05,11,19

Magnetic and Magnetocaloric Properties of $Y(Co_{1-x}Fe_x)_2$ (x = 0.12-0.20) and $Lu(Co_{0.84}Fe_{0.16})_2$ Compounds

© M.S. Anikin¹, E.N. Tarasov¹, A.V. Zinin¹, N.V. Kudrevatykh¹, D.S. Neznakhin¹, M.A. Semkin^{1,2}, M.I. Knyazev¹, N.V. Selezneva¹, S.V. Andreev¹

 ¹ Institute of Natural Sciences & Mathematics, Ural Federal University, Ekaterinburg, Russia
² Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
E-mail: maksim.anikin@urfu.ru

Received: October 10, 2023 Revised: October 10, 2023 Accepted: October 14, 2023

> To clarify the nature of the anomalously high magnetocaloric effect at low temperatures in the RMe_2 Laves type phases with "non-magnetic" rare-earth ions (R = Y or Lu) and 3d elements of the Fe group (Me = Fe, Co), the $Y(Co_{1-x}Fe_x)_2$ (x = 0.12-0.20) and Lu($Co_{0.84}Fe_{0.16}$)₂ compositions have been synthesized and their magnetic and magnetocaloric properties were investigated (isothermal magnetic entropy change ΔS_m and adiabatic temperature change ΔT_{ad}). It has been established that the iron concentration increases and/or Y by Lu replacement with unchanged Co:Fe ratio gives rise in the energy of the d-d exchange interaction, which is followed by an increase in the Curie temperature value as well as by the low-temperature anomaly shift on the $\Delta S_m(T)$ dependence to a higher temperatures range.

> Keywords: magnetocaloric effect, adiabatic temperature change, magnetic moments, Laves phase, Curie temperature, mictomagnetism.