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Crossover between Mott’s and Arrhenius’ laws in the temperature

dependence of resistivity of highly boron-doped delta-layers

in artificial diamond
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Experimental temperature dependence of the resistivity of thin (1−3 nm) highly boron-doped (close to the

threshold of the phase transition into a state with a metallic-type conductivity) delta-layers in chemically vapor

deposited (CVD) diamond in a broad temperature range from ∼ 100 to ∼ 500K can be described by Mott’s two-

dimensional law (hole
”
hops“ between localized states with a temperature-dependent average

”
hop“ length) in a

low temperature region and Arrhenius’ law (hole
”
hops“ between the nearest localized states) in a high temperature

region. The crossover between them takes place at 230−300K. The potentials of hole localized states are of a

long-range, e. g. Coulomb’s, type, the static dielectric permittivities of delta-layers are by several times larger than

those of undoped CVD diamond.
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1. Introduction

Thin (several lattice constants thick) heavily doped layers

(so-called δ-layers) in diamond produced by chemical vapor

deposition (CVD) [1–8] are considered to be a promising

tool for increasing the mobility of charge carriers. High

values of the latter are required for various electronic

applications, such as fast CVD-diamond-based field-effect

transistors [9,10]. The increase in the mobility of charge

carriers in such layers compared to the case of homogeneous

alloying is due to the quantum effect of their partial

penetration from the quantum well formed by their parent

ionized impurity atoms in the δ-layer into the undoped

diamond surrounding this layer. As a result, their scattering

on these atoms decreases, leading to an increase in their

mobility. However, no such increase in hole mobility was

observed [8,11] in many experiments with boron-doped

δ-layers in CVD-diamond. Consequently, further experi-

mental and theoretical investigation of the conductivity of

such layers, especially the influence of their thicknesses on

it, is necessary.

The purpose of the present paper — is to measure

the resistance dependences of several highly boron-doped

(with concentration close to the threshold of phase transition

to the metallic conduction state) δ-layers in CVD-diamond

over a wide temperature range from ∼ 100 to ∼ 500K and

modelling them using the theories of
”
jump“ conductivity

and percolation. To this end, two approaches to such mod-

elling, applicable in the low and high temperature ranges,

are discussed in the next section. In Section 3, the results

of these approaches are compared with experimental data,

and conclusions are drawn about the intrinsic characteristics

of heavily boron-doped δ-layer in CVD diamond from the

condition of their best fit. The conclusion summarizes the

main results of the paper.

2. Methodology for calculating
temperature dependences of
resistances of heavily boron-doped
delta layers in CVD-diamond

Let a thin heavily boron-doped δ-layer in CVD diamond

have a thickness d (the full width of the boron atom

concentration distribution over half of its peak value at the

center of the layer) of the order of a few nanometers and

the peak concentration of boron atoms Na in it is close

to 1021 cm−3, but below the phase transition threshold of

the insulator−metal [12] (the actual parameters of δ-layers

will be given in the next section). This δ-layer is between

thick deliberately undoped layers of CVD diamond.
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First, we consider the interval of sufficiently low tem-

peratures (its upper boundary will be determined from

the analysis of experimental data, see further), where hole

”
hops“ occur mainly between localized states with energies

close to the chemical potential µ [13]. In this energy area,

the density of localized states is small, but despite the low

temperatures, about half of them are occupied by holes,

and the other half are empty. As a result, there are some

holes in these states and they can
”
jump“ from one state to

another without violating the Pauli principle, which provides

conductivity.

Let the characteristic scale of the wave functions cor-

responding to these states be equal to l . In the theory

of
”
jump“ conductivity [13], the average distance between

localized states is usually assumed to be greater than 2l, so
that the wave function of a hole occupying some state near

another state is proportional to exp(−r/l), where r — the

distance between these two states. Then the probability of

transition of a hole from the occupied state i with energy ei ,

ei < µ, and radius vector ri to the unoccupied state j with

energy e j , e j > µ, and radius vector r j is proportional to

exp

(

−2r i j

l
− e j − ei

kBT

)

,

where r i j ≡ |ri − r j | — the distance between these states,

T — the absolute temperature, kB — the Boltzmann

constant [13].
In the theory of

”
jump“ conductivity [13], it is shown that

the sample resistance R is proportional to

exp

(

2r i j

l
+

e j − ei

kBT

)

, (1)

where r i j as well as e j−ei correspond to the
”
optimal

jump“, i. e.,
”
jump“ for which the degree of the exponent

is minimal. This minimum is found by considering

that the length of the
”
jump“ r i j is related to the

energies of the corresponding states ei and e j by the

formula r i j ≈ N−1/2(ei , e j), where N(ei , e j) — the two-

dimensional density of localized states with energies lying

in the interval from ei to e j [13]. The use of exactly two-

dimensional rather than three-dimensional density of states

is due to the fact that for
”
optimal jump“ r i j is greater than

or of the order of the thickness of the δ-layer d (see next

section).
To find N(ei , e j), note that when the entire hole system

is in the ground quantum state (i.e., absolute temperature

is zero), the localized state i is occupied and the localized

state j is not occupied only if the inequality [13] is fulfilled

e j − u(r i j) − ei > 0. (2)

Here, u(r i j) — the potential energy of electrostatic inter-

action of holes in the localized states i and j . The origin

of this condition is due to the fact that the energy e j of

the unoccupied localized state j contains a contribution

from the electrostatic energy of the hole in the occupied

localized state i . Therefore, when a hole
”
hops“ from a

localized state i to a localized state j , its energy changes

from ei to e j−u(r i j). When the whole hole system is in

the ground quantum state, this change must be positive,

otherwise the localized state j would be occupied in this

state, and localized state — non occupied.

To instantiate the shape of u(r i j), consider that near

the phase transition insulator−metal, the static dielectric

constant of the δ-layer εd is much larger than the static

dielectric constant ε ≈ 5.7 of the surrounding intentionally

undoped CVD diamond [12]. In this case, the Coulomb

interaction energy of holes can be represented by the

formula

u(r) ≈ e2

εeffr
, (3)

where e — elementary charge, εeff — effective static

permittivity, ε < εeff < εd . Substituting (3) in (2), we obtain

N(ei , e j) <

[

(e j − ei)εeff
e2

]2

. (4)

Since N(ei , e j) must be positive, inequality (4) means that

there is a so-called Coulomb gap in the density of states [13],
i. e. N(ei , e j) → 0 at e j → ei → µ. It is shown in [13]
that in this case, N(ei , e j) is of order of the right-hand

side (4), i. e.

N(ei , e j) =

[

(e j − ei)εeff
πe2

]2

. (5)

Then, minimizing (1),

2N−1/2(ei , e j)

l
+

e j − ei

kBT
,

with respect to e j − ei , it is easy to obtain that for
”
optimal

jump“

e j − ei =

√

2
√
πe2kBT
εeffl

and r i j =

√ √
πe2l

2εeffkBT
,

i. e., the length of such a jump depends on temperature

(specifically, inversely proportional to the square root of

temperature, two-dimensional Mott’s law [12]). Substituting
this into (1), we obtain that

R ∝ exp

[(

T0

T

)1/2]

, (6)

where

T0 =
8
√
πe2

kBlεeff
. (7)

It is known that near the phase transition insulator−metal,

the localization length l grows proportionally to√
εd ∼ √

εeff [12,14]. Therefore, further, we will assume

that l ≈ rB
√
εeff/ε, i.e., we will believe that the loca-

lized states of holes in the intentionally undoped CVD-

diamond are associated with the usual acceptor states
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near negatively charged boron ions, and the localized

states of holes in the heavily doped δ-layer are formed

by clusters of such ions with sizes of the order of l .
Here, rB = ~

2ε/(e2mh) ≈ 7.2 Å — the Bohr radius for

localized hole states near negatively charged boron ions

in intentionally undoped CVD diamond, ~ — Planck’s

constant, mh = 0.4me — the average effective mass of a

hole [15], me — the mass of a free electron.

Secondly, let us consider the interval of sufficiently high

temperatures (its lower boundary approximately coincides

with the upper boundary of the interval of sufficiently

low temperatures discussed above and, like the latter, will

be determined from the analysis of experimental data,

see hereafter), when
”
jumping“ conductivity is mainly due

to hole
”
hopping“ between localized states with energies

close to the energy of the isolated acceptor state [13]. In this

energy area, the density of states is large, but only an

exponentially small fraction of them are occupied by holes

(in the case of a compensation factor close to unity) or only
an exponentially small fraction of them are not occupied by

holes (in the case of a compensation factor close to zero). In
both cases, the resistance ofδ-layer is determined by the hole

hopping between the nearest localized states and is inversely

proportional to this exponentially small fraction [13], that is

R ∝ exp

( |µ|
kBT

)

, (8)

where µ — the chemical potential counting downward from

the energy of the isolated acceptor state. In the case of a

near unity compensation factor µ < 0, whereas in the case

of a small compensation factor µ > 0. Thus, R looks like

the Arrhenius formula [13],

R ∝ exp

(

Ea

kBT

)

,

with temperature-independent activation energy Ea = |µ|.
According to [13] for both of these cases,

|µ| ≈ e2N1/3
a

εeff(1− c)1/3
, (9)

where c — compensation factor, c ≡ Nd/Na , Nd — donor

concentration.

3. Experimental methodology
and comparison of experimental
and theoretical temperature
dependences of resistances of heavily
boron-doped delta layers
in CVD-diamond

To establish the temperature dependences of the pre-

exponential factors in (6) and (8), it is necessary to compare

the results of theoretical models with experimental data.

The drawing shows the experimental temperature depen-

dences of the resistances R of δ-layers for structures S42,

S45, S082, and S085. Measurements were performed both

on δ-layers grown directly on the surface of undoped CVD-

diamond film (e. g., structure S42, film thickness 3µm,

ohmic contacts to the δ-layer Ti/Mo/Au) and on layers

buried in this film (e. g., structure S45, film thickness

220 nm, depth of δ-layer 20 nm, Ti/Al ohmic contacts

to reduce contact resistance were made to an additional

strongly boron-doped δ-layer grown on the film surface with

parameters similar to those of the buried layer, but etched

in the area between the contacts to prevent current flowing

through it from contact to contact). Measurements were

performed using the Van-der-Pau method. For structures

with buried δ-layers, it was verified that the conductivity is

indeed determined by these layers (test measurements of

resistances were made after etching the structures between

contacts to depths greater than the depths of buried δ-layers,

and these resistances were found to be 104−105 times

higher than the resistances of the same structures before

etching).

The temperature dependences of the resistances of

δ-layers in the figure are quite strong, which indicates that

their conductivity is not metallic and its conditioned by holes

”
hops“ between localized states.

Consider the low temperature area (6). According to

Miller’s−Abrahams theory and percolation theory [13], in

a two-dimensional situation (when the resistance δ-layer is

of the order of the resistance of a rectangular parallelepiped

with height d and width and length, equal to the correlation

radius of the critical subnetwork) the temperature depen-

dence of the pre-exponential factor in (6) has the form T 3/2

if the wave function of the localized hole state declines as

exp(−r/l), or T−1/2 if it declines as r−1 exp(−r/l). The

first case is characteristic for long-range, e.g. Coulomb,

potentials of localized states of holes, whereas the second —

for short-range, e.g. shielded, potentials of such states [16].

The calculations show that in the second case, the best

agreement with low-temperature experimental data is ob-

tained at relatively small T0 ∼ 103 K. According (7), such

T0 requires large εeff ∼ 150. Then, to obtain from (9) |µ|
best fitted to the high-temperature experimental data, it

is necessary to take the compensation factor very close

to unity, which seems unrealistic. Therefore, it will be

assumed hereafter that in the low temperature area, the pre-

exponential factor in (6) varies with temperature as T 3/2.

This means that the potentials of localized states of holes

are long-range, e. g. Coulomb potentials.

In the high temperature area (8) in the case of long-

range potentials, according to Miller’s–Abrahams theory

and percolation theory [13,14], in the two-dimensional

(and three-dimensional) situation, the pre-exponential factor

in the temperature dependence of the resistance is directly

proportional to the temperature T .
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Experimental temperature dependence of the δ-layer resistance R (solid curve) and its low-temperature (10) (dashed curve 1) and high-

temperature (11) (dashed curve 2) theoretical approximations for the structures S42 (a), S45 (b), S082 (c), and S085 (d). Dimensions of

all structures (length×width× thickness) 3.5× 3.5× 0.5mm.

Experimentally measured and theoretically calculated parameters of samples

Sample d, nm Na , cm
−3 Tlow, K R(Tlow), Ohm Thigh, K R(Thigh), Ohm T0, K εeff l, nm c

S42 1 9 · 1020 119.7 2.46 · 108 450 1.66 · 104 5 · 104 6.27 0.76 0.1

S45 2 7 · 1020 98.5 1.11 · 106 500 4.29 · 104 6 · 103 25.8 1.5 0.95

S082 3.3 2 · 1020 150 4.25 · 106 480 1.07 · 103 5 · 103 28.3 1.6 0.9983

S085 2.3 8 · 1020 91 6.77 · 105 449.9 2.41 · 104 6 · 103 25.8 1.5 0.88

Thus, in the low temperature area, the resistance of

δ-layer is approximated by the formula

R = R(Tlow)

(

T
Tlow

)3/2

exp

[(

T0

T

)1/2]
/

exp

[(

T0

Tlow

)1/2]

,

(10)

where R(Tlow) — the resistance of δ-layer at the lower

boundary Tlow of the low-temperature range and T0 is given

by (7). In the high temperature area, it is defined by the

expression

R = R(Thigh)
T

Thigh

exp

( |µ|
kBT

)

/

exp

( |µ|
kBThigh

)

, (11)

where R(Thigh) — the resistance of δ-layer at the upper

boundary Thigh of the high-temperature range and |µ| is

given by (9).
The table summarizes the experimentally measured pa-

rameters d, Na , R(Tlow) and R(Thigh), and the theoretically

calculated parameters Tlow, Thigh, T0, εeff, l and c , providing
the best fit of the low (10) and high-temperature (11)
theoretical approximations to the experimental data for CVD

diamond samples S42, S45, S082, and S085 with δ-layers.

These approximations are also shown in the drawing.

The table shows that the parameters of structures S45,

S082 and S085 (both experimental and theoretical) are

quite close. These structures are characterized by a large

compensation degree of the order of 90% and large εeff,

indicating that the heavily boron-doped δ-layers in them

are near the insulator−metal phase transition threshold.

In contrast, the S42 structure is weakly compensated

(∼ 10%), has an εeff close to the static dielectric constant ε

of undoped diamond, indicating that it is quite far from

the threshold of this transition. This is probably due to the

thinness of the δ-layer in this structure, although the peak

concentration of boron atoms in it is even higher than in

structures S45, S082 and S085.
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The figure shows that the transition from the low (10)
to the high-temperature area (11) for structure S42 occurs

at T ∼ 230K, for structure S45 — at T ∼ 300K, for

structure S082 — at T ∼ 200K, and for structure S085 —
at T ∼ 250K.

Calculations show that the
”
optimal“ jump length r i j in

the low temperature range exceeds 2.5d in structure S42

and of the order of d in structures S45, S082, and S085.

This justifies the use of the above two-dimensional density

of states. Moreover, for all structures, the optimal length of

the
”
jump“ r i j in the low-temperature area is several times

larger than the average distance between boron atoms, so

that such
”
jumps“ can indeed occur, which also justifies the

theoretical approach used.

4. Conclusion

Thus, it is shown that the experimental tempera-

ture dependences of resistances of strongly boron-doped

(with peak concentrations of boron atoms close to

1021 cm−3) δ-layers grown in deliberately undoped CVD

diamond with thicknesses ∼ 1−3 nm and non-metallic

(i. e. which takes place below the insulator−metal phase

transition threshold) type of conductivity in a wide temper-

ature range from ∼ 100 to ∼ 500K can be explained by

”
jump“ conductivity of holes that are in localized states

in the impurity energy band. For temperatures smaller

than 230−300K (depending on the sample), they are

described by the two-dimensional Mott law (which is due to

”
hops“ of holes between localized states with a temperature-

dependent — inversely proportional to the square root of

the temperature — average length of the
”
hops“. For

higher temperatures, they are described by the Arrhenius

law (which is due to
”
jumps“ of holes between the nearest

localized states). The potentials of localized states are

probably long-range, e.g. Coulomb potentials. The static

dielectric constants of δ-layers should be several times larger

than those of intentionally undoped CVD diamond, due

to their proximity to the insulator−metal phase transition

threshold.

The obtained results help to better understand the physics

of hole
”
jump“ conduction in heavily boron-doped δ-layers

of CVD-diamond just below the threshold of their phase

transition to the state with metallic type of conduction.

However, further experimental and theoretical studies of this

phenomenon are needed.
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