Квантовый транспорт во фрактальных решетках с кулоновским взаимодействием

© Н.Н. Конобеева, Р.Р. Трофимов, М.Б. Белоненко

Волгоградский государственный университет, 400062 Волгоград, Россия E-mail: yana_nn@volsu.ru

Поступила в Редакцию 15 мая 2023 г. В окончательной редакции 16 июля 2023 г. Принята к публикации 30 октября 2023 г.

> Исследуется квантовый перенос, а именно динамика электронной плотности во фрактальной решетке при распространении электронов в ней. Фрактальная решетка составлена из нанопроволок и имеет вид треугольника Серпинского в направлении, перпендикулярном направлению распространения электронов. Основополагающим моментом является учет кулоновского отталкивания электронов на одном узле решетки.

Ключевые слова: квантовый транспорт, фракталы, модель Хаббарда.

DOI: 10.61011/FTP.2023.07.56793.5152C

1. Введение

Под фракталом понимают сложную структуру с дробной размерностью, обладающую свойством самоподобия. Фракталы используются для описания многих явлений в науке и технике, позволяют создавать новые устройства с улучшенными характеристиками.

Влияние дробной размерности широко изучалось с точки зрения диффузионных процессов путем исследования классических случайных блужданий во фрактальных решетках [1]. В отличие от структур с целочисленной размерностью во фрактальных объектах наблюдается аномальная диффузия, модели которой описаны во многих работах [2–4].

Проведены экспериментальные исследования квантового переноса одиночных фотонов в фотонной решетке с фрактальной геометрией [5]. Ведется разработка и исследование новых материалов с фрактальной структурой, в которых возможен электронный транспорт [6–8], в том числе туннельный [9]. Определена квантовая проводимость двумерного электронного газа, блуждающего по ковру Серпинского [10].

Отметим, что в вышеупомянутых работах использовалось одноэлектронное приближение. В данной работе мы будем исследовать процесс переноса электронов во фрактальных структурах в многоэлектронном приближении, что позволит выявить особенности свойств материалов с такой структурой, которые могут внести существенный вклад в разработку новых устройств.

2. Модель и методы решения

Мы рассматриваем распространение волн электронной плотности в системе, состоящей из нескольких нанопроволок, поперечное сечение которой представляет собой решетку в форме треугольника Серпинского (плоскость *YOZ*), имеющего фрактальную структуру (рис. 1). Будем считать, что в нашу систему с фрактальной структурой запускаются электроны, которые входят в первый узел (вершина треугольника Серпинского).

Гамильтониан системы запишем с использованием модели Хаббарда [11]:

$$H = -\sum_{mj\sigma} \gamma_{mj} a_{m\sigma}^+ a_{j\sigma} + \sum_m U a_{m\sigma}^+ a_{m\sigma} a_{m-\sigma}^+ a_{m-\sigma}.$$
 (1)

Здесь $\gamma_{mj} (\approx 0.5 \text{ уB})$ — интеграл перескока между узлами *m* и *j* во фрактальной решетке (между ближайшими соседями), определяется расстоянием между нанопроволоками, $U(\approx 10 \text{ уB})$ — величина кулоновского отталкивания электронов на одном узле, $a_{m\sigma}^+ a_{m\sigma}$ — операторы рождения/уничтожения электронов на *m*-ом узле со спином σ .

Запишем далее уравнение движения Гейзенберга:

$$i\hbar \frac{\partial}{\partial t}a_{m\sigma} = [a_{m\sigma}, H].$$
 (2)

Для простоты считаем, что вероятность встретить электрон со спином $+\sigma$ и спином $-\sigma$ одинакова. Вычисляя коммутатор в правой части уравнения (2) и переходя к континуальному пределу вдоль оси нанопроволоки, получаем уравнение, описывающее динамику распространения волн электронной плотности во фрактальной решетке:

$$i\hbar\frac{\partial}{\partial t}a_m = -\sum_j \gamma_{mj}a_j + U|a_m|^2 a_m - \frac{\hbar^2}{2m_{ef}}\frac{\partial^2 a_m}{\partial x^2}.$$
 (3)

Здесь *i* — мнимая единица, \hbar — постоянная Планка, $|a_m(x,t)|^2$ — вероятность нахождения электрона в узле *m*, $m_{ef}(\approx -10^{-25} \,\mathrm{r})$ — эффективная масса электрона в нанопроволоке. Считаем, что вероятность перехода вдоль проволоки в 5 раз выше, чем в поперечном направлении. Переход к континуальному пределу вдоль оси *OX* возможен, когда характерный размер (в данном

Рис. 1. Геометрия задачи: узлы нумеруются сверху вниз, слева направо.

случае полуширина гауссового пакета) много больше расстояния между узлами.

Отметим, что в данной работе мы рассматриваем простую модель, с учетом только короткодействующего взаимодействия между электронами.

Уравнение (3) после обезразмеривания решалось численно (см. работу [12]) с использованием графического процессора с начальными условиями для волновой функции в виде:

$$a_{1}(x_{i}, 0) = Q \cdot \exp\left(-\frac{(x_{i} - b)^{2}}{g^{2}}\right), \quad i = 1, \dots, N, \quad (4)$$
$$a_{k}(x, 0) = 0, \quad k = 2, \dots, 162,$$
$$a_{k}(x_{1}, t) = a_{k}(x_{2}, t), \quad a_{k}(x_{N}, t) = a_{k}(x_{N-1}, t),$$

где Q — амплитуда волнового пакета нормировки (Q = 1), g — ширина волнового пакета входящих электронов (10 нм), b — место максимума волнового пакета (5 нм), N — число шагов по координате. Моделирование проводилось на нанопроволоках длиной 200 нм.

Интегральные характеристики электронной волновой функции для разных моментов времени показаны н рис. 2.

Из рис. 2, a видно, что с течением времени волна электронной плотности распространяется по нанопроволокам с постепенным затуханием амплитуды — для первого узла и с возрастающей — для более удаленного от вершины узла. При этом часть электронов переходит в соседние нанопроволоки (рис. 2, b). Полученная структура фактически является доменной. Под доменами понимаем области с различной плотностью электронов. Наличие такой структуры может оказаться полезным для обнаружения эффектов памяти в электронной подсистеме фрактальных волноводов.

Отметим, что учет кулоновского отталкивания электронов не меняет характер эволюции волновой функции, проявляясь только в изменении величины электронной плотности в пределах 1–2%.

Рис. 2. a — зависимость распределения электронной плотности, просуммированное по всем узлам, от координат x; b — распределение электронной плотности в зависимости от номера узла m, проинтегрированное по x: кривая l соответствует t = 2, 2 - t = 10, 3 - t = 20.

Рис. 3. Модуль фурье-спектра для разных узлов фрактальной решетки: сплошная кривая — верхний узел треугольника Серпинского, точечная кривая — 5-ый узел.

Также было проведено исследование зависимости результатов от амплитуды Q. Выявлено, что она имеет нетривиальный характер, который проявляется в близком к нулю взаимодействии при малых значениях амплитуды ($Q \le 0.05$).

На рис. З приведены фурье-спектры волновой функции. Из приведенных зависимостей можно сделать вывод, что фурье-спектры для разных узлов согласуются, и в итоге во фрактальной структуре образуются согласованные по частотам колебания. Это, в первую очередь, обязано своим появлением нелинейному слагаемому в (1), которое ответственно, как за появление высших гармоник, так и за синхронизацию спектра. Отметим, что подобная синхронизация спектров может быть полезна в устройствах для делителей волн электронной плотности.

3. Заключение

В результате проведенного исследования выявлено, что волновые функции электронов во фрактальных структурах имеют вид локализованных состояний и при учете нелинейности, вызванной кулоновским отталкиванием электронов на одном узле. Показано, что во фрактальной решетке из нанопроволок возникают согласованные по спектру колебания электронов.

Финансирование работы

Исследование выполнено при поддержке Российского научного фонда (грант № 23-71-00016, https://rscf.ru/project/23-71-00016/). Работа выполнена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ им. М.В. Ломоносова.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. ben-Avraham, S. Havlin. *Difusion and reactions in fractals and disordered systems* (Cambridge University Press, Cambridge, 2000) p. 33.
- [2] L. Gmachowski. Eur. Biophys. J., 44 (8), 613 (2015).
 DOI: 10.1007/s00249-015-1054-5
- [3] H.G. Sun, Z. Li, Y. Zhang, W. Chen. Chaos, Solitons & Fractals, 102 (C), 346 (2017).
 DOI: 10.1016/j.chaos.2017.03.060
- [4] J. Wagenhuber, T. Geisel, P. Niebauer, G. Obermair. Phys. Rev. B, 45, 4372 (1992). DOI: 10.1103/PhysRevB.45.4372
- [5] X.-Y. Xu, X.-W. Wang, D.-Y. Chen, C.M. Smith, X.-M. Jin. Nature Photonics, 15, 703 (2021).
 DOI: 10.1038/s41566-021-00845-4
- [6] J. Shang, Y. Wang, M. Chen, J. Dai, X. Zhou, J. Kuttner, G. Hilt, X. Shao, J.M. Gottfried, K. Wu. Nature Chem., 7 (5), 389 (2015). DOI: 10.1038/nchem.2211
- [7] S.N. Kempkes, M.R. Slot, S.E. Freeney, S.J.M. Zevenhuizen, D. Vanmaekelbergh, I. Swart, C. Morais Smith. Nature Physics, 15, 127 (2019). DOI: 10.1038/s41567-018-0328-0
- [8] R.T. Sibatov, A.K. Golmankhaneh, R.M. Meftakhutdinov, E.V. Morozova, D.A. Timkaeva. Fractal Fract., 6(2), 115 (2022). DOI:10.3390/fractalfract6020115
- [9] N.N. Konobeeva, M.B. Belonenko. Nanosystems: physics, chemistry, mathematic, 14 (1), 54 (2023).
 DOI: 10.17586/2220-8054-2023-14-1-54-58
- [10] E. van Veen, S. Yuan, M.I. Katsnelson, M. Polini, A. Tomadin. Phys. Rev. B, 93, 115428 (2016).
 DOI: 10.1103/PhysRevB.93.115428
- [11] D.P. Arovas, E. Berg, S.A. Kivelson, S. Raghu. Ann. Rev. Condens. Matter Phys., 13, 239 (2022).
 DOI: 10.1146/annurev-conmatphys-031620-102024
- [12] L. Wu. SIAM J. Numer. Anal., **33**(4), 1526 (1996).

Редактор А.Н. Смирнов

Quantum transport in fractal lattices with Coulomb interaction

N.N. Konobeeva, R.R. Trofimov, M.B. Belonenko

Volgograd State University, 400062 Volgograd, Russia

Abstract In this paper, we study quantum transport, namely, the dynamics of the electron density in a fractal lattice during the propagation of electrons in it. The fractal lattice is composed of nanowires and has the form of a Sierpinski triangle in the direction perpendicular to the direction of electron propagation. The fundamental point is to take into account the Coulomb repulsion of electrons at one lattice site.