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Discovery of the thermal process model from noisy data
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A modification of the algorithm of the model generative design in the form of a partial differential equation

for working with noisy data is proposed. Using the algorithm, the model of the heat and mass transfer process

was restored from synthetic and original experimental data on heating the medium by a flooded heat source. The

thermophysical parameters of the medium are determined, the possibility of using the algorithm to indicate the

convection process based on data on the space-time distribution of temperature is shown.
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Algorithms for solving inverse problems (IP) developed

by this time within the heat-exchange theory allow restoring

from available data the medium thermophysical parameters

(coefficient IPs), boundary conditions (boundary IPs), spa-
tial distributions of temperature at previous time moments

(retrospective IPs), and also the form and parameters

of the function describing the power of internal heat

sources [1,2]. A separate trend of solving inverse problems

is the methods for generative model design (GDM) [3].
The GDM methods allow restoring the mathematical model

structure in the form of a differential equation describing the

physical process. Surely, the GDM algorithm implies also

determination of the derivative coefficients and, if necessary,

restoring of additional terms of the differential equation. In

the context of thermal problems, the classical heat transfer

equation has a well-known structure. However, in general

the heat transfer equation may comprise the second time

derivative as well as convective terms accounting for the

heat transfer by moving medium [1,4,5]. The GDM methods

are of interest in view of developing artificial intelligence

techniques [6] the objective of which can be restoration and

analysis of the thermal process model from experimental

data; the analysis implies, for instance, revealing hidden

processes in the medium, such as phase transitions and

chemical reactions, indicating change of heating modes, etc.

Papers [3,7] propose a GDM algorithm for restoring the

heat process model, which is based on using the procedure

of best subset selection [8]. In the case of noiseless

synthetic data, this approach enabled precise restoration of

the model of heating a metal with a laser pulse. During

the model generation, thermophysical medium parameters

were determined, including temperature-dependent ones [7].
However, the proposed approach was not verified for the

case of random-error data.

The goal of this work was to develop a GDM algorithm

for processing noisy data, as well as its verification based

on synthetic and experimental data; for this purpose, an

experiment on pulsed heating of a medium with a flooded

heat source was carried out, and original data on the thermal

process under consideration were obtained.

In this study, the object for the model restoration was

an unsteady process of heating glycerin with a flooded

constantan wire 0.1mm in diameter which was heated by

direct electric current. Experimental and synthetic data were

obtained for a 30−s heating pulse; the distance to the wire

centerline was varied from 0.6 to 3.1mm with the step of

0.5mm. The frequency of taking the thermocouple readings

was 2ms; the random error had the form of additive white

Gaussian noise with the standard deviation of 0.025K. The

measurements were performed at two volumetric rates of

heat release in wire: 0.38 and 1.83W/mm3.

The process of heating the medium is generally described

by an equation of the following form [1]:

cρ

(

∂T
∂t

+ v · ∇T

)

= ∇ ·
(

λ∇T
)

+ QV , (1)

here t is the time, T is the temperature, ρ, c , λ are

the density, thermal capacity, and thermal conductivity

coefficient, v is the medium speed, QV are the volumetric

heat sources. In generating the synthetic data, convective

motion of the medium was assumed to be absent (v = 0),
and the problem was reduced to a one-dimensional one.

In the case of glycerin, this assumption is valid at the

initial stage of the process provided the medium overheating

is insignificant [9]. In the temperature range under

consideration, the thermal conductivity coefficient changes

only slightly (within 1.5%). Thermophysical parameters of

constantan and glycerin hbox[10–12] were assumed to be

constant.

The calculations were performed by the finite-difference

technique using the Crank-Nicolson scheme with the time

step of τ = 2ms. The medium overheating Tp = T − T0
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Figure 1. Temperature distributions at the end of heating (a) and 15 s after that (b). QV = 0.38W/mm3 . The wire is arranged along

the z axis.

(T0 is the initial medium temperature) for the heat source

power of QV = 0.38W/mm3 is illustrated in Fig. 1. In

preparing the synthetic data for processing with the GDM

algorithm, the calculation results were supplemented by the

Gaussian noise with the standard deviation of σ = 0.025K

and value selection range (−3σ ; +3σ ). Notice that the

noise level is rather high: about 1% of the maximum

overheating for the location at 0.6mm and 7% for the

location at 3.1mm.

In the experimental setup, the constantan wire 0.1mm

in diameter and 46mm in length was placed in a cuvette

filled with glycerin. The temperature was measured along
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Figure 2. Experimental time dependences of temperature at points r = 0.6 (1), 1.6 (2), 2.6mm (3) above the wire for

QV = 0.38W/mm3 (a) and r = 0.6 (4, 4′) and 2.6mm (5, 5′) for QV = 1.83W/mm3 above (4, 5) and below (4′, 5′) the wire (b).
Dashed lines represent the calculations obtaind ignoring the convection, t = 0 is the beginning of heating.

the vertical line passing through the wire center by using

a thermocouple mounted on the positionerś support. The

thermocouple signal was read using a special analog-digital

converter ADS1220 produced by Texas Instruments and

transmitted to the computer with the polling period of 2ms.

The experimental data are presented in Fig. 2. The

maximum overheating at the 0.6mm point is about 2.5K

for 0.38W/mm3 and 11K for 1.83W/mm3. In the first case,

convection is weak, which confirms the conclusions made

in [9]. In the second case, a significant difference between

the medium temperatures measured below and above the

wire is observed; this evidences for a developed convection.

The GDM algorithm [3,7] begins restoring an unknown

equation structure based on available data from considering

the complete possible template of the required equation.

In the one-dimensional problem of heating a medium with

constant thermophysical parameters, the energy equation

template in the cylindrical frame of reference gets the

following form [1]:

a0

∂T
∂t

+ a1

∂2T
∂t2

+ a2

∂2T
∂r2

+ a3

1

r
∂T
∂r

= 0. (2)

As compared with (1), this template contains the second

time derivative of temperature which may appear during

high-intensity unsteady processes. Coefficients a i in the

equation may be identified with the following terms of

equation (1): a0 = −1, a1 = −τrx (τrx is the relaxation

time), a2 = a t = λ/(cρ) (a t is the thermal conductivity

coefficient) in the absence of convection (a2 = a t). In the

presence of convective motion of the medium, the problem

cannot be anymore regarded as a one-dimensional one.

Due to the symmetry along the vertical line for which

the experimental data has been obtained, the convective

term has only one radial component a3(r, vr) = a t − rvr

(vr is the radial component of the medium speed). The

transverse thermal conductivity exists, however, its possible

contribution to equation (2) at
r2

∂2T
∂ϕ2 (here ϕ is the azimuthal

angle) is essentially lower than that of other terms. The

considered template does not include the internal heat

source since the data used in restoring does not include

the wire location. The presence of noise in the data,

substitution of derivatives in (2) with finite differences, as

well as convection occurring in the real experiment, result

in appearance in the equation (2) right-hand part of extra

constant term α playing the role of an integral discrepancy.

Notice that the goal of this study is to restore the equation

of the process from a minimal number of data. In the case

of availability of complete data on the medium temperature

spatial distribution T (r, ϕ) and of the speed field for the

case of prevailing convection, the proposed approach may

be used to restore the complete set of the mediumś motion

equations, including the momentum-conservation equation

accounting for the presence of the gravity force.

The proposed approach implies that, after creating the

possible potential equation template, vectors containing

finite-difference templates of the equation (2) terms will

be calculated based on the synthetic or experimental data.

After that, a procedure of best subset selection (2) terms

is applied, which results in eliminating negligible terms and

determining the required coefficients. The optimal model

will be selected by using the Bayesian information criterion

(BIC) [8,13].
To regularize the algorithm, it is proposed to increase

the numerical-differentiation time step. According to [2],
the necessary value of the time step may be approximately

estimated for the cases of first and second time derivatives
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Results of the model restoration from noisy data

Version τreg , s α · 103, K/s a2 · 10
2, mm2/s δa2, % a3 · 10

2, mm2/s

Theory

0 9.263 0 9.263

Results of the model restoration from synthetic data

1 0.002 −6.025 3.457 62.6 −

2 0.02 −6.568 3.584 61.3 −

3 0.2 −1.542 6.886 25.7 6.188

4 1 −1.467 7.057 23.8 6.446

5 2 −1.849 6.799 26.9 6.0523

6 5 −1.451 8.171 11.8 8.072

7 10 −5.373 6.880 25.7 −

Results of the model restoration from experimental data (0.38W/mm3)

8 0.002 −6.283 4.547 50.9 −

9 0.02 −6.700 4.590 50.4 −

10 0.2 −2.095 7.131 23.0 4.608

11 1 −2.190 6.832 26.2 4.374

12 2 −2.312 7.000 24.4 4.502

13 5 −1.863 7.261 21.6 4.809

14 10 1.568 8.984 3.0 7.674

Results of the model restoration from experimental data (1.83W/mm3)

15 0.002 −43.47 8.054 13.0 −

16 0.02 −42.89 8.005 13.6 −

17 0.2 −40.29 8.818 4.8 1.354

18 1 −39.90 8.813 4.9 1.425

19 2 −44.59 8.074 12.8 −

20 5 −44.14 7.951 14.2 −

21 10 −47.00 7.846 15.3 −

No t e. The coefficient at the second time derivative is in all the cases a1 = 0 and is not presented in the Table.

as

τreg,1 =
2σ

ε1
, τreg,2 =

(

4σ

ε2

)1/2

. (3)

Here ε1 and ε2 are the absolute errors in the first and second

time derivatives of temperature. It is assumed that the step

should be larger than τreg,1 and τreg,2 but, at the same time,

much less than the typical process duration. In addition, it is

necessary to take into account the increase in the numerical

differentiation error with increasing step.

Calculations of the first and second time derivatives

for points 0.6 and 2.1mm show that the maximum value

of derivative D1,T = (dT/dt)max is 0.33K/s. Assuming

that ε1 = δ1D1,T and selecting relative error δ1 = 0.1,

obtain from (3) τreg,1 ≈ 1.5 s at σ = 0.025K τreg,1 ≈ 1.5 s.

The maximum value of derivative D2,T = (d2T/dt2)max is

0.85K/s2. Assuming that ε2 = δ2D2,T and δ2 = 0.1, obtain

τreg,2 ≈ 1.1 s. Lower errors ε1 and ε2 lead to higher values

of τreg .

Regularization enables significant improvement of the

algorithm operation (see the table)). Beginning from the

time step of 0.2 s, restoration of the equation structure

which does not include the second time derivative of

temperature but includes the first derivative with respect to

radial component becomes correct. The optimal time step

for the synthetic data is 5 s. Thermal conductivity coefficient

a t is restorable accurately to 12%.

For the experimental data obtained at QV = 0.38W/mm3,

the time step increase also provides correct restoration of the

model. When the step is τreg = 5 s, the restoration error a t

is 20%. In the experiment with QV = 1.83W/mm3, over-

heating is 4 times higher, and relative error in temperature is

4 times lower; therefore, restoration of a t is more accurate.

The minimal error of 5% corresponds to the numerical-

differentiation time steps of 0.2 and 1 s.

The
”
one-dimensional“ model generated based on the

data on the temperature distribution along the vertical line

accommodating the wire centerline (symmetry line) may

be used to indicate the presence of convection in the

medium. For the synthetic data, coefficients a2 and a3

differ only slightly, and integral discrepancy α is low. In

the experiment with QV = 0.38W/mm3, weak convection

takes place, restored coefficients a2 and a3 differ by 35%,

and α differs slightly from that without convection. When

QV = 1.83W/mm3, a2 and a3 differ by 6 times, while the

integral discrepancy increases by an order of magnitude. It

is possible to state that convection plays an important role

in this case. Notice that conclusions about the convection

existence and intensity may be made without measuring
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the speed field of the medium but by applying the GDM

method to the data on the spatial temperature distribution.

Thus, the previously proposed GDM algorithm has been

expanded for processing noisy data. In the considered mod-

ification of the algorithm, the time and spatial numerical-

differentiation steps were selected depending on the level of

the initial data noise.To test the algorithm, experiments with

heating the medium with a flooded heat source were carried

out. Taking as an example the case of processing noisy

synthetic and experimental data, there has been demon-

strated the efficiency of the GDM algorithm in restoring the

model structure in the form of a partial differential equation

and in determining the medium thermophysical parameters.

The possibility of using the GDM method to indicate the

presence of special heat-exchange modes has been shown.
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