Исследование динамики и эволюционных процессов околосолнечных астероидов

© А.О. Андреев,^{1,2} М.В. Сергиенко,¹ Ю.А. Нефедьев¹

¹ Казанский (Приволжский) федеральный университет,
 420008 Казань, Россия
 ² Казанский государственный энергетический университет,
 420066 Казань, Россия
 e-mail: andreev.alexey93@gmail.com

Поступило в Редакцию 11 мая 2023 г. В окончательной редакции 6 сентября 2023 г. Принято к публикации 30 октября 2023 г.

> Рассмотрены околосолнечные и околоземные астероиды, а также пылевые кольца, существующие во внутренней части Солнечной системы. Рассмотрены их распределения по орбитальным параметрам и цветовым индексам. Полученные результаты позволят понять физику динамических процессов как Солнечной системы, так и, как следствие, эволюцию систем экзопланет.

Ключевые слова: околосолнечные астероиды, околоземные астероиды, пылевые кольца.

DOI: 10.61011/JTF.2023.12.56819.f250-23

В настоящее время изучение околосолнечных астероидов (NSA) получило большое развитие, так как их исследование позволит по-новому понять динамику солнечной активности [1]. Большое значение имеет анализ корональных процессов, так как законченная теория динамики солнечного ветра до сих пор отсутствует. В настоящей работе была создана имитационная модель динамики околосолнечных астероидов с перигелийными расстояниями до q < 0.1 au. Модель включает астрофизические параметры этих объектов, распределение по размеру и их динамическое поведение в пространстве. Цифровая модель NSA предназначена для изучения их динамики и прогнозирования. При построении модели использовались наблюдения с наземных и космических системи [2]. Как известно [3], околосолнечные астероиды, согласно наблюдательной селекции, распределены по категориям с высоким и низким альбедо. Последние можно отнести к объектам, имеющим малые размеры и близкие к Солнцу перигелийные расстояния. По этой причине происходит их интенсивное разрушение даже при удалении от Солнца [4]. Этот эффект стал критерием выделения NSA как объектов, которые или находятся, или недавно двигались по орбитам с перигелийными расстояниями q < 0.1 au. Используя совместный анализ показателей альбедо и орбитальных параметров, появляется возможность исследовать NSA как околоземные астероиды [5]. Используется имитационная модель детально описанная в [6]. Согласно используемой модели, для объектов с q < 0.1 au, данные для которых взяты из каталога JPL (http://ssd.jpl.nasa.gov), моделировались орбитальные параметры и всевозможные значения параметров альбедо и диаметра, так как эти данные в основном определены недостаточно. Имитационная модель позволяет прогнозировать астрофизические параметры NSA, распределение их размеров и динамические характеристики. Существует возможность варьировать параметры моделирования различных состояний NSA и рассчитывать их прогнозные траектории. С этой целью используется динамическое регрессионное адаптивное моделирование. Моделирование изменений в зависимости от градиентов температуры элементов орбиты яркостных характеристик показало хорошее согласие с данными, полученными в работе [7].

В межпланетном пространстве находятся частички астероидного вещества, являющиеся продуктами их распада или продуктами столкновения астероидов, и пыль, возникающая от выбросов газа кометами. Эти частички образуют пылевые кольца. Для поддержания своего существования пылевые кольца, которые расположены по внутренней части Солнечной системы, в частности около орбиты Земли, требуют постоянного пополнения за счет малых тел Солнечной системы. Пыль, которая высвобождается из астероидов, а также сами астероиды под действием эффекта Пойтинга-Робертсона могут покинуть главный пояс астероидов и попасть в резонанс с Землей [8], что приводит к появлению околосолнечного пылевого образования. Пылевые облака являются временным образованием, подверженным различным флуктуациям, но поддерживающимися за счет пополнения из главного пояса астероидов (ГП).

Пылевые кольца и околосолнечные астероиды в них трудно наблюдать, так как Солнце за счет своей яркости затрудняет такие наблюдения. Считается, что астероиды, входящие в Земное пылевое кольцо, являются объектами, сближающимися с Землей (NEA) [9]. Некоторые астероиды ГП имеют большие эксцентриситеты, но маленькие перигелии орбиты, вследствие чего они пересекают орбиты планет земной группы. Пересечение орбит планет способствует столкновению NSA с ними, следовательно, такие объекты являются динамически недолговечными. На рис. 1 показана зависимость большой полуоси орбиты астероидов *a* (au) от эксцентриситета *e* для всех известных объектов, сближающихся с Землей (NEA) (черные точки) по данным JPL (http://ssd.jpl.nasa.gov). Красная линия — это пересечение с орбитой Земли в ее внутренней области. Астероиды с орбитами типа Атиры располагаются внутри Земной орбиты, на рисунке они лежат левее красной линии и располагаются на ней.

Так как объекты из более хрупкого вещества больше подвержены различным деформациям и приливным силам от Солнца и больших планет, это ведет к различным напряжениям внутри объекта и его дальнейшему разрушению; тем самым пополняются астероидным веществом пылевые кольца, в частности, и пылевое кольцо около орбиты Земли [10]. NSA, резонансные с орбитой Земли, имеют низкий эксцентриситет и практически недоступны для наблюдения в окрестностях Солнца, так как имеют маленький размер (диаметр $D \leq 1 \text{ km}$), что эквивалентно примерно 20^m звездной величине [11].

Поверхности NSA могут достигать таких температур, которые провоцируют их разрушение из-за изменения поверхности объекта под действием температурного градиента. Как следствие, происходят высыхание поверхности NSA и разложение гидратированных минералов. Распад NSA и образовавшиеся в результате обломки таких объектов могут способствовать пополнению околосолнечного пылевого кольца.

На рис. 2 показана зависимость изотермической сферической температуры абсолютно черного тела (Tbb), вычисленная на расстоянии перигелия орбиты NSA, и субсолнечная температура (Tss) в зависимости от величины большой полуоси NSA для объектов, имеющих большие полуоси орбиты меньшие или сравнимые с земной. Изотермическая сферическая температура Tbb меняется в интервале от 550 до 950 K, а субсолнечная температура Tss — в интервале от 750 до 1100 К. Это соответствует тем температурам, при которых происходит разложение гидратированных минералов. Эксперименты над оптическими свойствами

Рис. 1. Зависимость большой полуоси NSA от эксцентриситета.

Рис. 2. Зависимость большой полуоси NSA от температур Tbb и Tss.

метеоритов в условиях лабораторий демонстрируют, что их оптические свойства изменяются при нагреве [12]. Следовательно, превышение температуры, при которой происходит разложение гидратированных минералов, возможно, приводит к изменению спектральных свойств отражения объектов, т.е. меняется их альбедо [12,13]. К тому же пересыхание поверхности NSA под действием повышенной температуры может привести к термическому разрушению объекта, что приводит к образованию пыли и влечет за собой пополнение пылевых колец за счет пылевой составляющей [14].

Опираясь на лабораторные исследования оптических свойств метеоритов при нагреве [12], можно поставить вопрос: есть ли для всех NSA какая-то зависимость от воздействия высоких температур в области перигелия, например, схожая цветовая температура для NSA? Для поиска ответа на этот вопрос были проанализированы зависимости цветового индекса B-V в зависимости от перигелийного расстояния q орбит NSA (рис. 3). Зависимость между перигелием орбит NSA и цветовым индексом B-V не выявлена. Аналогично были проанализированы зависимости цветового индекса B-R в зависимости от перигелия (q) орбит NSA. Зависимость между перигелием орбит NSA и цветовым индексом В-R не выявлена. У таких объектов величина перигелия орбиты q равна примерно 1 au, и для них наблюдалась бы отчетливая зависимость показателя цвета B-R от расстояния, если бы таковая имелась. В построенной зависимости абсолютной звездной величины Н от перигелия орбиты q для NSA также не были выявлены особенности (рис. 4). Анализируя цветовые зависимости B-V и V-R, можно отметить, что цвета околосолнечных и околоземных объектов совпадают, и невозможно найти разницу между этими группами. Что касается NSA, то зависимости B-V и V-R для них демонстрируют, что астероиды соответствуют спектральным типам астероидов по классификации Толена, что является доказатель-

Рис. 3. Зависимость перигелийного расстояния NSA от цветовой температуры B-V.

Рис. 4. Зависимость перигелийного расстояния NSA от абсолютной звездной величины H.

ством, что эти NSA — из главного пояса астероидов. Таким образом, можно заключить, что цветовая температура не имеет зависимости от расстояния до перигелия *q* или с другими орбитальными параметрами.

Резюмируя все вышесказанное, мы предполагаем, что пылевые кольца пополняются из ГП астероидов с помощью гравитационных и негравитационных эффектов, таких, как солнечное давление и эффект Пойтинга-Робертсона. Можно считать, что околосолнечные и околоземные объекты совпадают по своим динамическим характеристикам, и их сложно разделить. Данный факт подтверждается анализом распределений их орбитальных параметров, а также распределениями по цветовым индексам. Мы не обнаружили связь между оптической цветностью и перигелийным расстоянием, а также между оптической цветностью и другими орбитальными параметрами. Таким образом, нет оснований для предположения, что на объекты с малым перигелийным расстоянием влияет солнечный нагрев. Результаты, полученные в работе, могут найти применение при оценке достоверности генетических связей между метеороидами, влияния на эволюцию NSA солнечного излученияй [15], при изучении инфляционных процессов на поверхности астероидовй [16], для развития эволюционной теории Солнечной системы и планирования новых космических миссий и наблюдательных технологий.

Финансирование работы

Выполненные работы поддержаны Российским научным фондом, грант 22-72-10059.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- G.H. Jones, M.M. Knight, K. Battams, D.C. Boice, J. Brown, S. Giordano, J. Raymond, C. Snodgrass, J.K. Steckloff, P. Weissman, A. Fitzsimmons, C. Lisse, C. Opitom, K.S. Birkett, M. Bzowski, A. Decock, I. Mann, Y. Ramanjooloo, P. McCauley. Space Sci. Rev., **214**, 1 (2018). DOI: 10.1007/s11214-017-0446-5
- [2] C.E. Holt, M.M. Knight, M.S.P. Kelley, Q. Ye, H.H. Hsieh, C. Snodgrass, A. Fitzsimmons, D.C. Richardson, J.M. Sunshine, N.L. Eisner, A. Gustaffson. Planet. Sci. J., 3 (8), 187 (2022). DOI:10.3847/PSJ/ac77f6
- [3] M. Ishiguro, Y.P. Bach, J. Geem, H. Naito, D. Kuroda, M. Im, M.G. Lee, J. Seo, S. Jin, Y.G. Kwon, T. Oono, S. Takagi, M. Sato, K. Kuramoto, T. Ito, S. Hasegawa, F. Yoshida, T. Arai, H. Akitaya, T. Sekiguchi, R. Okazaki, M. Imai, K. Ohtsuka, M. Watanabe, J. Takahashi, M. Devogèle, G. Fedorets, L. Siltala, M. Granvik. Mon. Not. R. Astron. Soc., **509** (3), 4128 (2022). DOI: 10.1093/mnras/stab3198
- [4] A. Toliou, M. Granvik. Mon. Not. R. Astron. Soc, 521 (4), 4819 (2023). DOI: 10.1093/mnras/stad862
- [5] T.Y. Galushina, O.N. Letner, E.N. Niganova. Planet. Space Sci., 202, 105232 (2021). DOI: 10.1016/j.pss.2021.105232
- [6] A.O. Andreev, Y.A. Nefedyev. 84th Annual Meeting of the Meteoritical Society, August 15-21, 2021, Chicago, Illinois. LPI Contribution, 2609, 6058 (2021).
- M. Granvik, A. Morbidelli, R. Jedicke, B. Bolin, W.F. Bottke,
 E. Beshore, D. Vokrouhlický, M. Delbò, P. Michel. Nature,
 530 (7590), 303 (2016). DOI: 10.1038/nature16934
- [8] M. Sommer, H. Yano, R. Srama. Astron. Astrophys., 635, A10 (2020). DOI: 10.1051/0004-6361/201936676
- [9] A.W. Harris, P.W. Chodas. Icarus, 365, 114452 (2021).
 DOI: 10.1016/j.icarus.2021.114452
- [10] Q. Ye, M. Granvik. Astrophys. J., 873 (2), 104 (2019).
 DOI: 10.3847/1538-4357/ab05ba
- [11] A. Morbidelli. Astron. Astrophys., 638, A1 (2020).
 DOI: 10.1051/0004-6361/202037983
- [12] T. Hiroi, M.E. Zolensky, C.M. Pieters, M.E. Lipschutz. M&PS, 31, 321 (1996).
- [13] E.A. Cloutis, P. Hudon, T. Hiroi, M.J. Gaffey. Icarus, 220, 586 (2012).
- [14] D. Jewitt. A.J., 143, 66 (2012).

- [15] T. Lehtinen, M. Granvik, A. Bellome, J.P. Sánchez. Acta Astronaut., 186, 98 (2021).
 DOI: 10.1016/j.actaastro.2021.05.028
- [16] G. Tsirvoulis, M. Granvik, A. Toliou. Planet. Space Sci., 217, 105490 (2022).
 DOI: 10.1016/j.pss.2022.105490