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Impulse impact on the wall upon the interaction of a shock with an

ellipsoidal near-wall gas bubble of increased density
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Based on the numerical solution of the Euler equations, the problem of the interaction of a shock wave with an

ellipsoidal gas bubble of increased density adjacent to a solid wall is studied. The process of refraction and focusing

of the shock wave is described - the formation and reflection of transverse shock waves from the axis of symmetry

and from the wall. It is found that, depending on the shape of the bubble, qualitatively different flow regimes

take place, in which the focusing of the wave on the axis of symmetry occurs before or after the beginning of the

reflection of the wave transmitted through the bubble from the wall. The grid convergence of various measures of

impulse shock impact on the wall is studied and their dependence on the bubble shape is determined. The highest

pressure impulse is achieved for slightly flattened bubbles, when the transverse waves are focused near the center

of the wall immediately after the plane transmitted wave is reflected from it.
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The problem of interaction between a shock wave and

gas bubbles of a different density or chemical composition

(shock-bubble interaction) [1] is being studied internation-

ally in the context of its applications in astrophysics and

combustion of gaseous mixtures. In recent years, the con-

comitant effect of focusing, which may induce combustion

and detonation in flammable gaseous mixtures [2], has

attracted increased interest. Two major types of focusing

(external and internal) are distinguished [3]; the intensity

of focusing depends to a considerable extent both on the

intensity of an incident wave and on the parameters of a

bubble: on the gas density and, in particular, on the bubble

shape.

The evolution of vortices and jets in flows with sequential

impact of an incident shock wave and a shock wave

reflected off the dead end of a shock tube on a gas bubble

is being examined fairly extensively [4,5]. However, the

influence of a gas bubble on the impulse shock impact

on a wall remains understudied, although this issue is of

interest in the context of explosive safety and as a basis

for construction of novel types of devices (gas-dynamic

punchers and injectors). The attenuation of this impact on a

solid sphere with a light gas bubble present in front of it has

been investigated in [6]. The case of a near-wall bubble of an
increased density has been examined for the first time in [7]
in the plane formulation. It has been demonstrated that the

peak pressure on a wall increases many-fold in the presence

of a bubble due to the effect of shock wave focusing and

depends to a considerable extent on the density of gas in a

bubble and on its positioning.

In the present study, the interaction of a shock wave

with near-wall bubbles of spherical and ellipsoidal shapes

is examined in the axially symmetric formulation, and the

impulse impact on a wall is estimated based on integral

measures.

A plane shock wave propagates from left to right within

a uniform ideal gas at rest that contains an ellipsoidal

bubble of gas of an increased density adjacent to a

solid impenetrable wall positioned transverse to the wave

propagation direction (Fig. 1). The pressure and density

of gas in front of a shock wave were taken as unity, and

the parameters of gas behind the wave were specified by

the Rankine−Hugoniot conditions. The defining parameters

of the problem are Mach number M of the incident wave,

density of gas ω in a bubble, ratio of semi-axes χ = l/w of

the bubble, and adiabatic exponent γ of gas. Air (γ = 1.4)
is both the background gas and the gas in the bubble. The

bubble diameter at χ = 1.0 was taken as a unit of length.

The slip condition was set at the right boundary of the

calculation domain (solid wall), and simplified
”
nonreflect-

ing“ conditions
∂
∂n = 0 were set at the other boundaries.

In contrast to our previous study [7], we examine only

the case of immediate adjacency of the bubble to the wall.

A mode of bubble–wall contact (
”
quarter-diameter cutoff“)

providing, under otherwise equal conditions, the greatest

impulse impact on the wall was determined based on the

results of a series of test calculations. At all χ values, the

distance between the bubble center and the wall, which

is slightly shorter than the longitudinal semi-axis of the

bubble, was chosen so that the contact spot diameter always

remained equal to 0.25 units of length. In this geometry,

waves are focused near the wall center within a fairly wide

region of gas of an increased density, thus enhancing the

impact on the wall. The values of gas density in the

bubble ω = 4.5 and wave Mach number M = 3.0, which
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Figure 1. Diagram of the initial conditions. is is a shock wave

propagating along axis x , be is the boundary of a bubble, sw is a

solid wall, and l and w are semi-axes of an ellipsoid.

correspond to those providing the highest peak pressure on

the wall in [7], were also taken as constants. The main

adjustable parameter was the bubble shape, which varied

within the range of χ = 0.5−1.5 at a constant cross-section

area.

Non-steady two-dimensional axially symmetric flows of

ideal perfect gas were modelled based on Euler equations
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where p, ρ, u, and v are the pressure, the density, and

velocity components of gas along coordinate axes x and r ,

respectively, and e =
p

γ−1
+ ρ

u2+v2

2
is the total energy of a

unit gas volume.

Numerical modeling was performed using the Mac-

Cormack method [8] augmented with Zhmakin−Fursenko

conservative smoothing of non-physical oscillations [9] on a

uniform square grid with 600 or 1200 points per unit length.

A coarser grid was applied in calculations with varying χ,

while a finer one was used to analyze the fine structure of

focusing of shocks near the wall. The sufficiency of 600

grid points per unit length was established by analyzing the

grid convergence of the numerical solution: all gas-dynamic

flow elements were resolved completely on such a grid,

and the values of integral measures of impulse impact on

the wall were stabilized (see below). The computational

domain was 1.3× 1 units of length in size, ensuring that

the boundaries were sufficiently spaced apart: possible

weak perturbations propagating from the boundaries did not

distort the examined flow region.

The shock flow pattern calculated for χ = 1.0 is presented

in Fig. 2. The gas density is represented by a color gradient,

and solid black curves are pressure isolines (a color version

of the figure is provided in the online version of the paper).
The symmetry axis forms the lower boundary of figures;

the white dashed curve denotes the initial bubble boundary.

Shock wave ts transmitted into the bubble assumes a

concave shape (due to the fact that its propagation velocity

is lower than the one of initial wave is) and
”
overturns“

with the formation of triple points t p and transverse shocks

tss (Fig. 2, a). Shock rws is produced outside of the bubble

as the external wave section undergoes reflection off the

wall. Transverse shocks and triple points move along a

diagonal to the symmetry plane and interact with section

cws of the shock reflected off the wall that has penetrated

into dense gas and propagates to the center of the wall

(Fig. 2, b).
In the considered example, focusing shock cws reaches

the symmetry axis earlier than shock ts reaches the wall. A

different flow regime is established in the case of sufficiently

oblate bubbles (χ < 0.85): longitudinal shock ts propagates

along the entire length of the bubble and gets reflected off

the wall earlier than shock cws , which moves along the

wall, reaches the symmetry axis. Subsequent focusing of

transverse shocks proceeds in gas that was compressed in

advance in the process of reflection of shock ts off the wall.

At χ ≈ 0.85, longitudinal and transverse shocks reach the

symmetry axis simultaneously.

Qualitative differences of the above flow regimes are

revealed, for example, in
”
oscilloscope records“ of pressure

at the central point of the wall (Fig. 3, a). Dimension-

less time τ =
Ma0

2l t, where 2l is the longitudinal bubble

diameter and a0 =
√

γp0
ρ0

is the speed of sound in the

gas surrounding the bubble, is plotted on the horizontal

axis of this diagram. The onset of interaction between

an incident wave and the bubble boundary is assumed to

correspond to t = τ = 0; τ = 0.5 is the moment when the

unperturbed part of the incident wave reaches the center

of the bubble, and τ ≈ 1.0 corresponds to the onset of

reflection of the external wave off the wall. Horizontal

lines in Fig. 3, a denote pressure p = pr = 51.67 behind

the reflected unperturbed wave (without the bubble) at

M = 3.0 and pressure p = 117 behind reflected wave ts
(behind a plane wave in heavy gas).
In the case of oblate bubbles, the arrival of a plane

wave, which has propagated along the entire length of the

bubble, at the wall is characterized by a pressure increase

to p = 117, and the subsequent pressure jump (τ = 1.66

at χ = 0.7) is induced by the arrival of shock cws at the

symmetry axis. The pressure rise sequence for spherical

bubbles (χ = 1.0) is reversed: shock cws (τ = 1.43)
arrives first, followed by additional gas compression by the

longitudinal wave (τ = 1.53).
The peak pressure at the central point of the wall

attained in the course of refraction and focusing of a

shock wave has been adopted as the main measure of
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Figure 2. Key stages of flow at M = 3.0, ω = 4.5, and χ = 1.0: density field and pressure isolines with step 1p = 1 (a) and an

exponential distribution (b). The lower boundary of the figure is the symmetry axis; the white dashed curve denotes the initial bubble

boundary. The wall is at the right boundary of figures at x = 0.5. a — Formation of transverse shocks and reflection of an external

shock off the wall; b — interaction of near-wall shocks with internal ones and focusing at the symmetry axis. ib and sb are unperturbed

and shocked bubble regions, ts is a wave transmitted into the bubble, t p and tss are triple points and transverse shocks, rws is a shock

reflected off the wall, and cws is a transverse shock converging to the symmetry axis.

shock impact on the wall in [7]. No grid convergence

of the peak pressure is observed in an axially symmetric

flow (see the table). This effect is related to a known

phenomenon arising in the analysis of a cylindrical shock

wave converging to a symmetry axis (Guderley problem):

in an inviscid formulation, infinite pressure is attained at the

moment of focusing. This effect manifests itself in numerical

calculations as an unconstrained growth of the peak pressure

(due to accompanying reduction of numerical viscosity) on

finer grids.

In the present study, the following integral measures

of the degree of impact on the wall were examined in

addition to the peak pressure: (1) excess pressure impulse

I p =
t f
∫

t0

(p − pr )dt at the center of the wall, where t0

corresponds to the onset of pressure rise at the center of
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Figure 3. Typical dependence of the pressure at the central point of the wall on dimensionless time τ for two interaction modes (a)
and dependences of single-point and averaged impulses of pressure on the wall on the bubble shape varying within the 0.5 6 χ 6 1.5

range (b). Straight lines p = 51.67 and 117 denote the pressure behind plane shock waves reflected off the wall (initial is and transmitted

ts waves, respectively).

Dependence of peak pressure pmax at the center of the wall, excess

pressure impulse I p at the center of the wall, and impulse Ī p

averaged over a part of the wall on grid resolution in calculations

for χ = 0.8

Number of nodes

pmax Impulse I p Averaged impulse Ī ppoints per unit

length

150 925 29.6 23.2

300 1784 35.6 27.1

600 2618 43.2 28.7

1200 3267 45.9 28.1

the wall and t f is the final calculation time with p ≈ pr ;

(2) excess pressure impulse Ī p = 1
S

∫

S
I pds averaged over

section S of the wall with its diameter equal to one tenth

of the radius of a spherical bubble. The convergence of

a pressure impulse is vastly superior to that of the peak

pressure, and an averaged pressure impulse gets stabilized

already at 600 grid points per unit length (see the table).
It is fair to assume that an averaged impulse is the most

informative measure of shock impact on the wall, since its

sensitivity to numerical viscosity is the lowest.

Figure 3, b presents the dependences of excess pressure

pulses on the bubble shape varying within the range of χ =
0.5-1.5. Both pulses increase monotonically from χ = 0.5 to

the maximum at χ ≈ 0.8, wherein transverse shock cws is

focused on the symmetry axis directly after the reflection of

transmitted shock ts off the wall, and decrease as the bubble

elongates further. The maximum of an averaged impulse

exceeds the values for spherical and the most elongated

bubbles by a factor of 1.5 and 2.5, respectively.

Two-dimensional numerical modeling was used to

demonstrate that an ellipsoidal near-wall bubble of gas with

an increased density provides a many-fold enhancement of

an impulse impact on the wall induced by an incident shock

wave. The greatest effect is achieved in the case of bubbles

that are flattened slightly in the direction transverse to the

shock wave motion and establish the conditions for fast

consecutive compression of gas near the wall center in plane

and cylindrical shocks.
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