Магнитные свойства нанокристаллических материалов на основе системы (1 - x)BiFeO₃-(x)YFeO₃

© П.Д. Кравцова¹, М.В. Томкович¹, М.П. Волков¹, И.В. Бурьяненко², В.Г. Семёнов^{3,4}, В.И. Попков¹, Н.А. Ломанова¹

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия
 ³ Санкт-Петербург, Россия
 ⁴ Институт аналитического приборостроения РАН, Санкт-Петербург, Россия
 ⁴ Институт аналитического приборостроения РАН, Санкт-Петербург, Россия
 ⁵ Санкт-Петербург, Россия
 ⁶ Институт аналитического приборостроения РАН, Санкт-Петербург, Россия
 ⁷ Е-mail: valdner347@gmail.com

Поступила в Редакцию 19 мая 2023 г. В окончательной редакции 14 сентября 2023 г. Принята к публикации 30 октября 2023 г.

Методом растворного горения синтезированы нанокристаллические магнитоупорядоченные материалы на основе ортоферритов висмута и иттрия. Полученные материалы демонстрируют существенное отличие их магнитных свойств от свойств чистых ортоферритов, в частности, существенное увеличение магнитного отклика.

Ключевые слова: перовскиты, ортоферрит висмута, ортоферрит иттрия, нанокристаллы, намагниченность, мёссбауэровская спектроскопия.

DOI: 10.61011/FTT.2023.12.56763.5208k

1. Введение

Разработка материалов на основе перовскитоподобных ортоферритов висмута и иттрия вызывает большой интерес на протяжении многих лет, поскольку высокотемпературные мультиферроики актуальны для различных областей техники, в частности, магнитоэлектроники [1,2].

Как известно, ортоферрит висмута (BiFeO₃) обладает пространственной модуляцией намагниченности, спиновой циклоидой с $\lambda_{\rm C} = 62\,\rm nm$, разрушение которой является одной из важных технологических задач и происходит, в частности, при изоморфном замещении и уменьшении размеров частиц [1,3,4]. Ортоферрит иттрия (YFeO₃) имеет несколько структурных модификаций, что предполагает вариативность его функциональных характеристик [5]. Изоморфное замещение в подрешетке висмута структуры BiFeO₃ катионами РЗЭ является одним из методов подавления спиновой циклоиды [1,4-8]. Функциональные свойства нанокристаллов переменного состава $Bi_{1-x}Y_xFeO_3$ и $Y_{1-x}Bi_xFeO_3$ рассмотрены в работах [6-12], в которых, в основном, приведены характеристики для узких диапазонов х. Влияние фазового состава на магнитные свойства материалов системы (1 - x)BiFeO₃ – (x)YFeO₃ представляет интерес с точки зрения возможности получения новых магнитных материалов.

Целью настоящей работы было исследование магнитных характеристик нанокристаллических материалов на основе системы (1 - x)BiFeO₃-(x)YFeO₃, полученных методом глицин-нитратного горения.

2. Синтез и характеризация образцов

Образцы $Bi_{1-x}Y_xFeO_3$ с номинальным значением x = 0.0-0.9 синтезированы методом глицин-нитратного горения [13–15]. Используется следующая маркировка образцов: Y0 (x = 0.0), Y01 (x = 0.1), Y03 (x = 0.3), Y04 (x = 0.4), Y05 (x = 0.5), Y06 (x = 0.6), Y07 (x = 0.7), Y09 (x = 0.9).

Фазовый состав определялся на дифрактометре Rigaku SmartLab 3 (Си $K_{|alpha}$ -излучение). Элементный состав определялся на сканирующем электронном микроскопе FEI Quanta 200 с приставкой EDAX. Установлено, что среднее соотношение элементов Bi/Y/Fe в образцах Y0, Y01 и Y09 достаточно хорошо соответствует номинальному. В образцах Y03–Y07 с наибольшим содержанием железосодержащих примесных фаз различной структуры (рис. 1), зафиксирован избыток железа (δ), см. табл. 1.

Рентгеновские дифрактограммы образцов приведены на рис. 1. Согласно данным РФА и EDX-анализа, основная фаза в образцах Y0 и Y01 изоструктурна ромбоэдрической фазе BiFeO₃ (табл. 1). Образцы Y03–Y05 представляют собой композиционные частицы на основе фаз BiFeO₃, YFeO₃, Fe₂O₃, Fe₃O₄. Кроме того, в большинстве образцов присутствуют следовые количества Bi₂Fe₄O₉, Bi₂₅FeO₃₉. Средний размер кристаллитов, определенный по основным рефлексам BiFeO₃ (012/110) и *о*-YFeO₃ (121/002), приведен в табл. 2. В связи со сложностью разделения рефлексов основных фаз BiFeO₃ и YFeO₃ в образце Y05, в табл. 2 приведен средний размер кристаллитов для этих фаз.

Маркировка образца	$x^*(\mathbf{Y})$	Состав	\$**		
		Bi	Y	Fe	0
Y00	0	1.0	0.0	1.0	0.00
Y01	0.1	0.91	0.09	1.02	0.02
Y03	0.3	0.60	0.39	1.41	0.42
Y04	0.4	0.43	0.57	1.53	0.53
Y05	0.5	0.29	0.7	1.77	0.79
Y06	0.6	0.21	0.59	1.51	0.89
Y07	0.7	0.26	0.64	1.61	0.79
Y09	0.9	0.07	0.85	1.33	0.45

Таблица 1. Элементный состав образцов системы BiFeO₃-YFeO₃

Примечание. * номинальное значение x, ** избыток железа по данным EDX.

3. Методы магнитных исследований

Полевые зависимости намагниченности M измерялись при 300 K на вибрационном магнитометре системы PPMS (Quantum Design). Мёссбауэровское исследование проводилось на спектрометре WISSEL при комнатной температуре, в геометрии на поглощение (источник ⁵⁷Со в матрице родия, величины изомерных сдвигов *IS* приводятся относительно *IS* α -Fe). Для магнитного эксперимента выбраны допированные материалы Y01, Y05, Y09, которые имеют значительные отличия состава, структуры, морфологии и содержания железосодержащих фаз. Выполнено сравнение магнитного поведения этих образцов с образцами чистых ортоферритов висмута и иттрия.

4. Результаты магнитных исследований

4.1. Магнитометрия

На рис. 2 приведены кривые намагничивания M(H) образцов Y01, Y05 и Y09, а также однофазных образцов

Рис. 1. Рентгеновские дифрактограммы образцов системы BiFeO₃-YFeO₃.

ВіFeO₃ и YFeO₃. Для всех материалов наблюдаются петли гистерезиса, что указывает на существование магнитного порядка при комнатной температуре. Допированные материалы имеют заметно более высокую

Маркировка образиа	$x(Y_2O_3)$	Обьем элементарной ячейки V, Å ³		d, nm	M^* , emu/g	M_r , emu/g	H_c , kOe	Литература
oopusidu		BiFeO ₃	YFeO ₃		(iipii 0 koe, 500 k)			
Y00	0	432	_	56	0.07	0.02	0.7	Наст. работа
BFO^*	0	_	_	55	0.09	0.03	1.738	[7]
Y01	0.09	430	_	25	0.55	0.06	0.17	Наст. работа
BYFO10*	0.1	_	—	50	0.1	0.02	0.957	[7]
BYFO25*	0.25			35	0.3	0.11	2.1	[7]
Y05	0.29	428	230	64	8.3	1.9	0.36	Наст. работа
Y09	0.85	_	227	49	3.0	1.0	0.37	Наст. работа
o-YFeO3	1.0	_	224	41	0.01	1.0	23	[13]
o-YFeO3	1.0		221	88	0.55	0.45	0.245	[12]

Таблица 2. Характеристики образцов системы BiFeO₃ – YFeO₃ в сравнении с литературными данными

Примечание. М* — значение намагниченности при приложенном магнитном поле 6 kOe и температуре 300 К.

Образец	Компонент	$IS\pm0.02~(\text{mm/s})$	$QS\pm0.03~({\rm mm/s})$	$H_{\mathrm{eff}}\pm0.3~\mathrm{(T)}$	A (%)	Фазы
Y05	Doublet1	0.368 + / - 0.032	1.808 + / - 0.137	_	2.59	BiFeO ₃
	Doublet2	0.328 + / - 0.011	0.905 + / - 0.026	—	5.71	Немагнитное
						железо
	Sextet1	0.377 + / - 0.004	0.176 + / - 0.008	51.612 + / - 0.026	13.33	α -Fe ₂ O ₃
	Sextet2	0.352 + / - 0.002	-0.000 + / -0.004	49.918 + / - 0.018	49.96	YFeO ₃
	Sextet3	0.325 + / - 0.007	0.068 + / - 0.009	48.622 + / - 0.079	21.07	$Fe_{3}O_{4}(A)$
	Sextet4	0.709 + / - 0.041	-0.092 + / -0.042	46.285 + / - 0.333	7.34	$Fe_{3}O_{4}\left(B ight)$
Y09	Doublet1	0.317 + / - 0.005	0.700 + / - 0.016	_	1.94	BiFeO ₃
	Doublet2	0.343 + / - 0.004	1.178 + / -0.038	_	8.51	Немагнитное
						железо
	Sextet1	0.31 + / - 0.011	0.229 + / - 0.022	51.603 + / - 0.075	3.17	α -Fe ₂ O ₃
	Sextet2	0.357 + / - 0.000	0.007 + / - 0.001	49.985 + / - 0.003	66.92	YFeO ₃
	Sextet3	0.336 + / - 0.002	0.022 + / - 0.005	48.897 + / - 0.049	14.44	$Fe_{3}O_{4}\left(A\right)$
	Sextet4	0.675 + / - 0.006	-0.002 + / -0.012	45.788 + / - 0.044	5.03	$Fe_{3}O_{4}\left(B ight)$

Таблица 3. Параметры ⁵⁷ Fe мёссбауэровских спектров образцов системы BiFeO₃-YFeO₃

Рис. 2. Кривые намагниченности образцов системы BiFeO₃-YFeO₃, измеренные при 300 К.

общую намагниченность M по сравнению с чистыми ортоферритами. Кривые M(H) допированных образцов близки к насыщению уже при 5 kOe, что качественно отличает их от соответствующих зависимостей BiFeO₃ и YFeO₃ (см. вкладка к рис. 2).

Опираясь на данные работ [3,4,6–11] и полученные нами ранее результаты о влиянии условий синтеза на магнитные свойства чистых ортоферритов висмута и иттрия [15,17], повышенный магнитный отклик материалов (1 - x)ВiFeO₃ – (x)УFeO₃ можно объяснить совокупным влиянием следующих факторов. Как известно, наночастицы BiFeO₃ с размерами $d \le \lambda_c$ имеют ненулевую намагниченность при комнатной температуре. Повышение магнитного отклика происходит также в связи с изовалентным замещением в подрешетке висмута. В нашем случае, размерный фактор ответственен за увеличение намагниченности, но не является единственным, поскольку нет явной корреляции магнитных характеристик с размером нанокристаллов (см. табл. 2). Как видно из рис. 2, намагниченность образцов Y05 и Y09, содержащих избыток железа по данным EDX (табл. 1), выше в несколько раз, чем у чистых фаз, и они имеют более узкую петлю гистерезиса. Для уточнения факторов, усиливающих магнетизм этих образцов, ниже приводятся данные мёссбауэровского исследования о состоянии ионов железа.

4.2. Мёссбауэровская спектроскопия

Мёссбауэровские спектры нанокомпозиционного образца Y05 и твердого раствора Y09, представленные на рис. 3, описываются четырьмя секстетами и двумя дублетами (табл. 3). Параметры секстетов характерны для различных железосодержащих оксидных фаз, основными из которых являются α -Fe₂O₃ [18], Fe₃O₄ [19] и YFeO₃ [13]. Основная доля вещества в обоих образцах содержит атомы железа, которые можно отнести к

Рис. 3. ⁵⁷ Fe мёссбауэровские спектры образцов Y05 и Y09.

магнитоупорядоченной фазе YFeO₃, содержание которой выше в образце Y09.

Доля секстетов, относящихся к оксидам железа, выше в образце Y05, что согласуется с данными PФA и EDX (табл. 1). По-видимому, за значительное усиление магнитного отклика этого материала отвечает присутствие бо́льшего количества фазы магнетита Fe₃O₄ (\sim 30%), в связи с чем вероятным типом магнитного порядка допированных иттрием образцов может быть ферримагнетизм. Объемный оксид железа α -Fe₂O₃ является антиферромагнетиком, и его следовое количество не может дать существенного вклада в магнетизм образцов.

Параметры дублета 1 по величинам *IS* и *QS* близки к известным для нанокристаллического BiFeO₃ [15]. Небольшая доля железа, которое характеризует дублет 2, может относиться к какой-либо суперпарамагнитной рентгеноаморфной фазе, аккумулированной в закрытых порах или на границах зерен, и которая также может давать вклад в магнетизм.

В совокупности с данными о значительном увеличении магнитного отклика допированных иттрием материалов, полученные результаты указывают на возможность обнаружения новых нанокомпозиционных материалов на основе системы (1 - x)BiFeO₃ – (x)YFeO₃ вблизи номинального значения $x \approx 0.5$. Нанокомпозиционные частицы подобного состава в литературе практически не описаны и по своим магнитным характеристикам могут представлять интерес для практического использования.

5. Заключение

Методом глицин-нитратного горения синтезированы нанокристаллические материалы на основе системы (1 - x)ВiFeO₃ – (x)УFeO₃ с размерами кристаллитов 25—65 nm. Мёссбауэровская спектроскопия и магнитометрия показали, что образцы обладают магнитным порядком при комнатной температуре и более высокой намагниченностью по сравнению с чистыми ортоферритами висмута и иттрия. Наиболее высокую намагниченность демонстрирует нанокомпозиционный материал с номинальным значением $x \approx 0.5$, имеющий широкую петлю гистерезиса с $M_r \approx 1.9$ еmu/g. Усиление магнитного отклика синтезированных материалов связывается с совокупностью основных факторов — разрушением спиновой циклоиды и возникновением ферримагнетизма вследствие формирования в образцах фазы магнетита.

Благодарности

Авторы благодарят член-корр. РАН, профессора, доктора химических наук В.В. Гусарова (ФТИ РАН) за обсуждение результатов и научную дискуссию.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] А.Р. Акбашев, А.Р. Кауль. Успехи химии **80**, *12*, 1211 (2011).
- [2] J. Wu, Zh. Fan, D. Xiao, J. Zhu. J. Wang. Prog. Mater. Sci. 84, 335 (2016).
- [3] T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong. Nano Lett. 7, 766 (2007).
- [4] З.А. Самойленко, Н.Н. Ивахненко, Е.И. Пушенко, В.Я. Сычева, Н.А. Леденев, А.В. Пащенко. ЖТФ 91, 5, 778 (2021).
- [5] И.И. Макоед, А.Ф. Ревинский, В.В. Лозенко, А.И. Галяс, О.Ф. Демиденко, А.М. Живулько, К.И. Янушкевич, В.В. Мощалков. ФТТ 59, 8, 1514 (2017).
- [6] A. Gautam, P. Uniyal, K.L. Yadav, V.S. Rangra. J. Phys. Chem. Solids 73, 2, 188 (2012).
- [7] M. Hamed, Z. Mahmoud, F. Reza. Appl. Phys. A **124**, *11*, 728 (2018).
- [8] Н.А. Ломанова, М.В. Томкович, А.В. Осипов, В.В. Панчук, В.Г. Семенов, И.В. Плешаков, М.П. Волков, В.В. Гусаров. ФТТ 61, 12, 2503 (2019).
- [9] S. Lokesh, B. Falguni, K. Priyanka, M. Roy. J. Electroceram. 44, 195 (2020).
- [10] O. Rosales-González, F. Sánchez-De Jesús, F. Pedro-García, C.A. Cortés-Escobedo, M. Ramírez-Cardona, A.M. Bolarín-Miró. Materials 12, 13, 2054 (2019).
- [11] W. Zhang, C. Fang, W. Yin, Y. Zeng. Mater. Chem. Phys. 137, 3, 877 (2013).
- [12] A.N. Sokolova, O.V. Proskurina, D.P. Danilovich, V.V. Gusarov. Nanosyst. Phys. Chem. Math. 13, *1*, 87 (2022).
- [13] V.I. Popkov, O.V. Almjasheva, V.N. Nevedomskiy, V.V. Panchuk, V.G. Semenov, V.V. Gusarov. Ceram. Int. 44, 17, 20906 (2018).
- [14] А.А. Остроушко, Т.Ю. Максимчук, А.Е. Пермякова, О.В. Русских. Журн. неорган. химии **67**, *6*, 727 (2022).
- [15] N.A. Lomanova, V.V. Panchuk, V.G. Semenov, I.V. Pleshakov, M.P. Volkov, V.V. Gusarov. Ferroelectrics 569, 1, 240 (2020).
- [16] И.Я. Миттова, Н.С. Перов, Ю.А. Алехина, В.О. Миттова, А.Т. Нгуен, Е.И. Копейченко, Б.В. Сладкопевцев. Неорган. материалы 58, 3, 283 (2022).
- [17] V.I. Popkov, O.V. Almjasheva, A.S. Semenova, D.G. Kellerman, V.N. Nevedomskiy, V.V. Gusarov. J. Mater. Sci.-Mater. Electron. 28, 10, 7163 (2017).
- [18] I.S. Lyubutin, C.R. Lin, Yu.V. Korzhetskiy, T.V. Dmitrieva, R.K. Chiang, J. Appl. Phys. **106**, *3*, 034311 (2009).
- [19] H.Y. Hah, S. Gray, C.E. Johnson, J.A. Johnson, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. J. Magn. Magn. Mater. 539, 168382 (2021).

Редактор К.В. Емцев