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Thermodynamic behavior of a two-dimensional clock model with q = 5

spin states
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dimensional ferromagnetic clock model with q = 5 spin states on a triangular lattice. Systems with linear
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Berezinsky−Kosterlitz−Thouless type.
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1. Introduction

In recent years, the study of phase transitions (PT),
critical and thermodynamic properties in magnetic systems

has been successfully carried out using Monte Carlo (MC)
methods [1–3]. This is due to the fact that these methods

allow us to study realistic models that take into account the

factors present in real materials. The increase in computing

capabilities of modern computers, the emergence of new

algorithms specially designed to solve a wide range of

problems has led to the fact that the MC method has proven

itself as a powerful tool for studying the PT and thermody-

namic properties of models of magnetic systems [4–6].

One of the models used to describe real physical systems

is the clock model with the number of spin states q. Many

physical properties of this model depend on the value

of q. In the case when q = 2, 3, 4 this model has an

exact solution. The hourly model is reduced to the Ising

model and the Z3 Potts model at q = 2 and 3, respectively.

This model at q = 4 is equivalent to two copies of the

Ising model. It is established that for these three cases,

a second kind of PT is observed in the system from a

high-temperature paramagnetic phase to a low-temperature

ferromagnetic ordered phase. When q → ∞ this model is

reduced to the standard XY model. In this case, sponta-

neous symmetry breaking is not observed, but PT occurs

from the low-temperature Berezinsky−Kosterlitz−Thouless

(BCT) phase into the high-temperature paramagnetic phase.

For a clock model with the number of spin states q = 5,

there are very few precisely established facts. By the present

time, the question remains open about the genus of PT at

the value of q = 5.

In this paper we study a two-dimensional clock model

on a triangular lattice with q = 5 to get an answer to

this question. Practically no studies of this model on a

triangular lattice have been found in the literature. In this

regard, in this paper we have attempted to study the PT

and thermodynamic properties of this model on a triangular

lattice.

2. Model and method of study

The Hamiltonian for a clock model with q-states, which

is a discretized spin XY model, can be written as follows:

H = −J
∑

〈i, j〉

cos(θi − θ j), (1)

where the spin states q at the node i are denoted by a flat

angle θi = 2πk i/q, k i = 1, . . . , q, J — parameter of the

ferromagnetic exchange interaction.

In recent decades, the clock model with q-state has

been widely studied both analytically [7–13] and numeri-

cally [14–25]. However, the nature of the PT is still unclear

for small q, such as q = 5 and 6. At a value of q = 2,

this model reduces to the classical Ising model with up-

down spin symmetry, and in the limiting case, at q → ∞ —
XY models where the spin orientations are continuous

inside the plane. In the case of a two-dimensional XY —
model (q → ∞), there is no far-ordered phase at finite

temperatures, as stated by Mermin’s theorem−Wagner [26].
Instead, the system undergoes a BCT transition of infinite

order from the paramagnetic phase to the BCT phase.

In this study, we consider the case with q = 5 on a

triangular lattice. A schematic description of this model

is presented in Fig. 1. The directions for each of the 5

spin states are shown in the box. Each spin has six nearest

neighbors as it is seen in the picture.
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Figure 1. Schematic representation of the clock model with

q = 5.

Lattice magnetic systems based on microscopic Hamil-

tonians are successfully studied on the basis of the

MC [27–32] method. Recently, many new variants of

algorithms have been developed for the study of such

systems. One of the most effective algorithms for studying

such systems is the Wang–Landau [33] algorithm, especially

in the low-temperature region.

The Wang−Landau algorithm is an implementation of the

entropy modeling method and allows you to calculate the

density function of the states of the system. This algorithm

is based on the fact that by making a random walk in

the energy space with probabilities inversely proportional

to the density of states g(E), we get a uniform distribution

of energies. By selecting such transition probabilities that

visiting of all energy states becomes uniform, we can

obtain an initially unknown state density g(E), which can

be determined in order to calculate the values of the

necessary thermodynamic parameters at any temperature.

In particular, internal energy U , free energy F , specific

heat C and entropy S. Since the density of states g(E) grows
very rapidly with the increase in the size of the systems

under study, the value ln g(E) is used for the convenience

of storing and processing large numbers.

Calculations were performed for systems with periodic

boundary conditions and linear dimensions L × L = N,

L = 24÷ 120, where L — linear lattice size, N — number

of spins in the system.

3. Simulation results

Wang−Landau algorithm is an effective method for

calculating the energy state density. The advantage of the

algorithm is that the density of states g(E) in the system

does not depend on temperature. Knowing the density

of the states of the system, it is possible to calculate the

temperature dependence of any thermodynamic parameter

of interest to us. Figure 2 shows the densities of states g(E)
for different linear dimensions of the system (here and

further on the graphs, the statistical error does not exceed

the sizes of symbols used to construct dependencies). The
density of states has a domed shape. The density of

states g(E) increases significantly with an increase in the

linear dimensions of the system due to the degeneracy of

the ground state.

Figure 3 shows the characteristic dependences of the heat

capacity C on the temperature for systems with different

linear dimensions L.
Note that on the dependences of the heat capacity C on

the temperature for all systems near the critical temperature,

two well-pronounced maxima are observed, which within

the error range fall on the same temperature even for

systems with the lowest value L. This indicates, firstly, the

high efficiency of the method used to add periodic boundary

conditions, and secondly, the achievement of saturation by N
for the parameters we studied. The presence of two maxima

on the temperature relationship of the heat capacity allows

speaking about two consecutive PT in this model. A similar

result was obtained in [23,34], where a clock model with

q = 5 on a square lattice was investigated.
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Figure 2. Density of states g(E) at various linear dimensions L.
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kBT/|J| for different L.
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Figure 4 shows the temperature dependence of the total

energy of the spin system E for different linear lattice

sizes. The figure shows that near the critical temperature,

the energy changes continuously. This energy behavior is

characteristic of the second kind of PT.

Figure 5 shows the temperature dependences of entropy S
for systems with different linear dimensions L. The figure

shows that with increasing temperature, the entropy for all

systems tends to the theoretically predicted value ln 5. At

low temperatures close to absolute zero, entropy tends to

zero for all values L. Zero residual entropy indicates the

absence of degeneracy of the ground state.

To analyze the kind of phase transition, we additionally

used histograms of the energy distribution. In the case of a

phase transition of the first kind, the histogram of the energy

distribution at the transition temperature will have two

maxima located symmetrically relative to the equilibrium

energy value.
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Figure 4. Dependence of energy E on temperature for different L.
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Figure 5. Temperature dependences of entropy S.
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Figure 6. Histogram of energy distribution E .

Figure 6 shows the histograms of the energy distribution

for the system L = 120. On the graph of the dependence

of the probability P on the energy of the system E , one
well-expressed maximum is observed. Based on this, it

is possible to conclude that the behavior characteristic of

a phase transition of the first kind is not observed in the

system.

4. Conclusion

The thermodynamic properties of a two-dimensional

clock ferromagnetic Potts model on a triangular lattice

with the number of spin states q = 5 were studied using

the Wang−Landau algorithm of the Monte Carlo method.

The analysis of the obtained results shows that two

maxima are observed on the temperature dependence of

the heat capacity. It was found that the system has

no degeneracy in the ground state. It was found that

two Berezinsky−Kosterlitz−Thouless type phase transitions

occur in the system.
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