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The results of the development of a method for diagnosing 8-component aqueous solutions containing lithium,

ammonium, iron (III), nickel, copper and zinc cations, as well as sulfate and nitrate anions, by IR absorption

spectra and optical density spectra using artificial neural networks are presented. The application of artificial neural

networks to the obtained arrays of spectroscopic data made it possible to ensure the simultaneous determination of
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of natural and waste waters, as well as diagnostics of technological environments.
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Introduction

The active development of industry and society is inextri-

cably linked with an increase in environmental costs: losses

of natural capital both at the initial stage of production

(withdrawal of raw materials) and at subsequent stages

(pollution by products of production). Disturbance of

the qualitative and concentration balance of ions in the

surface waters, waste waters and groundwater has a

sharply negative impact on both human health and the

ecological state of the environment as a whole. According

to UN estimates, about 13% of the world’s population

live in conditions of constant freshwater deficit and after

20 years more than 6 bln people will suffer a shortage

of freshwater [1]. According to the results of studies

conducted by the Federal Service for Hydrometeorology and

Environmental Monitoring (Roshydromet), which monitors

environmental pollution and radiation conditions in the

Russian Federation, in February 2022 alone, in 38water

bodies of the Russian Federation, 60 cases of extremely

high surface water pollutions by substances of 1−4 hazard

classes were recorded by the observation network [2]. As

noted above, the main sources of pollution are enterprises of

the metallurgical, mining, oil and pulp and paper industries,

as well as housing maintenance and utilities. Thus, the

pollution control of water resources is of critical nature. It

is necessary to have the possibility of express diagnostics of

various pollutants in water in order to quickly respond and

correct the problem.

Thus, it is clear that the problem of water pollution

is particularly relevant today. Modern methods make

it possible to monitor the state of waters, but due to

the fact that in most cases the methods are contact and

lengthy in implementation, it is impossible to ensure timely

prevention of man-made disasters and their consequences.

Optical monitoring methods provide fast and non-contact

detection of pollutants, however, it is required to develop

methods for the simultaneous determination of the type and

concentration of many ions in multicomponent solutions,

which can be implemented using machine learning methods

(MLM).

At present, many different methods have been developed

to determine the ionic composition of aqueous media.

Basically, they can be divided into two types: contact and

non-contact methods. Contact methods such as titration and

chromatography are included in the GOST for the determi-

nation of various water pollutants. However, these methods

are characterized by a long analysis time, the requirement

for competent sample preparation, and the consumption of

expensive reagents. It is clear that continuous monitoring

of the state of aquatic media requires the development

of remote methods, for example, spectroscopic methods.

Spectroscopic methods make it possible to provide remote

express monitoring of various pollutant components of

aqueous media with minimal or no sample preparation.

The background for using optical methods to determine

various impurities in aqueous media is that many pollutants

have their intrinsic characteristic lines and bands in optical

spectra. Thus, for example, in the optical absorption spectra

of natural waters there are absorption bands of many heavy

metal ions [3], the increased content of which in water is

fraught with serious health problems [4]. At present, meth-

ods have been developed for determining the concentration

of heavy metal ions from their optical absorption spectra [5].
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However, despite clear successes, there are still a number

of obstacles that prevent the use of these methods widely

in practice. This is partly due to the fact that the optical

density spectra of many substances overlap in a wide range

of wavelengths, and it is often impossible to unambiguously

distinguish the contributions of different impurities to a

complex integrated spectral profile. On the other hand, not

all pollutant ions have their intrinsic characteristic absorption

bands, which makes it impossible to be limited by only one

method for determining the composition of multicomponent

mixtures.

Complex ions, such as nitrates, sulfates, and so on,

have their intrinsic characteristic bands, and in vibrational

spectra [6,7] the intensity of these bands is proportional

to the concentration of the ions. Concentration of the

corresponding ions in water can be determined on the basis

of these ion’s vibrational bands. Simple ions (for example,

Cu, Ni, Pb) do not have their intrinsic characteristic

vibrational bands, but their presence in solution can be

determined by the deformation of the stretching vibration

band of OH- groups of water molecules [8]. It is important

to note that different ions have different effects on the shape

of the stretching band of water [8]. Unfortunately, when

studying a multicomponent solution, it is impossible to

isolate the effect of each of the present ions on the stretching

band of OH groups by traditional methods. This is due,

on the one hand, to the fact that the deformation of the

stretching band of water upon the addition of ions is of

a weakly specific nature, and, on the other hand, to the

inevitable interaction of ions not only with water molecules,

but also with each other, which affects the shape of the

spectrum as well.

In the last decades, similar multiparameter inverse prob-

lems of spectroscopy, i.e. identification of ions and deter-

mination of the concentration of each of them in multicom-

ponent aqueous solutions from optical spectra, have been

successfully solved using MLMs. The principal component

analysis, the latent structure projection method, artificial

neural networks (ANN), the method of support vectors and

others are popular multivariate modeling techniques used

for qualitative and quantitative spectral analysis. Recent

advances in the field of machine learning demonstrate the

ability of deep learning methods to detect complex structure

in a large data set and extract important attributes, which

in this scenario can be the type and concentration of a

particular ion in a multicomponent solution [9]. Along

with qualitative analysis (for example, the classification of

cancer types based on IR absorption spectra of biological

tissue [10]), the use of MLMs allows building of regression

models for the quantitative analysis of samples. For

example, the authors of [11] applied neural networks to

Raman scattering spectroscopic data to successfully solve

a three-parameter problem of determining the type and

concentration of three nitrogenous bases in DNA: adenine,

cytosine, and guanine. The obtained accuracies in determin-

ing the concentrations of nitrogenous bases in DNA were

about 0.3 g/l, which is 1−2% by weight of the number

of DNA molecules involved in biochemical reactions in

molecular calculations.

This study presents the results of diagnostics of 8-

component aqueous solutions containing cations of lithium,

ammonium, iron (III), nickel, copper, and zinc, as well

as sulfate- and nitrate- anions, by IR absorption spectra

and optical density spectra using ANN. A method has

been developed for identifying these pollutant ions in

a multicomponent aqueous solution and determining the

concentration of each of them.

Materials and methods

Subjects of the study

The subjects of the study were aqueous solutions of ni-

trates and sulfates: Zn(NO3)2 — 2.13M, ZnSO4 — 1.41M,

Cu(NO3)2 — 2.02M, CuSO4 — 1.16M, LiNO3 — 1.06M,

Fe(NO3)3— 1.96M, NiSO4 — 2.21M, Ni(NO3)2 —
1.40M, (NH4)2SO4 — 0.91M, NH4NO3 — 0.82M (by
Baum-lux). Aqueous solutions of salts were prepared with

the use of deionized water (Millipore Simplicity UV water

purification system). The range of change in concentration

of each of the salts in the solutions varied from 0 to

0.9 M, which corresponds, on average, to the range of

change in the concentration of ions in the service waters of

non-ferrous metal production plants (for example, in spent

pickling solutions) [12]. For the application of ANN, 3744

salt solutions with various concentrations in deionized water

were prepared. The simultaneous use of both sulfates and

nitrates of the same cations made it possible to exclude the

unambiguous determination of the cation concentration by

analyzing the intrinsic vibrational band of the same anion.

Experimental methods

The prepared aqueous solutions of salts were studied

by two independent methods: using optical absorption

spectroscopy and IR absorption spectroscopy.

The optical absorption spectra were recorded using a Shi-

madzu UV-1800 double-beam spectrophotometer (Japan).
A quartz cell (with an optical path length of 1.0mm)
with deionized water was placed in the reference channel.

The measured sample was in a quartz cell with an optical

path length of 1.0mm Instrumental parameters for spectra

recording are: range from 190 to 1100 nm with a step

of 1 nm, fast scanning speed. The obtained spectra were

not subjected to subsequent additional processing. The

photometric accuracy of the instrument is ±0.004 of

the optical density (with the optical density of 1.0), the

photometric reproducibility is < 0.001 of the optical density

(with the optical density of 1.0).
The IR absorption spectra were recorded using a Bruker

Invenio R IR Fourier spectrometer equipped with a FTIR at-

tachment with a diamond element. Instrumental parameters

for spectra recording are: range from 400 to 4500 cm−1,

resolution of 4 cm−1, averaging over 20measurements.

The obtained spectra were not subjected to subsequent

additional processing. The photometric accuracy of the
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instrument was at least 0.001 of the optical density (with

the optical density of 1.0).
The application of ANNs

As it is already mentioned in the introduction, more

and more often MMOs in general and ANNs in particular

are used to solve inverse problems of spectroscopy. Three

types of input data used to work with neural networks can

be distinguished: 1) data obtained using a mathematical

model of the process; 2) data obtained during a real

experiment; 3) combination of data obtained both when

using a mathematical model and during the experiment, i. e.

the use of the quasi-model approach [13].
Each of these approaches has its own advantages and

disadvantages. For example, when using the approach of

”
data from the model “ the accuracy of solving the inverse

problem using ANN is determined by the accuracy of the

constructed mathematical model and the completeness of

the description of processes. This approach has a clear

advantage in that it is possible to form a large amount of

input data, i. e. ensure the representativeness of the sets

in a short time. However, the approach of
”
data from the

model “ does not take into account some possible processes

and experimental noise. In the alternative approach of

”
data from the experiment“ — when using the results

of experiment as the initial data — all really occurring

processes and noises are taken into account. However, the

disadvantage of this approach is the high cost and labor

intensity of conducting a large-scale physical experiment.

The
”
quasi-model approach“ consists in modeling the data

using a certain number of experimental results, therefore it

partially combines the advantages and disadvantages of both

approaches mentioned above.

In this study, the approach of the
”
data from the

experiment “ was used, i.e., all the initial data (spectra
of optical and IR absorption) used to train the ANN

and to verify accuracy of the solution to the problem of

determining the concentration of ions in aqueous solutions,

were obtained during a physical experiment.

Results and discussion

The absorption spectroscopy

Fig. 1 shows IR absorption spectra of initial aqueous

solutions of salts used in the course of the experiment to

produce solution-mixtures of salts with pre-defined concen-

trations (specified in the Subjects of the study section).
As can be seen from the presented data, optical absorp-

tion spectra of aqueous solutions of the salts used have

some features. Thus a peak in the region of 300 nm is

observed in spectra of aqueous solutions of nitrates, which

corresponds to the nitrate-anion absorption [14]. In the

optical absorption spectra of aqueous solutions of sulfates

and nitrates of nickel, absorption bands of nickel cations are

observed in the wavelength ranges of 350−450, 530−850

and 900−1100 nm [15]. In the same manner, in the optical

density spectra of aqueous solutions of copper salts, a
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Figure 1. Optical density spectra of initial aqueous solutions of

salts with the highest initial concentrations.

wide absorption peak of copper cations is observed with

its maximum in the region of 802 nm [16]. The aqueous

solution of ferrous nitrate is characterized by an intensive

absorption of iron cations in the wavelength region of up to

600 nm [17]. In the obtained spectra of the optical density

of aqueous solutions of the salts under study, the cations of

zinc, lithium and ammonium do not have their characteristic

bands.

As it is known, the dependences of absorption intensity of

aqueous solutions of salts in a wide range of concentrations

follow the Bouguer-Lambert-Beer law. However, when

studying multicomponent salt solutions, the use of this

law to determine the concentration of ions is complicated

by the following. First, there are regions where optical

density bands of different salts overlap in a wide wavelength

range, which greatly complicates the determination of

concentration of these salts in solutions from their optical

density spectra. Second, a deviation from the Bouguer-

Lambert-Beer law is possible due to the fact that the law

itself assumes that the ability of a molecule to absorb

light is not affected by other surrounding molecules in

the solution [18]. Therefore, to solve the inverse multi-

parameter problem of optical spectroscopy, i.e. to determine

the concentration of each of the ions in multicomponent

aqueous solutions, ANNs were used.

The IR-absorption spectroscopy

Fig. 2 shows IR absorption spectra of initial aqueous so-

lutions of salts used in the course of experiment to produce

solution-mixtures of salts with pre-defined concentrations

(specified in the Subjects of the study section) and IR

absorption spectra of aqueous solutions of copper nitrate

with different concentrations.

As can be seen from the presented data, the IR absorption

spectra of aqueous solutions of inorganic salts have some

features. Intensive absorption bands of sulfate- and nitrate-
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Figure 2. IR absorption spectra of the initial aqueous solutions of salts (a) and demonstration of the linearity of the IR absorption

intensity dependence on the concentration by an example of the aqueous solution of copper nitrate (b).
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Figure 3. Difference spectra of aqueous solutions of nitrates and sulfates of the salts under study. Concentrations of aqueous solutions

of salts are identical and equal to 0.8M.

anions in the ranges of 996−1200 and 1240−1491 cm−1

respectively. Simple ions, such as Zn2+, Ni2+, Cu2+,

etc. , have no characteristic bands in the IR absorption

spectrum, however, their content can be determined by the

change in stretching vibration mode of OH-groups of water

molecules [19,20]. To identify the most informative sections

of the spectrum, difference spectra of aqueous solutions of

the salts under study were built: the IR absorption spectrum

of water was subtracted from IR absorption spectra of

solutions (Fig. 3).

It can be seen from the presented data that in the spectra

of aqueous solutions of nitrates of the studied salts in the

region of
”
fingerprints“ there are bands with maxima in

the vicinity of 827, 1043, 1336 and 1620 cm−1 due to

vibrations of N-O groups in various configurations [21,22].
It is important to note that in the presence of different

cations a displacement of some bands of nitrate-anions is

observed. Thus, the most intensive band with a peak at

1336 cm−1 corresponding to v3-modes of N-O vibrations

in the aqueous solution of iron nitrate is shifted relative to

the same band in the aqueous solution of lithium nitrate

by 8 cm−1 toward larger wavenumbers. This may be due

to the fact that in the presence of various cations, nitrate

anions are converted into various isomers that differ in their

properties [22]. In the high-frequency region of difference

spectra, a number of local extrema are observed in the

Optics and Spectroscopy, 2023, Vol. 131, No. 6
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regions of 2890, 3030, 3080, 3275, 3552, and 3655 cm−1.

Such changes in the region of stretching bands of the

IR absorption spectra of salt solutions compared with the

bands of water indicate a different effect on the stretching

bands of OH groups of various ions and a change in the

strength of hydrogen bonds in water as a result of this

effect [20,23]. It is the above changes in the characteristics

of the vibrational bands of the spectra in multicomponent

salt solutions due to the interaction of ions and water

molecules, that are identification features for solving the

problem of determining the type and concentration of ions

dissolved in solutions using ANN [24,25].
From the point of view of solving the problem of

identification and quantitative determination of pollutant

ions, the detected changes in the spectra and their linear

nature of change with respect to changes in concentrations

(Fig. 2, b) make it possible to uniquely solve the one-

parameter problem with a high accuracy. In a more

complex problem, when working with multicomponent salt

solutions, these changes in the spectra will be superimposed

on each other, and, moreover, taking into account the

sensitivity of the IR spectroscopy method, which makes it

possible to determine various isomeric states of molecules

(in particular, nitrates), the solving of the inverse problem

of determining the concentration of pollutant in the solution

will be hampered significantly.

The application of MLM

To solve the set inverse multiparameter problem, fully

connected neural networks (NN), i.e. perceptrons with

different numbers of hidden layers and neurons located in

them, were applied in this study. This problem was solved

in two versions: by optical absorption spectra and by IR

absorption spectra of aqueous solutions of salts. For both

options, three single-layer, two two-layer and one three-layer

perceptron models were trained (the number of neurons in

hidden layers is specified in brackets): (64), (128), (256),
(128, 64), (256, 128), (256, 128, 64).
Intensities of the optical density and IR absorption

spectra of prepared 3744 salt solutions were used in 911

channels (corresponding to the wavelength range from 190

to 1100 nm with a step of 1 nm) and in 1763 channels

(corresponding to the range of wavenumbers from 400

to 3800 cm−1), respectively. In each of the options,

all obtained spectra of aqueous solutions of salts were

randomly divided into 3 sets — training, validation and

test — in the ratio of 70 : 20 : 10%, respectively. The first

set was used to train the neural network — to adjust

weight coefficients of neurons in the layers. The second set

was used to prevent overfitting of the model and stop the

network training in a timely manner. If during 500 training

epochs the mean square error on the validation set did not

decrease, then training was stopped and the network with

the smallest error was selected. The test set was used to

evaluate the quality of the solution to the inverse problem

using independent data that was not previously used in the

course of the NN training. To additionally prevent overfitting

of the NN and eliminate the influence of the method of

The smallest MAE for determining the concentration of ions

obtained as a result of the use of perceptrons with different

architectures trained on the spectra of optical absorption and IR

absorption of aqueous salt solutions

Cation/Anion MAE, M MAE, M

(absorption) (IR absorption)

Zn 0.054± 0.004 0.029± 0.009

Cu 0.0083± 0.0007 0.031± 0.031

Li 0.092± 0.002 0.024± 0.024

Fe 0.017± 0.002 0.016± 0.016

Ni 0.012± 0.002 0.021± 0.021

NH4 0.098± 0.015 0.027± 0.027

SO4 0.049± 0.005 0.015± 0.015

NO3 0.093± 0.003 0.038± 0.038

splitting the original data set on the problem solution, the

cross-validation method was applied: the original array of

spectra was randomly split 3 times. The results of applying

the NN for three partitions were averaged. The neurons of

the output layer of the NN determined the concentrations

of 8 studied ions.

The Dropout method [26] was used as a network

regularization method after each layer of neurons with a

probability of neuron exclusion equal to 0.1. MSE (squared
function) was used as the loss function. The search for

the minimum of the loss function was carried out using the

Adam algorithm [27]. The LeakyReLU function with a slope

coefficient of 0.07 was chosen as the activation function.

To eliminate the influence of the initial initialization of the

weights, 2 identical NNs were trained with different initial

weights for each split of the cross-validation. The statistical

indicators of problem solution for a given splitting were

averaged over these two networks. As a result of application

of NNs with different architectures, mean absolute errors

(MAE) of determining the concentration of each ion were

calculated. The results of ANN application are shown in

Fig. 4.

As can be seen from the presented results, the accuracy

of determining the concentration of ions does not strongly

depend on the architecture of the NN, except for the

applying a perceptron with one hidden layer and 128

neurons in it to the IR absorption data (Fig. 4, b). The best

accuracies in determining the concentration from the optical

absorption spectra of the studied ions are observed for

copper, iron, and nickel cations, which have characteristic

absorption bands. The table shows the smallest values of

the MAE for determining the concentrations of each of the

ions for each of the physical methods used, obtained as a

result of applying various NN architectures.

It is not possible to unambiguously determine the best

method for the simultaneous determination of the concen-

tration of the studied ions. Thus, the MAE for determining

zinc, lithium, iron, ammonium, sulfate, and nitrate ions

from IR absorption spectra is less than the similar value

determined from optical density spectra. On the other hand,

49 Optics and Spectroscopy, 2023, Vol. 131, No. 6
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the MAE for determining copper and nickel ions from the

optical density spectra is less than the MAE obtained with

NN trained on the IR absorption spectra. Thus, to obtain

the highest accuracy in the determination of different ions,

it is necessary to use different NN architectures. Taking

into account the currently available computation capacity,

the use of several NNs will not increase the time spent on

obtaining the result. It should be noted that in all cases

the error in determining the MAE from the optical density

spectra is less than the similar value obtained by training on

the IR absorption spectra, which can be explained by the

fact that the inverse problem being solved for the spectra of

optical spectroscopy is described by a simpler mathematical

model.

Conclusion

In this work, multicomponent aqueous solutions of

inorganic salts containing Zn(NO3)2, ZnSO4, Cu(NO3)2,
CuSO4, LiNO3, Fe(NO3)3, NiSO4, Ni(NO3)2, (NH4)2SO4,

NH4NO3 with concentration varied in the range from 0

to 0.9M were studied using two spectroscopic methods,

namely, the optical absorption spectroscopy and the IR

spectroscopy. The application of artificial NNs to the

obtained arrays of spectroscopic data made it possible to

identify and simultaneously determine the concentration of

each of the eight ions in a multicomponent mixture. The

obtained accuracy in determining the concentration of the

desired ions meets the needs of environmental monitoring

of natural waters and waste waters, as well as diagnostics of

technological media. Taking into account that commercially

available instruments were used in the study, the developed

method for determining the concentration of ions in process

waters can already be used in production, which will

directly contribute to environmental monitoring and health

protection. The developed methodology has two directions

of further development: 1) improvement of the accuracy of

solving the inverse problem and 2) increase in the ranges for

determining the concentration, including for the qualitative

and quantitative determination of the content of heavy metal

ions in the human body.
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