает результаты вне зависимости от состояния нагружения, что может быть использовано для диагностики материалов.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 22-29-01237, https://rscf.ru/project/22-29-01237/.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- G.B. Olson, M. Cohen. Metall Trans A., 6A, 791 (1975). DOI: 10.1007/bf02672301
- J. Singh. J. Mater. Sci., 20 (9), 3157 (1985).
 DOI: 10.1007/bf00545181
- [3] G. Huang, D. Matlock, G. Krauss. Metall. Trans. A, 20, 1239 (1989). DOI: 10.1007/BF02647406
- [4] J. Talonen, P. Nenonen, G. Pape, H. Hanninen. Metall. Mater. Trans. A, 36A, 421 (2005). DOI: 10.1007/s11661-006-0220-x
- [5] J.A. Lichtenfeld, M.C. Mataya, C.J. van Tyne. Metall. Mater. Trans. A, 37, 147 (2006). DOI: 10.1007/s11661-006-0160-5
- [6] T. Angel. J. Iron Steel Inst., 177, 165 (1954).
- [7] T. Byun, N. Hashimoto, K. Farrell. Acta Mater., 52, 3889 (2004). DOI: 10.1016/j.actamat.2004.05.003
- [8] J. Talonen, H. Hannien. Metall. Mater. Trans. A, 35, 2401 (2004). DOI: 10.1007/s11661-006-0220-x
- [9] B.A. Behrens, S. Hübner, A. Bouguecha, J. Knigge, K. Voges-Schwieger, K. Weilandt. Adv. Mat. Res., 137, 1 (2010). DOI: 10.4028/www.scientific.net/AMR.137.1
- [10] M. Smaga, F. Walther, D. Eifler. Mat. Sci. Eng. A, 483-484, 394 (2008). DOI: 10.1016/j.msea.2006.09.140
- [11] A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock. Metall. Mater. Trans. A, 37, 1875 (2006). DOI: 10.1007/s11661-006-0130-y
- [12] В.В. Мишакин, В.А. Клюшников, А.В. Гончар. ЖТФ, 85 (5), 32 (2015). [V.V. Mishakin, V.A. Klyushnikov, A.V. Gonchar. Tech. Phys., 60 (5), 665 (2015). DOI: 10.1134/S1063784215050163]
- [13] A. Rosen, R. Jago, T.J. Kjer. Mater. Sci., 7, 870 (1972).
 DOI: 10.1007/BF00550434
- [14] R. Dey, S. Tarafder, S. Sivaprasad. Int. J. Fatig., 90, 148 (2016).
 DOI: 10.1016/j.ijfatigue.2016.04.030
- [15] V.M.A. Silva, C.G. Camerini, J.M. Pardal, J.C.G. de Blás, G.R. Pereira. J. Mater. Res. Technol., 7, 395 (2018). DOI: 10.1016/j.jmrt.2018.07.002
- [16] S. Xie, L. Wu, Z. Tong, H.-En. Chen, Z. Chen, T. Uchimoto, T. Takagi. IEEE Trans. Magn. 54 (8), 1 (2018).
 DOI: 10.1109/TMAG.2018.2819123
- [17] D. O'Sullivan, M. Cotterell, D.A. Tanner, I. Mészáros. NDT & E Int., 37, 489 (2004). DOI: 10.1016/j.ndteint.2004.01.001
- [18] S.H. Khan, F. Ali, A. Nusair Khan, M.A. Iqbal. Comp. Mater. Sci., 43 (4), 623 (2008).
 DOI 10101/1
 - DOI: 10.1016/j.commatsci.2008.01.034
- [19] C.S. Kim. Strength Mater., 50, 41 (2018).DOI: 10.1007/s11223-018-9940-6
- [20] A. Ould Amer, A.-L. Gloanec, S. Courtin, C. Touze. Proc. Eng., 66, 651 (2013). DOI: 10.1016/j.proeng.2013.12.117
- [21] V. Mishakin, A. Gonchar, K. Kurashkin, V. Klyushnikov, M. Kachanov. Int. J. Eng. Sci., 168, 103567 (2021).
 DOI: 10.1016/j.ijengsci.2021.103567

- [22] S. Xie, Z. Chen, H.-En. Chen, S. Sato, T. Uchimoto, T. Takagi, Y. Yoshida. Int. J. Appl. Electrom., 45, 755 (2014). DOI: doi.org/10.3233/JAE-141903
- [23] M.S. Ogneva, M.B. Rigmant, N.V. Kazantseva, D.I. Davydov, M.K. Korkh. Russ. J. Nondestruct., 53 (9), 644 (2017). DOI: 10.1134/S106183091709008X
- [24] М.Б. Ригмант, М.К. Корх, Д.И. Давыдов, Д.А. Шишкин, Ю.В. Корх, А.П. Ничипурук, Н.В. Казанцева. Дефектоскопия, **11**, 28 (2015). [М.В. Rigmant, М.К. Korkh, D.I. Davydov, D.A. Shishkin, Yu.V. Korkh, A.P. Nichipuruk, N.V. Kazantseva. Rus. J. Nondestruct Testing, **51** (11), 680 (2015). DOI: 10.1134/S1061830915110030]
- [25] M. Bayerlein, H.J. Christ, H. Mughrabi. Mat. Sci. Eng. A, 114, L11 (1989). DOI: 10.1016/0921-5093(89)90871-X
- [26] H.J. Bassler, D. Eifler, M. Lang, G. Dobmann. Characterization of the Fatigue Behavior of Austenitic Steel Using HTSL-SQUID. In Review of Progress in Quantitative Nondestructive Evaluation (Springer, Boston 1998), DOI: 10.1007/978-1-4615-5339-7_207
- [27] A.M. Sherman. Met. Trans. A, 6, 1035(1975).
 DOI: https://doi.org/10.1007/BF02661357
- [28] A. Glage, A. Weidner, T. Richter, P. Trubitz, H. Biermann. Europ. Sympos. on Martens.Transform., 05007 (2009). DOI: 10.1051/esomat/200905007
- [29] S.K. Paul, N. Stanford, T. Hilditch. Int. J. Fatig., 106, 185 (2018). DOI: 10.1016/j.ijfatigue.2017.10.005
- [30] K.V. Kurashkin, V.V. Mishakin, S.V. Kirikov, A.V. Gonchar,
 V.A. Klyushnikov. Phys. Mesomech., 25, 80 (2022).
 DOI: 10.1134/S102995992201009X
- [31] V. Klyushnikov. Mat. Today: Proc., 19 (5), 2320 (2019).
 DOI: 10.1016/j.matpr.2019.07.679
- [32] H. Biermann, M. Droste. Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites (Springer, Cham. 2020), DOI: 10.1007/978-3-030-42603-3