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Influence of slow dynamics effects on the elastic relaxation properties of
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A theoretical model for the formation of ultrasonic signals in metallic microcrystalline rods taking into account

the metastable behavior of their defective states is proposed. The influence of metastable states of the defective

structure of samples on the features of changes in their resonant frequencies in ultrasonic experiments of fast

dynamics is analyzed. The increase in the Young’s modulus and the dynamics of changes in resonant vibrations

of rods made of aluminum alloy D16T under conditions of free relaxation are explained. Based on the results

obtained, the concentration of metastable defects was estimated..
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Considerable attention is being paid at present to the

examination of non-steady deformation processes in materi-

als with a complex rheological structure. Metals and their

alloys with a microcrystalline structure, rocks, and ceramics

belong to this class of materials. Mesoscale structure

nonuniformities in these materials exert a considerable

influence on their elastic properties [1,2]. This translates

into the emergence of acoustic and elastic effects that

cannot be explained within the common theory of elasticity.

Relaxation processes of various types [3–5] need to be taken

into account in order to characterize these effects. We have

demonstrated that such processes allow one to characterize

correctly the experimental data obtained under excitation

of acoustic vibrations in aluminum membranes by non-

steady laser radiation [6,7]. This approach also provided

an explanation for the specific features of behavior of laser

ultrasonic signals in stressed D16T alloy samples [8,9] and
fast dynamics effects in vibrations of plastically deformed

rods made of this alloy [10].

Fast and slow dynamics effects were revealed in [11]
in ultrasonic experiments with plastically deformed D16T

aluminum rods. Fast dynamics effects were observed in

the process of variation of the resonant frequency of rods

with acoustic vibrations of a given amplitude and frequency

applied to one of their ends (see the figure), while slow

dynamics effects were detected after the vibrations ceased

and the rods entered the free relaxation mode. In the

fast dynamics mode, their resonant frequency decreased,

reaching a certain steady-state value that depended on the

amplitude of applied vibrations. In the slow dynamics mode,

the resonant frequency was found to increase slightly in [11].
Fast dynamics effects were observed in D16T rods within

the 9−10 kHz range of acoustic frequencies, while slow

dynamics effects were confined to a significantly lower-

frequency range and were characterized by a relaxation

time of 534 s [11]. Since only the fast dynamics case

was analyzed theoretically in our study [10], it appears

reasonable to extend the proposed model to the slow

dynamics case.

An approach based on the theory of acoustoplastic effect

in solids [12–14] was used to furnish an explanation for

the fast dynamics effects in [10]. The following equation

is normally used in the theory of acoustoplastic effect to

characterize the dynamics of temporal variation of stresses

in a sample:
1

E
∂σ

∂t
= ε̇ − ε̇p, (1)

where E is the Youngs modulus of a material; ε̇ is the rate

of variation of object deformation, which is often specified

by a certain external impact; and ε̇p is the rate of variation of

plastic deformation of a material. The value of ε̇p is defined

by relation

ε̇p = ε̇0 exp

(

−
U −�(σ − σp)

kbT
−

t
τ

)

,

where U is the activation energy of metastable defects,

τ is the time of free stress relaxation, σp is the internal

stress in a sample due to the presence of defects, ε̇0 is

the pre-exponential factor, � is the activation volume of a

defect, kb is the Boltzmann constant, and T is the sample

temperature.

It should be noted that parameter ε̇0 in Eq. (1) is normally

assumed to be constant. At the same time, it may depend

on the nature of external impact on a sample. Specifically,

plastically deformed samples in fast-dynamics experiments

in [11] were subjected to fairly strong vibrations, which

facilitated a gradual reduction in the concentration of defects

with their subsequent relaxation to a certain new quasi-

equilibrium state with a corresponding stress decrease in
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samples. Therefore, the rate of deformation variation in

such experiments is ε̇0 > 0. In experiments with slow

relaxation, samples were subjected to vibratory inputs for

a certain period of time. These vibrations then ceased, and

the resonant properties of samples were examined in the

free relaxation mode. A certain restoration of the defect

structure occurred in this case in the samples after the

abatement of vibrations, and ε̇0 < 0.

No externally induced deformations are present in rods in

the free relaxation mode. However, a certain deformation

due to relaxation of the defect subsystem and stresses may

still be present; therefore, we assume that ε̇ = ε̇r (t) in

Eq. (1). If one assumes that the vibrational impact ceased at

time point t = 0 and the rod then entered the free relaxation

mode, the stress in it may be written, in accordance with

Eq. (1), as

σ (t) = E
(

εr(t) − εr (0)
)

+ σ (0)
p + 1σp(t), (2)

where

1σp(t) = −
kbT
�

ln

[

1−
�E
kbT

ε̇′

×

t
∫

0

exp

(

−
t′

τ
−

�
(

σp(t′) − σp(0)
)

kbT

−
�E

(

εr (t′) − εr (0)
)

kbT

)

dt′
]

,

ε′ = ε̇0 exp

(

−
U

kbT

)

.

It was demonstrated in [15] that, alongside with elastic

deformations, defects in a sample affect the magnitude of

stresses in it. In the simplest case of one-dimensional

deformation, this relation takes the form

σ = Eεe + �En, (3)

where εe is elastic deformation and n is the concentration

of defects in a sample.

With the variation of the defect concentration taken into

account, relation (3) in the one-dimensional model for

longitudinal rod vibrations yields the following equation of

motion:

ρ
∂2εe

∂t2
= E

∂2εe

∂x2
+ E�

∂21n
∂x2

, (4)

where ρ is the density of the rod material, 1n is the

variation of the defect concentration upon excitation of

elastic vibrations, and x is the axial coordinate.

In the general case, Eq. (4) is nonlinear, since the defect

concentration may depend on stresses. One needs to know

the dependence of concentration 1n on stresses to transform

Eq. (4) further. If we assume that the diffusion of defects

is negligible at room temperature, the concentration of

1

2

3

4

Diagram of excitation and measurement of elastic vibrations of the

rod [7]. 1 — Sample, 2 — exciting piezoceramic transducer, 3 —
piezoceramic vibration detection sensor, and 4 — massive base.

defects involved in the process may be determined using

the following equation:

∂1n
∂t

+
1n
τ

= J, (5)

where J is a volume defect source in a sample defined by

the Arrhenius law

J =
N
τ

[

exp

(

−
U −�(σ

(0)
p + 1σp + σe)

kbT

)

− exp

(

−
U −�(σ

(0)
p + σe)

kbT

)]

,

N is a quantity on the order of the concentration of atoms

in the sample material, σ
(0)
p is the internal stress in the

sample at the onset of free relaxation, and 1σp(t) is the

stress variation in the sample in the process of relaxation of

defects.

Following [6–10], we assume that the concentration of

defects in a sample in the free relaxation mode varies in a

quasi-equilibrium fashion. The variation of concentration of

defect centers involved in the process of rod relaxation may
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then be estimated as

1n ∼= N

[

exp

(

−
U −�(σ

(0)
p + 1σp + σe)

kbT

)

− exp

(

−
U −�(σ

(0)
p + σe)

kbT

)]

. (6)

The activation volume of a defect is usually commen-

surate with the lattice cell volume of a material [16].
Therefore, we set it to 10−28 m3 for the aluminum alloy. At

stresses on the order of 10MPa and deformations below

10−3, the last two exponents under the integral sign in

expression (2) are then near-unity and may be neglected. If

the indicated conditions are satisfied, it may also be assumed

that �E ε̇τ < kbT . Using expression (2), we then write the

relaxation law for stress 1σp(t) in the form

1σp(t) ∼= E ε̇′τ
(

1− e−
t
τ

)

, (7)

while the concentration of excited defects is given by

1n ∼= N′
�E
kbT

ε̇′τ

[

1− exp

(

−
t
τ

)]

exp

(

�σe

kbT

)

, (8)

where N′ = N exp
(

−(U −�σ
(0)
p )/kbT

)

.

The nature of variation of the resonant frequency of a rod

probed by a weak acoustic signal was examined in [11]. If
�σe 6 kbT is assumed in relation (8), equation of motion

(4) may be transformed to

ρ
∂2εe

∂t2
= Ee f f (t)

∂2εe

∂x2
, (9)

where

Ee f f (t) ∼= E

[

1 + �N′ε̇′τ

(

�E
kbT

)2(

1− exp

(

−
t
τ

))]

.

The samples in [11] were excited in the quarter-wave

elastic resonator mode. Its first resonant frequency is given

by f 0 =
√

E/ρ/(4L), where ρ is density and L is the sample

length. If we assume that during the experiments the density

and length of the samples did not change, the influence of

the effects of fast dynamics on the resonant frequency of

sample vibrations may be estimated using this equality at

E = Ee f f (t). In accordance with the results reported in [11],
the relative variation of the rod elasticity modulus due to

the presence of defects is small. Therefore, the resonant

frequency of the rod varies in the process of free relaxation

in the following way:

f 0(t) ∼=
1

4L

√

E
ρ

[

1+
�N′ε̇′τ

2

(

�E
kbT

)2(

1−exp

(

−
t
τ

))]

.

(10)
Thus, owing to a partial restoration of the defect subsystem,

the resonant frequency increases somewhat in the mode of

free relaxation of the deformed rod after the removal of

load. If we present this frequency in the form used in [11]:

f 0(t) = f 0(t → ∞) −C exp

(

−
t
τ

)

, (11)

the coefficient is, in accordance with (10), written as

C =
1

8L

√

E
ρ
�N′ε̇′τ

(

�E
kbT

)2

.

The obtained theoretical result verifies the conclusions

made in [11] regarding the nature of temporal variation of

the resonant frequency of aluminum-alloy rods with residual

deformations in the free relaxation mode. It was demon-

strated in [11] that, if expression (11) is used, C = 96.4Hz

provides the closest agreement between the experimental

and theoretical data for a rod made of aluminum alloy D16T.

Knowing the value of C, one may estimate the concentration

of defects involved in the relaxation process.

Aluminum alloy D16T has ρ = 2700 kg/m3 and

E = 71GPa. The length of rods examined in [11] was

0.14m. With the activation volume of a defect being

commensurate with the lattice cell volume of a material,

we assume that � ≈ 10−28 m3 and ε̇′τ ≈ 10−5. If the

value of coefficient C is known, we may then estimate the

concentration of defects involved in the relaxation process.

An estimate of N′ corresponding to the presented data is

N′ ∼= 1025 m−3. This value matches the concentration of

defects in stressed D16 alloy samples that was determined

in our experiments on laser generation of ultrasound [8–10].
The proposed theoretical model provides an explanation

for the effects of slow dynamics in metal rods with defects.

It relates the dynamics of temporal variation of the Young’s

modulus of a material with such characteristics of its defect

subsystem as the density of defects, their relaxation time,

and activation volume.
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