## Влияние дисбаланса фотогенерированных токов на вольт-амперные характеристики многопереходных солнечных элементов

© М.А. Минтаиров, В.В. Евстропов, С.А. Минтаиров, М.З. Шварц, Н.А. Калюжный

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: mamint@mail.ioffe.ru

Поступило в Редакцию 12 мая 2023 г. В окончательной редакции 21 июля 2023 г. Принято к публикации 30 октября 2023 г.

> Исследовано влияние эффекта дисбаланса фотогенерированных токов на вольт-амперные и фотовольтаические характеристики многопереходных солнечных элементов. Показано, что эффект дисбаланса вызывает отклонение световых вольт-амперных характеристик от логарифмической формы. При этом фотовольтаические зависимости, определяемые режимами холостого хода и оптимальной нагрузки (включая эффективность и фактор заполнения вольт-амперных характеристик), остаются логарифмическими, но смещенными относительно случая баланса фотогенерированных токов на постоянные значения. Экспериментально указанное поведение характеристик зарегистрировано для трехпереходного GaInP/GaAs/Ge солнечного элемента.

> Ключевые слова: дисбаланс фотогенерированных токов, вольт-амперные характеристики, многопереходные солнечные элементы.

## DOI: 10.61011/PJTF.2023.23.56849.171A

Работа посвящена влиянию эффекта дисбаланса фотогенерированных токов многопереходных (МП) солнечных элементов (СЭ) на световые вольт-амперные характеристики (ВАХ) и фотовольтаические (ФВ) зависимости, получаемые из анализа световых ВАХ. К указанным характеристикам обычно относятся зависимости от уровня освещенности или от фотогенерированного (ФГ) тока таких величин, как напряжение холостого хода (Voc), напряжение оптимальной нагрузки (V<sub>m</sub>), эффективность, коэффициент заполнения, максимальная вырабатываемая мощность. В солнечной фотовольтаике проблема дисбаланса ФГ-токов обычно рассматривается как фактор, отрицательно влияющий на КПД прибора. Поэтому значительная часть разработок посвящена поиску таких конструкций приборов, при которых все или часть субэлементов будут находиться в токовом балансе [1-4]. При этом не рассматривается другой важный эффект, связанный с дисбалансом ФГ-токов, — изменение вида световых ВАХ. Частично этот вопрос упомянут в работах [5,6], где рассмотрена проблема связи между несколькими световыми вольт-амперными характеристиками МП СЭ. Отметим, что для однопереходных фотопреобразователей такая связь является простой: характеристики сдвигаются на разный ФГ-ток относительно темновой ВАХ. В МП СЭ при дисбалансе ФГ-токов такая связь нарушается. В настоящей работе этот эффект исследован модельно: при помощи аналитической модели, представленной в [7], с последующей экспериментальной проверкой для трехпереходного GaInP/GaAs/Ge СЭ. Основной вывод — дисбаланс ФГ-токов отклоняет световую ВАХ от логарифмического вида. Важность этого вывода связана с тем, что существует большое число аналитических подходов, применяющих однопереходные модели (в которых ВАХ полагается имеющей логарифмическую форму) к МП СЭ [5,6,8–11]. Следует отметить, что основные ФВ-зависимости сохраняют логарифмический вид, но смещаются относительно случая баланса  $\Phi\Gamma$ -токов (это подтверждается анализом положения точек режима холостого хода и оптимальной нагрузки на световых ВАХ, так как именно эти точки определяют все основные  $\Phi$ В-характеристики).

При последовательном соединении субэлементов полная ВАХ (т.е. для всего МП СЭ) получается "вольтовым сложением" ВАХ субэлементов (сложением напряжений при одинаковых токах). При этом в случае, когда субэлементы генерируют одинаковый ФГ-ток (случай баланса ФГ-токов), ВАХ всегда состоит из линейных участков (сегментов) в логарифмическом по току масштабе. В работе на основании методики описания вольт-амперной характеристики МП СЭ [7] используется моноэкспоненциальное выражение для каждого сегмента ВАХ с дисбалансной вольтовой добавкой, которая обращается в нуль при полном балансе ФГ-токов. Далее эта модель применена для расчета ВАХ.

Для простоты анализа расчет сделан для двухпереходного СЭ, токи p-n-переходов которого определяются только диффузионным механизмом протекания. В качестве субэлементов выбраны GaInP и GaAs, в которых ФГ-токи при единичной кратности составляли  $J_{g,1} = 0.015 \text{ A/cm}^2$  и  $J_{g,2} = 0.02 \text{ A/cm}^2$ . Диффузионные токи насыщения принимались равными  $J_{01} = 1 \cdot 10^{-25} \text{ A/cm}^2$  и  $J_{01} = 1 \cdot 10^{-20} \text{ A/cm}^2$  для GaInP и GaAs p-n-переходов соответственно. Согласно [7], вольт-амперная характеристика МП СЭ получалась при



**Рис. 1.** Расчет набора ВАХ для субэлементов и МП СЭ моделируемой структуры. a — верхний GaInP-субэлемент, b — нижний GaAs-субэлемент, c — двухпереходный GaInP/GaAs СЭ. Нижние сплошные линии — темновые ВАХ. Верхние сплошные линии — световые ВАХ для условия дисбаланса  $\Phi\Gamma$ -токов ( $J_{g,GaInP} = 0.015 \text{ A/cm}^2$  и  $J_{g,GaAs} = 0.02 \text{ A/cm}^2$ ). ВАХ, показанные штриховыми линиями, получены путем смещения темновой ВАХ на ток короткого замыкания СЭ.

помощи выражения

$$V(J) = \frac{AkT}{q} \ln\left[\frac{J_g - J}{J_0}\right] + \frac{kT}{q} \ln\left[\Pi_{i=1}^n \left(\frac{\kappa_i J_g - J}{J_g - J}\right)^{A_i}\right]$$
$$= \frac{AkT}{q} \ln\left[\frac{J_g - J}{J_0}\right] + V_a, \tag{1}$$

где *i* — номер субэлемента,  $A_i$  — диодный коэффициент субэлемента,  $A = \sum_{i=1}^{n} A_i$ ,  $J_0 = \sqrt[\Lambda]{\Pi_{n=1}^{n} J_{0,i}^{A_i}}$  — ток насыщения сегмента,  $J_{0,i}$  — ток насыщения субэлемента, k — постоянная Больцмана, T — абсолютная температура, q — заряд электрона,  $\kappa_i$  — коэффициент дисбаланса субэлемента (равен отношению ФГ-тока субэлемента к ФГ-току СЭ),  $J_g$  — ФГ-ток СЭ. В (1) второе слагаемое ( $V_a$ ) называется добавочным напряжением дисбаланса (обращается в нуль при полном балансе ФГ-токов).

На рис. 1 показан результат расчета ВАХ. Для обоих субэлементов (рис. 1, a, b) были рассчитаны две ВАХ: темновая и световая. Далее было проведено вольтовое сложение соответствующих ВАХ и получены суммарные темновая и световая характеристики двухпереходного СЭ (рис. 1, c). Также были получены и другие световые ВАХ — путем токового сдвига темновой ВАХ на величину тока короткого замыкания СЭ. Исходя из выбранных значений  $\Phi\Gamma$ -ток первого субэлемента (на рис. 1 обозначен как  $J_{g,1}$ ) является наименышим и равен

току короткого замыкания СЭ. Поэтому ВАХ, полученная при операции сдвига, для данного субэлемента совпадает с его световой ВАХ. У второго субэлемента ФГ-ток выбран избыточным, поэтому сдвиг его темновой ВАХ на тот же ток приведет к получению ВАХ, представленной на рис. 1, b штриховой линией. Такой ВАХ обладал бы второй субэлемент в случае полного баланса ФГ-токов. Такая же операция сдвига была сделана и для общей ВАХ СЭ, результат показан штриховой линией на рис. 1, c. Из графических построений очевидно, что эта ВАХ является сбалансированной и может быть получена также путем вольтового сложения световой ВАХ первого субэлемента со световой ВАХ второго субэлемента в условиях баланса (показана штриховой линией).

Очевидно, что вольтовая разница световых ВАХ на рис. 1, c равна вольтовой разнице световых ВАХ второго субэлемента, обладающего избыточным током (рис. 1, b), и в соответствии с (1) описывается добавочным напряжением дисбаланса:

$$V_a = \frac{kT}{q} \ln\left(\frac{\kappa_i J_g - J}{J_g - J}\right),\tag{2}$$

где  $J_g - \Phi \Gamma$ -ток МП СЭ, равный наименьшему из  $\Phi \Gamma$ -токов (в рассматриваемом расчете  $J_g = J_{g,1}$ ),  $\kappa_i = \frac{J_{g,2}}{J_{g,1}}$  — коэффициент дисбаланса. В линейном по току масштабе (рис. 1, *b*) наличие добавочного напряжения



**Рис. 2.** Сравнение расчетных темновой (*Dark I–V-curve*) и световых ВАХ генераторной части моделируемой структуры МП СЭ. Световые ВАХ построены как функция  $V(J_g-J)$ , т.е. являются преобразованными ВАХ. Световые ВАХ получены для разных кратностей концентрирования падающего излучения *X*. Символами отмечены положения на световых ВАХ точек напряжения холостого хода (светлые кружки) и напряжения оптимальной нагрузки (закрашенные кружки).

незначительно изменяет форму световой ВАХ, однако по факту такое изменение характеристики критично для применения логарифмических моделей ВАХ. На рис. 2 приведено сравнение темновой и световых ВАХ, рассчитанных для разных кратностей концентрирования падающего излучения X (кривая с X = 1 соответствует световой ВАХ, приведенной на рис. 1, с). Сравнение проведено в логарифмическом по току масштабе. Для этого ток всех световых ВАХ уменьшен на величину ФГ-тока и взят с обратным знаком, что равно обратному сдвигу световой ВАХ. Такая операция для однопереходных СЭ приводит к совмещению световой и темновой ВАХ. Таким образом, если преобразовать все вольтамперные зависимости V(J) в зависимости  $V(J_g-J)$ (где V — напряжение световой ВАХ,  $J_g - \Phi \Gamma$ -ток, *J* — ток световой ВАХ), то полученные характеристики будут совпадать.

Поскольку в проводимых расчетах учитывался только один ток насыщения (диффузионный), общая вольтамперная характеристика МП СЭ должна состоять из одного сегмента и выглядеть линейной функцией в логарифмическом по току масштабе. Из рис. 2 отчетливо видно, что этим критериям соответствует только темновая ВАХ, которая является сбалансированной по  $\Phi\Gamma$ -токам характеристикой (все  $\Phi\Gamma$ -токи равны нулю). Световые ВАХ значительно отклоняются, причем отклонение происходит в сторону увеличения напряжения с уменьшением тока, что является аномальным поведением ВАХ. Таким образом, можно заключить, что, несмотря на схожесть (в линейном по току масштабе) внешней формы световых вольт-амперных характеристик МП СЭ с типичными ВАХ однопереходных СЭ, применение к первым классических (многодиодных) моделей является некорректным. Отметим также, что при больших  $J_g - J$ все световые характеристики сливаются. Это является следствием того, что при больших J в выражении (2) можно пренебречь  $J_g$  по сравнению с J. Тогда добавочное напряжение дисбаланса становится равным нулю.

Отдельно следует отметить поведение точек на ВАХ, соответствующих режимам напряжения холостого хода и напряжения оптимальной нагрузки (светлые и закрашенные кружки на рис. 2 соответственно). Видно, что эти ФВ-характеристики —  $V_{oc}(J_g)$  и  $V_m(J_g-J_m)$  сохраняют логарифмическую форму и имеют вольтовый сдвиг относительно темновой ВАХ. В соответствии с оценками в [7] это связано с тем, что добавочное напряжение для точек напряжения холостого хода и оптимальной нагрузки — константы, не зависящие от кратности Х. Строгое доказательство этого факта — задача дальнейших исследований. В настоящей работе для проверки наблюдаемого поведения как световых ВАХ, так и ФВ-зависимостей были измерены и построены экспериментальные характеристики (схожие с рассчитанными на рис. 2) для трехпереходного GaInP/GaAs/Ge СЭ. Характеристики представлены на рис. 3. Все измерения проводились в режиме меняющейся освещенности световым потоком AM1.5D.

Экспериментальные световые ВАХ отклоняются от темновой ВАХ схожим образом (как в расчете для рис. 2). При этом в представленном токовом диапазоне темновая ВАХ состоит из двух сегментов с разными диодными коэффициентами (A = 12 и 4). В соответствии с (1) на каждом сегменте добавочное напряжение дисбаланса различно, поэтому сдвиг точек  $V_{oc}$  и  $V_m$  должен



**Рис. 3.** Экспериментальные зависимости темновой и световых ВАХ генераторной части трехпереходного GaInP/GaAs/Ge CЭ. Все построения выполнены таким же образом, как для расчетных ВАХ на рис. 2. Штриховыми линиями показаны характеристики с диодными коэффициентами A = 12 и 4.

различаться. Отметим, что малость сдвига для точки напряжения холостого хода не позволила наблюдать его экспериментально, в то время как для точки оптимальной нагрузки на каждом сегменте виден константный сдвиг характеристики  $V_m(J_g - J_m)$  относительно темновой ВАХ.

Таким образом, в работе исследовано влияние эффекта дисбаланса ФГ-токов на световые ВАХ и положение точек напряжения оптимальной нагрузки и напряжения холостого хода на этих характеристиках. Отметим, что именно эти две точки определяют основные фотовольтаические зависимости СЭ, такие как фактор заполнения и КПД. Расчетно и экспериментально показано, что световые ВАХ при дисбалансе ФГ-токов отклоняются от типичной сегментной формы темновой ВАХ. При этом фотовольтаические зависимости Voc и Vm остаются логарифмическими, но смещенными на близкую к постоянной вольтовою добавку в зависимости от сегмента ВАХ. Соответственно такого же поведения можно ожидать и от других характеристик, основанных на анализе точек оптимальной нагрузки и напряжения холостого хода, в том числе и для такой практически значимой характеристики, как эффективность СЭ. Следует отметить, что эффект дисбаланса фотогенерированных токов влияет на форму экспериментальных характеристик СЭ, что должно учитываться при их анализе.

## Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

## Список литературы

- M. Bonnet-Eymard, M. Boccard, G. Bugnon, F. Sculati-Meillaud, M. Despeisse, C. Ballif, Solar Energy Mater. Solar Cells, **117**, 120 (2013). DOI: 10.1016/j.solmat.2013.05.046
- [2] M. Wanlass, S.P. Ahrenkiel, R.K. Ahrenkiel, D.S. Albin, J.J. Carapella, A. Duda, J.F. Geisz, S. Kurtz, T. Moriarty, R.J. Wehrer, B. Wernsman, in *Conf. Record of the Thirty-first IEEE Photovoltaic Specialists Conf.* (IEEE, 2005), p. 530– 535. DOI: 10.1109/PVSC.2005.1488186
- M. Meusel, R. Adelhelm, F. Dimroth, A.W. Bett,
  W. Warta, Prog. Photovolt.: Res. Appl., 10, 243 (2002).
  DOI: 10.1002/pip.407
- [4] I. Garcia, R.M. France, J.F. Geisz, W.E. McMahon, M.A. Steiner, S. Johnston, D.J. Friedman, IEEE J. Photovolt., 6, 366 (2016). DOI: 10.1109/JPHOTOV.2015.2501722
- [5] C. Dominguez, I. Antón, G. Sala, Prog. Photovolt.: Res. Appl., 18, 272 (2010). DOI: 10.1002/pip.965
- [6] E.F. Fernandez, G. Siefer, F. Almonacid, A.J. García Loureiro, P. Pérez-Higueras, Solar Energy, 92, 221 (2013). DOI: 10.1016/j.solener.2013.03.012
- M.A. Mintairov, N.A. Kalyuzhnyy, V.V. Evstropov, V.M. Lantratov, S.A. Mintairov, M.Z. Shvarts, V.M. Andreev, A. Luque, IEEE J. Photovolt., 5, 1229 (2015). DOI: 10.1109/JPHOTOV.2015.2416006

- [8] G.S. Kinsey, P. Hebert, K.E. Barbour, D.D. Krut, H.L. Cotal, R.A. Sherif, Prog. Photovolt.: Res. Appl. 16, 503 (2008). DOI: 10.1002/pip.834
- M.A. Mintairov, V.V. Evstropov, S.A. Mintairov, M.Z. Shvarts, S.A. Kozhukhovskaia, N.A. Kalyuzhnyy, J. Phys.: Conf. Ser., 917, 052034 (2017).
   DOI: 10.1088/1742-6596/917/5/052034
- [10] В.М. Андреев, Е.А. Гребенщикова, П.А. Дмитриев, Н.Д. Ильинская, В.С. Калиновский, Е.В. Контрош, А.В. Малевская, А.А. Усикова, ФТП, **48** (9), 1249 (2014). [V.M. Andreev, Е.А. Grebenshchikova, P.A. Dmitriev, N.D. Ilinskaya, V.S. Kalinovsky, E.V. Kontrosh, A.V. Malevskaya, A.A. Usikova, Semiconductors, **48** (9), 1217 (2014). DOI: 10.1134/S1063782614090024].
- [11] R. Adelhelm, K. Bucher, Solar Energy Mater. Solar Cells, 50, 185 (1998). DOI: 10.1016/S0927-0248(97)00143-8