Молекулы HD в Млечном Пути

© Д.Н. Косенко, С.А. Балашев

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: kosenkodn@yandex.ru

Поступило в Редакцию 12 мая 2023 г. В окончательной редакции 31 июля 2023 г. Принято к публикации 30 октября 2023 г.

Проведен независимый анализ абсорбционных линий молекул HD и H₂ в ряде систем в нашей Галактике в архивных данных космического телескопа FUSE и линий нейтрального углерода и металлов в этих системах, используя архивные данные космического телескопа HST. Лучевые концентрации HD были получены в диапазоне от $\sim 10^{14}$ до $\sim 10^{16}$ cm⁻². Полученные лучевые концентрации были использованы для оценки физических условий в рассматриваемых системах, в том числе значения скорости ионизации космическими лучами, которое лежит в диапазоне от $\xi \sim 10^{-17}$ до $\sim 10^{-15.5}$ s⁻¹.

Ключевые слова: галактики, межзвездная среда, космические лучи.

DOI: 10.61011/JTF.2023.12.56821.f212-23

Введение

Молекулярный водород, Н2, — самая распространенная молекула во Вселенной, являющаяся трейсером холодной фазы нейтральной межзвездной среды (МЗС). При достаточно большой концентрации Н2 в среде также можно задетектировать его изотопомер, молекулу HD. Так как собственное излучение молекул H₂ и HD подавлено, то основной метод изучения этих молекул в межзвездной среде — это спектроскопия абсорбционных линий в направлении на яркие фоновые источники. Однако атмосферное поглощение препятствует наблюдению наземными телескопами абсорбционных линий H₂ и HD в Млечном Пути и соседних галактиках, так как эти абсорбционные линии находятся в ультрафиолетовой области спектра ($\lambda \lesssim 1100$ Å). Поэтому для наблюдения этих молекул в локальной Вселенной используются данные, полученные космическими телескопами, например, FUSE и Copernicus.

Ранее архивные данные космического телескопа FUSE использовались для изучения H_2 и HD в нашей Галактике и в Магеллановых Облаках [1–3], однако в работе [1] представлена лишь часть абсорбционных систем Млечного Пути, где идентифицированы молекулы HD. Кроме того, для многих систем, где были найдены линии молекулы H_2 , имеются архивные данные космического телескопа Хаббл (HST), позволяющие изучать линии нейтрального углерода, CI, а также оценивать металличность в системе. Используя лучевые концентрации¹ HD, а также населенности вращательных уровней H_2 , уровней тонкой структуры CI и металличности, можно оценить физические условия в системе, а именно интенсивность ультрафиолетового (УФ) фона, χ , объемную концентрацию, n, и скорость ионизации космическими

лучами, ξ , которые определяют химическую эволюцию облака (см., например, [4]).

В представленной пилотной работе, мы отобрали восемь абсорбционных систем в направлении на звезды нашей Галактики, в пяти из которых линии HD еще не изучались. Для однородного анализа мы заново проанализировали линии H₂, а также нашли населенности уровней тонкой структуры CI и металличности в этих системах, что описано в разд. 2, результаты обсуждаются в разд. 2. В разд. 3, используя полученные лучевые концентрации, мы выполнили оценки на упомянутые выше физические условия в среде, ассоциируемой с абсорбционными системами.

1. Данные и анализ

В настоящей работе были использованы архивные данные космического телескопа FUSE [5,6]. Мы отобрали подвыборку систем из выборки, представленной [2], для анализа возможных систематических эффектов в предыдущих измерениях HD, а также поиска новых систем, содержащих HD.

Спектры FUSE плохо откалиброваны по длине волны, поэтому мы применили процедуру, позволяющую улучшить качество калибровки [7]. Для этого мы сравнивали линии H_2 в наблюдаемом спектре с соответствующими линиями в синтетическом спектре (брались только тонкие, одиночные линии) и методом кросс-корреляции [8] оценивался сдвиг между ними. Затем строилась зависимость сдвига от длины волны, которая применялась для корректировки калибровки экспозиций при их сложении. Также сложение отдельных экспозиций позволило значительно улучшить отношение сигнала к шуму спектра, которое составило $S/N \sim 20-50$ в рассматриваемых системах.

Для подгонки абсорбционных линий мы использовали многокомпонентный профиль Фойта (компоненты опре-

 $^{^1}$ Здесь и далее лучевая концентрация (обозначается N) измеряется в ст $^{-2}.$

Рис. 1. Измеренные значения лучевых концентраций HD и H₂. Результаты, полученные в настоящей работе, обозначены красными треугольниками, желтые треугольники — результаты измерения HD в нашей Галактике полученные ранее в [1], зелеными кругами обозначены измерения на больших красных смещениях [4], синие квадраты — в Малом Магеллановом Облаке, фиолетовые ромбы — в Большом Магеллановом Облаке. Светло-синяя прямая показывает значение первичного изотопического отношения D/H [15]. Пунктирные кривые — теоретические расчеты отношения HD/H₂ для log *ξ* = −15, −16, −17.

Рис. 2. Скорость ионизации космическими лучами в зависимости от лучевой концентрации H₂. Треугольники — это оценки, полученные в нашей Галактике (темно-синие точки были получены в настоящей работе), квадраты — в Малом Магеллановом Облаке, ромбы — в Большом Магеллановом Облаке, кружки — в других галактиках (ссылки, например, в [4]).

Звезда	$v_{\rm LSR}{}^a$, km/s	$\log N_{ m HI}{}^b$	$\log N_{\rm H_2}$	$\log N_{ m HD}$	$\log N_{\rm CI}$
HD 93129A	-39.1	21.47	$16.70^{+0.08}_{-0.35}$	$\lesssim 13.4$	$13.93\substack{+0.02\\-0.01}$
	-16.8	"—"	$18.22\substack{+0.11 \\ -0.08}$	$\lesssim 13.9$	$14.61\substack{+0.01 \\ -0.01}$
	1.0	"—"	$20.22^{+0.01}_{-0.01}$	$16.33^{+0.11}_{-0.32}$	$14.80\substack{+0.01 \\ -0.01}$
HD 93205	-83.8	21.36	$16.67^{+0.07}_{-0.12}$	$\lesssim 13.1$	$13.68\substack{+0.01 \\ -0.01}$
	3.6	"—"	$19.80\substack{+0.01\\-0.01}$	$15.74\substack{+0.19 \\ -0.14}$	$14.80\substack{+0.01\\-0.01}$
HD 93843	~ 2.5	21.3	$19.68\substack{+0.01\\-0.01}$	$14.12\substack{+0.08\\-0.04}$	$14.30\substack{+0.01\\-0.01}$
HD 99890	-13.4	21.12	$19.56\substack{+0.01 \\ -0.02}$	$14.28\substack{+0.01\\-0.01}$	$14.58\substack{+0.01\\-0.01}$
HD 100199	~ 2.8	21.18	$20.21\substack{+0.01 \\ -0.01}$	$14.49\substack{+0.22\\-0.13}$	$14.70\substack{+0.01\\-0.01}$
HD 101190	~ 3.9	21.15	$20.47\substack{+0.02 \\ -0.02}$	$16.45\substack{+0.07\\-0.05}$	$15.11\substack{+0.03 \\ -0.04}$
HD 103779	~ -2.9	21.17	$19.95\substack{+0.06\\-0.01}$	$14.10\substack{+0.04\\-0.03}$	$14.48\substack{+0.01\\-0.01}$
HD 104705	-21.8	21.15	$18.43\substack{+0.03 \\ -0.04}$	$13.87\substack{+0.34 \\ -0.20}$	$13.82\substack{+0.01 \\ -0.01}$
	2.9	"—"	$20.02\substack{+0.01\\-0.01}$	$15.2\substack{+0.32 \\ -0.33}$	$14.39\substack{+0.01\\-0.01}$

Таблица 1. Измерения лучевых концентраций HD, H₂ и CI

Примечание. ^{*a*} — скорость абсорбционной системы в системе локального стандарта покоя, ^{*b*} — значения взяты из [2].

Звезда	$v_{\rm LSR}$, km/s	[X/H]	X	$\log n$, cm ⁻²	$\log \chi$	$\log \xi$, s ⁻¹
HD 93129A	-39.1	$-0.28\substack{+0.05\\-0.05}$	Zn	$2.98\substack{+0.31 \\ -0.35}$	$0.69\substack{+0.26 \\ -0.24}$	—
	-16.8	"—"	"—"	$2.65\substack{+0.35\\-0.22}$	$1.58\substack{+0.48\\-0.23}$	_
	1.0	"—"	"—"	$1.63\substack{+0.17 \\ -0.19}$	$0.48\substack{+0.29\\-0.21}$	$\gtrsim 19.9$
HD 93205	-83.8	$0.11\substack{+0.06\\-0.06}$	S	$\gtrsim 2.5$	$1.51\substack{+0.68 \\ -0.33}$	—
	3.6	"—"	"—"	$1.32\substack{+0.17\\-0.17}$	$0.44\substack{+0.36\\-0.26}$	_
HD 93843	~ 2.5	$-0.03\substack{+0.04\\-0.04}$	Р	$1.77\substack{+0.16\\-0.16}$	$0.52\substack{+0.19 \\ -0.18}$	$-16.49\substack{+0.19\\-0.15}$
HD 99890	-13.4	$0.07\substack{+0.03 \\ -0.03}$	Р	$1.42\substack{+0.17\\-0.16}$	$1.29\substack{+0.44\\-0.40}$	$-16.02\substack{+0.65\\-0.28}$
HD 100199	~ 2.8	$0.01\substack{+0.10\\-0.04}$	Р	$1.70\substack{+0.18\\-0.18}$	$0.44\substack{+0.23 \\ -0.20}$	$\lesssim -16.3$
HD 101190	~ 3.9	$-0.11\substack{+0.05\\-0.05}$	Zn	$1.76\substack{+0.18\\-0.17}$	$0.59\substack{+0.23 \\ -0.18}$	$\gtrsim -16.0$
HD 103779	~ 2.9	$-0.02\substack{+0.08\\-0.06}$	S	$1.27\substack{+0.17 \\ -0.17}$	$0.59\substack{+0.44 \\ -0.24}$	$-16.97\substack{+0.50\\-0.23}$
HD 104705	-21.8	$0.10\substack{+0.03 \\ -0.03}$	Р	$1.05\substack{+0.14 \\ -0.15}$	$1.04\substack{+0.47 \\ -0.31}$	$\lesssim -13.1$
	2.9	"—"	"—"	$1.28\substack{+0.18\\-0.19}$	$0.23\substack{+0.31 \\ -0.22}$	$\lesssim -15.5$

Таблица 2. Оценка физических условий

Примечание. Столбцы: (i) название звезды; (ii) скорость абсорбционной системы относительного локального стандарта покоя; (iii) металличность; (iv) элемент для оценки металличности; (v) объемная концентрация; (vi) интенсивность УФ излучения; (vii) скорость ионизации космическими лучами. В направлении на HD 93129A (1 и 2 компоненты) и HD 93205 скорость ионизации космичесими лучами не оценивалась.

деляются сдвигом по скорости), который дает оценки лучевых концентраций, N, и параметры Доплера, b, для разных уровней. Нами было замечено, что в результате применения процедуры калибровки и сложения экспозиций, а также других систематических эффектов, спектральное разрешение может ухудшаться (номинальное разрешение FUSE $R = \lambda/\Delta\lambda = 20000$), поэтому оно было свободным параметром при подгонке. Для определения постериорных распределений параметров был

использован байесов анализ с интегрированием методом Монте-Карло по схеме марковских цепей. Кроме того, мы использовали две штрафные функции для корректировки гладкости формы восстанавливаемой диаграммы населенности вращательных уровней H₂, и роста параметра Доплера с увеличением номера вращательного уровня H₂ (про наблюдения этого эффекта см., например, [9]). Детальное описание использованного метода см. в работах [4,10].

На скоростях, соответствующих позициям компонент H_2 в спектре, мы выполнили поиск молекул HD. В случае, когда мы могли поставить только верхний предел (здесь и далее верхние и нижние пределы определяются из анализа апостерионой функции распределения на уровне 3σ) на концентрацию HD, были зафиксированы положения линий и использованы приоры на параметры Доплера, полученные в анализа линий H_2 .

Используя архивные данные HST, мы также проанализировали абсорбционные линии CI и линии металлов, что было необходимо для оценок физических условий. При анализе линий CI предполагалось, что все уровни тонкой структуры имеют идентичный параметр Доплера.

2. Результаты

Оценки лучевых концентраций HD, H₂ и CI представлены в табл. 1. Системы в направлении на HD 93205, HD 101190 и HD 104705 были ранее изучены [1]. Найденное значение $\log N_{\rm HD}$ в направлении на HD 104705 близко к тому, что дает [2], однако для HD 93205 и HD 101190 значения отличаются на порядок. Такая разница может быть результатом разных подходов к обработке данных: [1] использован метод построения кривой роста для определения b и N, мы же использовали метод подгонки многокомпонентным профилем Фойта. Кроме того, для HD 93205 в [1] нижний предел b был получен в предположении, что линия оптически тонкая и находится в линейной области кривой роста, что исключает насыщенные решения. Таким образом, мы обнаружили молекулы HD в пяти новых системах в нашей Галактике. На рис. 1 показано сравнение полученных лучевых концентраций HD и H₂ с известными измерениями на больших красных смещениях [4], в Магеллановых Облаках (Kosenko et al., готовится к публикации) и изотопическим отношением D/H. Также для сравнения показаны значения, полученные ранее для нашей Галактике [1]. Большой разброс в полученных значениях можно объяснить разными физическими условиями в наблюдаемых системах и высокой чувствительностью концентрации HD к их изменению [11]. Ранее мы показали, что отношение $N_{\rm HD}/N_{\rm H_2}$ уменьшается при увеличении металличности, так как уменьшается концентрация ионизованного водорода, который необходим для формирования HD в газовой фазе. Тем не менее в трех системах были обнаружены отношения $N_{\rm HD}/2N_{\rm H_2} > {\rm D/H}$, что может свидетельствовать, например, о повышенном фоне космических лучей.

3. Физические условия

Используя оценки на лучевые концентрации H_2 , HD и CI, мы выполнили оценки физических условий в среде, ассоциируемой с абсорбционными системами, согласно процедуре, предложенной и использованной ранее для

систем HD/H_2 на космологических красных смещениях в работе [4].

Согласно этой процедуре, сначала производится оценка n и χ из совместного анализа населенностей вращательных уровней H₂ и уровней тонкой структуры CI на основе сравнения наблюдаемых значений с сетками моделей, посчитанных кодом MEUDON PDR [12,13]. Затем производится оценка ξ при использовании полуаналитической модели, описанной в [11]. Было показано, что отношение лучевых концентраций HD и H₂ зависит от ξ , n, χ и металличности Z (которая была определена из анализа линий металлов в спектрах HST и зафиксирована в дальнейших расчетах). Мы использовали метод Монте-Карло по схеме марковских цепей для определения ξ , а значения n и χ , найденные по H₂ и CI, были использованы в качестве приоров. Результаты представлены в табл. 2.

Полученные значения скорости ионизации космическими лучами лежат в широком интервале $\xi \sim 10^{-17} - 10^{-15.5} \, \mathrm{s}^{-1}$, но хорошо согласуются с типичными значениями в диффузной фазе M3C (см., например, обзор [14]).

Финансирование работы

Работа поддержана грантом РНФ № 22-22-00164

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов

Список литературы

- T.P. Snow, T.L. Ross, J.D. Destree, M.M. Drosback, A.G. Jensen ApJ, 688, 1124 (2008). DOI: 10.1086/592288
- [2] J.M. Shull, C.W. Danforth, K.L. Anderson. ApJ, 911, 55 (2021). DOI: 10.3847/1538-4357/abe707
- [3] D.E. Welty, R. Xue, T. Wong. Astrophys. J., 745, 173 (2012).
 DOI: 10.1088/0004-637X/745/2/173
- [4] D.N. Kosenko, S.A. Balashev, P. Noterdaeme, J.-K. Krogager, R. Srianand, C. Ledoux. MNRAS, 505, 3810 (2021). DOI: 10.1093/mnras/stab1535
- [5] H.W. Moos, W.C. Cash, L.L. Cowie, A.F. Davidsen, A.K. Dupree, et al. ApJ, 538, L1 (2000).
 DOI: 10.1086/312794
- [6] D.J. Sahnow, H.W. Moos, T.B. Ake, J. Andersen, B.G. Andersson, et al. ApJ, **538**, L7 (2000).
 DOI: 10.1086/312794
- [7] D.N. Kosenko, S.A. Balashev. MNRAS 525, 2820 (2023).
 DOI: 10.1093/mnras/stad2299
- [8] S.M. Simkin. A&A, **31**, 129 (1974).
- [9] S.A. Balashev, D.A. Varshalovich, A.V. Ivanchik. Astronomy Lett., 35, 150 (2009). DOI: 10.1134/S1063773709030025
- P. Noterdaeme, S.A. Balashev, J.-K. Krogager, R. Srianand, H. Fathivavsari, et al. A&A, 627, A32 (2019).
 DOI: 10.1051/0004-6361/201935371
- [11] S.A. Balashev, D.N. Kosenko. MNRAS: Lett., 492, L45 (2020). DOI: 10.1093/mnrasl/slz180

- [12] F. Le Petit, C. Nehmé, J. Le Bourlot, E. Roueff. Astrophys. J. Supplement Series, 164, 506 (2006). DOI: 10.1086/503252
- [13] V.V. Klimenko, S.A. Balashev. MNRAS, 498, 1531 (2020).
 DOI: 10.1093/mnras/staa2134
- M. Padovani, A.V. Ivlev, D. Galli, S.S.R. Offner, N. Indriolo,
 D. Rodgers-Lee, A. Marcowith, P. Girichidis, A.M. Bykov,
 J.M.D. Kruijssen. Space Sci. Rev., 216, 29 (2020).
 DOI: 10.1007/s11214-020-00654-1
- [15] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown,
 J. Aumont, C. Baccigalupi, et al. A&A, 641, A6 (2020).
 DOI: 10.1051/0004-6361/201833910