## 06.1;07.2;08.3

© В.С. Гурченко<sup>1</sup>, А.С. Мазинов<sup>1</sup>, А.С. Тютюник<sup>1</sup>, И.Г. Гревцева<sup>2</sup>, М.С. Смирнов<sup>2</sup>, С.В. Асланов<sup>2</sup>, О.В. Овчинников<sup>2</sup>

<sup>1</sup> Крымский федеральный университет им В.И. Вернадского, Симферополь, Россия <sup>2</sup> Воронежский государственный университет, Воронеж, Россия E-mail: mazinovas@cfuv.ru

Поступило в Редакцию 18 июля 2023 г. В окончательной редакции 4 сентября 2023 г. Принято к публикации 19 сентября 2023 г.

Представлено исследование электрофизических свойств тонкопленочных слоев коллоидных квантовых точек селенида серебра (Ag<sub>2</sub>Se), а также гетероструктуры на основе фуллерена  $C_{60}$  и Ag<sub>2</sub>Se. Описаны синтез материалов, методика получения тонких пленок и гетероструктуры. Исследование проводящих свойств осуществлялось посредством анализа вольт-амперных характеристик. Показано, что тонкие пленки Ag<sub>2</sub>Se в системе сандвич-структуры Al-Ag<sub>2</sub>Se-ITO имеют особые вольт-амперные характеристики, в частности обладают токовой неустойчивостью с инверсией знака протекающего тока. Реализация гетероструктуры в системе Al- $C_{60}$ -Ag<sub>2</sub>Se-ITO позволяет стабилизировать и усилить данный эффект.

Ключевые слова: Ag<sub>2</sub>Se, тонкопленочные структуры, вольт-амперные характеристики, токовая неустойчивость.

DOI: 10.61011/PJTF.2023.21.56463.19687

Селенид серебра (Ag<sub>2</sub>Se) привлекает внимание исследователей из-за потенциальной возможности его применения в переключающих устройствах. Бинарные и тройные полупроводники являются основными материалами для барьеров Шоттки, солнечных элементов и электронной техники [1-3]. Однако исследование массивных кристаллов Ag<sub>2</sub>Se в основном было сосредоточено в области термоэлектронных устройств, в которых Ag<sub>2</sub>Se применялся при комнатной температуре [4-8]. Коллоидный синтез нанокристаллов Ag<sub>2</sub>Se с размером в несколько нанометров, называемых квантовыми точками (КТ), открывает возможность легкой настройки оптических и электронных свойств Ag<sub>2</sub>Se для устройств ближнего и среднего [9,10] ИК-диапазона, так как значение ширины запрещенной зоны массивного Ag<sub>2</sub>Se составляет 0.15 eV [11-14]. Коллоидные КТ Ад2Se способны поглощать в ближнем и среднем ИК-диапазоне, что важно для создания ИК-датчиков с малыми размерами, весом, энергопотреблением и стоимостью [13,15,16]. Основные исследования КТ Ag<sub>2</sub>Se направлены на разработку методик получения коллоидных КТ Ag<sub>2</sub>Se, установление закономерностей в их абсорбционных и люминесцентных свойствах [11,12]. Тем не менее экспериментальных данных о применении коллоидных КТ Ag<sub>2</sub>Se в качестве активной среды для компонентов оптоэлектроники в настоящее время явно недостаточно. Настоящая работа посвящена исследованию электрофизических свойств тонких пленок КТ Ag<sub>2</sub>Se, а также созданию гетероструктуры на основе фуллерена С<sub>60</sub> и КТ Ag<sub>2</sub>Se.

Объектами исследований служили коллоидные КТ Ag<sub>2</sub>Se, полученные с применением водной методи-

ки синтеза, аналогичной разработанной ранее для КТ  $Ag_2S$  [17], где в качестве источника ионов серебра выступал водный раствор  $AgNO_3$  (1 mmol, 10 ml), в качестве источника селена — водный раствор  $Na_2SeSO_3$  (0.1 mmol, 2 ml), а в качестве стабилизирующего агента — водный раствор 2-меркаптопропионовой кислоты (2-MPA) (2 mmol, 50 ml). Данный подход заключался в смешивании водных растворов  $AgNO_3$ , 2-MPA и  $Na_2SeSO_3$  при уровне pH=10. Концентрационное соотношение прекурсоров  $AgNO_3$  и  $Na_2SeSO_3$  обеспечивает формирование коллоидных КТ  $Ag_2Se$  со средним размером  $2.0 \pm 0.5$  nm. Фуллерен  $C_{60}$  был получен методом распыления графита с чистотой материала 99.5% [18].

Формирование тонких пленок КТ Ag<sub>2</sub>Se и фуллерена С<sub>60</sub> осуществлялось методом полива из раствора на диэлектрические и проводящие подложки [19]. В качестве растворителя для исходного порошкового фуллерена C<sub>60</sub> был использован дихлорметан (CH<sub>2</sub>Cl<sub>2</sub>) с концентрацией вещества в растворе 0.5 mg/ml. Объем осажденного раствора фуллерена С<sub>60</sub> составил 1 ml, в свою очередь объем водного раствора КТ Ag<sub>2</sub>Se составил 0.4 ml. Исследование электрических параметров КТ Ag<sub>2</sub>Se было реализовано путем формирования сандвичструктуры Al-Ag<sub>2</sub>Se-ITO (ITO — оксид индия-олова) (рис. 1, *a*) [20]. Гетероструктура была реализована в системе Al- $C_{60}$ -Ag<sub>2</sub>Se-ITO (рис. 2, a). Проводящие подложки алюминия и ITO были получены методом магнетронного напыления. Удельное сопротивление проводящих подложек не превышало 20 Ω/sq. Геометри-



Рис. 1. Сандвич-структура (a) и вольт-амперные характеристики (b) тонких пленок Ag<sub>2</sub>Se.



**Рис. 2.** Сандвич-структура (*a*) и вольт-амперные характеристики при прямом (*1*) и обратном (*2*) смещении (*b*) гетероструктуры  $C_{60}$ -Ag<sub>2</sub>Se. На вставке указаны (в eV) границы запрещенной зоны КТ Ag<sub>2</sub>Se, уровней верхней занятой молекулярной орбитали и нижней свободной молекулярной орбитали для фуллерена, а также работы выхода электродов.

ческие параметры проводящих подложек составляли  $10\times10\,\text{mm}.$ 

Электрофизические параметры в режиме постоянного тока исследовались при помощи анализатора полупроводников Keysight B1500A (Keysight Tech., CIIIA). Скорость развертки напряжения для сандвич-структуры Al-Ag<sub>2</sub>Se-ITO составляла 50 mV/s, тогда как для системы Al-C<sub>60</sub>-Ag<sub>2</sub>Se-ITO — 12.5 mV/s. Морфология поверхности тонких пленок исследовалась методами отражающей и просвечивающей микроскопии на микроинтерферометре МИИ-4М (ЛОМО, Россия). Первичный микрометрический анализ пленок КТ Ag<sub>2</sub>Se показал относительную однородность и распределение материала по поверхности подложки с толщинами порядка  $1.5-2 \mu m$  (рис. 3, *a*).

Анализ морфологии пленок фуллерена  $C_{60}$ , полученных с использованием дихлорметана, показал неоднородность поверхности, а также наличие "звездообразных" структур (рис. 3, *b*) [18]. Толщина самой пленки составляет примерно 750 nm, тогда как на поверхности пленки мы наблюдаем "звездообразные" формирования, длина отдельных сторон которых достигает 40 $\mu$ m при высотах порядка 2–3 µm. В результате при формировании гетероструктуры получаем объемное соединение исследуемых материалов.

Высокая чувствительность и минимизация внешних воздействий при измерении электрических характеристик были реализованы за счет использования экранирующей камеры ("клетка Фарадея"). Оценка проводящих свойств осуществлялась посредством анализа вольтамперных характеристик (ВАХ). ВАХ КТ  $Ag_2Se$  имеет отличительную особенность в диапазоне напряжений 0.11-0.21 V (рис. 1, *b*). Наблюдается значительное увеличение по току как в положительной, так и в отрицательной области.

При напряжении 90 mV значения тока не превышают 115 nA, тогда как при достижении напряжения 110 mV прослеживается резкое возрастание тока до значений  $0.4-0.9\,\mu$ A с последующим мгновенным переключением в отрицательную область со значениями тока в диапазоне от -0.8 до  $-1.2\,\mu$ A. Такое поведение BAX KT Ag<sub>2</sub>Se остается неизменным вплоть до значения напряжения 210 mV. Дальнейшее увеличение напряжения



**Рис. 3.** Оптические изображения слоев с КТ  $Ag_2Se(a)$  и структур на основе молекул  $C_{60}(b)$ , полученные на интерференционном микроскопе МИИ-4М.

сопровождается возвращением ВАХ к своему первоначальному виду при токах 190 nA.

Добавление фуллерена C<sub>60</sub> структуру в Al-Ag<sub>2</sub>Se-ITO позволяет не только стабилизировать данный эффект, но и усилить его (рис. 2, b). На этом рисунке представлена ВАХ с фиксированной областью токовой неустойчивости с инверсией знака протекающего тока. Необходимо отметить, что первоначально область токовой неустойчивости наблюдалась в диапазоне напряжений от 0.5 до 0.6 V при значениях тока  $-2.6 \,\mu$ A. Проведение повторных повторяющихся друг за другом измерений ВАХ привело к сдвигу области инверсии по напряжению, а также увеличению по току. На рис. 2, b приведены ВАХ при прямом и обратном смещении при полученных максимальных параметрах данного явления. В частности, отметим, что перестройка характеристики из положительной в отрицательную область по току наблюдается в диапазоне напряжений от 1.60 до 1.85 V при значениях тока от -2.5 до -3.0 µА. Отметим, что многократные повторные измерения электрических свойств структуры Al-Ag<sub>2</sub>Se-ITO не влияют на сдвиг области возрастания и переключения ВАХ КТ Ag<sub>2</sub>Se.

Полученные результаты свидетельствуют о формировании тонкопленочной сандвич-структуры  $Ag_2Se-C_{60}$ , обладающей принципиально новыми электрофизическими свойствами. Впервые показано, что коллоидные КТ  $Ag_2Se$  обладают токовой неустойчивостью с инверсией знака протекающего тока, которая может быть в перспективе использована для первичной генерации сигналов. Полученные отрицательные проводимости в гетероструктуре  $A1-C_{60}-Ag_2Se-ITO$  позволяют говорить о создании современных генераторов, поддерживающих уровни напряжений транзисторно-транзисторной логики, которые могут быть интегрированы в традиционную полупроводниковую электронику. При этом явным преимуществом исследуемых структур является упрощенный технологический цикл на основе коллоидной химии, позволяющий получать дешевые активные элементы.

## Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 23-22-10007 и региона Крым.

## Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

## Список литературы

- Z. Zhang, Y. Yang, J. Gao, S. Xiao, C. Zhou, D. Pan, G. Liu, X. Guo, Mater. Today Energy, 7, 27 (2018). DOI: 10.1016/j.mtener.2017.11.005
- Y. Yang, D. Pan, Z. Zhang, T. Chen, H. Xie, J. Gao, X. Guo, J. Alloys Compd., **766**, 925 (2018).
   DOI: 10.1016/j.jallcom.2018.07.022
- [3] J. Ma, M. Chen, S. Qiao, J. Chang, G. Fu, S. Wang, ACS Photon., 9 (6), 2160 (2022).
   DOI: 10.1021/acsphotonics.2c00474
- [4] J. Gao, L. Miao, H. Lai, S. Zhu, Y. Peng, X. Wang, K. Koumoto, H. Cai, iScience, 23 (1), 100753 (2019).
   DOI: 10.1016/j.isci.2019.100753
- [5] K.H. Lim, K.W. Wong, Y. Liu, Y. Zhang, D. Cadavid,
   A. Cabot, K.M. Ng, J. Mater. Chem. C, 7 (9), 2646 (2019).
   DOI: 10.1039/C9TC00163H
- [6] J. Niu, T. Chen, G. Liang, H. Ma, X. Zhang, P. Fan, Z. Zheng, Mater. Lett., **312**, 131662 (2022).
   DOI: 10.1016/j.matlet.2022.131662
- [7] P. Jood, R. Chetty, M. Ohta, J. Mater. Chem. A, 8 (26), 13024 (2020). DOI: 10.1039/D0TA02614J
- [8] C. Jiang, Y. Ding, K. Cai, L. Tong, Y. Lu, W. Zhao, P. Wei, ACS Appl. Mater. Interfaces, 12 (8), 9646 (2020). DOI: 10.1021/acsami.9b21069
- [9] J.-J. Ma, M.-X. Yu, Z. Zhang, W.-G. Cai, Z.-L. Zhang, H.-L. Zhu, Q.-Y. Cheng, Z.-Q. Tian, D.-W. Pang, Nanoscale, 10 (22), 10699 (2018). DOI: 10.1039/C8NR02017E

- [10] M. Park, D. Choi, Y. Choi, H. Shin, K.S. Jeong, ACS Photon., 5 (5), 1907 (2018). DOI: 10.1021/acsphotonics.8b00291
- [11] C.F. Pereira, I.M.A. Viegas, I.G. Souza Sobrinha, G. Pereira,
   G.A.L. Pereira, P. Krebs, B. Mizaikoff, J. Mater. Chem. C,
   8 (30), 10448 (2020). DOI: 10.1039/D0TC02653K
- [12] R. Bera, D. Choi, Y.S. Jung, H. Song, K.S. Jeong, J. Phys. Chem. Lett., 13 (26), 6138 (2022).
   DOI: 10.1021/acs.jpclett.2c01179
- [13] S.B. Hafiz, M. Scimeca, P. Zhao, I.J. Paredes, A. Sahu, D.-K. Ko, ACS Appl. Nano Mater., 2 (3), 1631 (2019). DOI: 10.1021/acsanm.9b00069
- [14] Y. Ding, Y. Qiu, K. Cai, Q. Yao, S. Chen, L. Chen, J. He, Nat. Commun., 10 (1), 841 (2019).
   DOI: 10.1038/s41467-019-08835-5
- [15] J. Qu, N. Goubet, C. Livache, B. Martinez, D. Amelot, C. Gréboval, A. Chu, J. Ramade, H. Cruguel, S. Ithurria, M.G. Silly, E. Lhuillier, J. Phys. Chem. C, **122** (31), 18161 (2018). DOI: 10.1021/acs.jpcc.8b05699
- [16] W.-Y. Lee, S. Ha, H. Lee, J.-H. Bae, B. Jang, H.-J. Kwon, Y. Yun, S. Lee, J. Jang, Adv. Opt. Mater., 7 (22), 1900812 (2019). DOI: 10.1002/adom.201900812
- [17] O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich, Opt. Quantum Electron., 52 (4), 198 (2020). DOI: 10.1007/s11082-020-02314-8
- [18] А.С. Мазинов, А.С. Тютюник, В.С. Гурченко, Прикладная физика, № 2, 64 (2020).
- [19] А.Н. Гусев, А.С. Мазинов, А.С. Тютюник, И.Ш. Фитаев, В.С. Гурченко, Е.В. Брага, ЖТФ, 91 (1), 89 (2021). DOI: 10.21883/JTF.2021.01.50278.120-20 [A.N. Gusev, A.S. Mazinov, A.S. Tyutyunik, I.Sh. Fitaev, V.S. Gurchenko, E.V. Braga, Tech. Phys., 66, 84 (2021). DOI: 10.1134/S1063784221010102].
- [20] А.Н. Гусев, А.С. Мазинов, В.С. Гурченко, А.С. Тютюник, Е.В. Брага, Письма в ЖТФ, 47 (8), 3 (2021).
  DOI: 10.21883/PJTF.2021.08.50843.18617 [А.N. Gusev, A.S. Mazinov, V.S. Gurchenko, A.S. Tyutyunik, E.V. Braga, Tech. Phys. Lett., 47, 377 (2021).
  DOI: 10.1134/S1063785021040180].