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1. Introduction

One of the urgent problems of semiconductor physics is

the creation of a compact source of far-IR radiation. At

present, the common radiation sources operating in this

spectral area are quantum-cascade lasers [1]. Also, some

of the devices that cover this spectral range are lead chalco-

genide lasers. They operate at wavelengths up to 50 µm [2].
Due to the peculiarities of the material of these lasers, these

lasers have not yet found commercial application. Another

possible way to generate radiation in the spectral range

of interest is the generation of two-dimensional plasmon-

phonons in HgTe/CdHgTe heterostructures with narrow-gap

quantum wells (QWs) [3], the technology of their growth by

molecular-beam epitaxy is well developed at present [4,5].

The attractive aspects of plasmon-phonon generation are

the large interband gain (> 104 cm−1) [3] and the absence

of the need for waveguides.

The Reststrahlen band of the QW material and the barrier

in the considered structure overlap. In this case, the

plasmon-phonon spectrum represents two branches — high-

frequency and low-frequency, formed by interaction with

optical phonons of the QW and the barrier. The low-

frequency branch behaves proportionally to
√

q at small

wave vectors and tends to the frequency of the transverse

optical phonon in the QW as the wave vector increases. The

high-frequency branch starts from the longitudinal optical

phonon energy in the barrier [6]. We will hereafter refer

to such hybrid excitations as plasmon-phonons, following

the terminology in Task 6.10 of book [7]. In structures

to be considered, the role of the barrier is played by

the solid solution Cd0.7Hg0.3Te. It has two longitudinal

phonons (CdTe-like and HgTe-like). The maximum energy

of the longitudinal optical phonon in Cd0.7Hg0.3Te barriers

is ∼ 20meV (CdTe-like phonon) [8,9].

It is known that in the case when the band gap width

becomes smaller than the frequency of the longitudinal

optical phonon in the barrier and the QW, rapid recombina-

tion with the participation of the optical phonons becomes

possible, preventing the creation of inverse population of

the bands [10]. In order to exclude recombination involving

phonons, it is necessary that the band gap width of the QW

is larger than the energy of the longitudinal optical phonons

in the barrier and the QW. Therefore, we will consider

the QWs with parameters at which the band gap width

is larger than the energy of the longitudinal optical phonon

in the barrier and the QW. It is also necessary that the

distance between the subbands of dimensional quantization

of the valence band is larger than the band gap width. This

will allow to exclude the absorption of plasmon-phonons

in the range of interest, arising as a result of intersubband

transitions of electrons in the valence band.

When inverse band population is created, plasmon-

phonon gain becomes possible if the plasmon-phonon

energy starts to exceed the value of the effective band

gap width Egeff(q) [3]. By this value, we mean the

minimum plasmon-phonon energy at a given wave vector q,
possessing which it can be emitted at an interband electron

transition. In the QWs whose band gap width is larger

than the longitudinal optical phonon energy in the barrier,

it is possible to realize the gain of plasmon-phonons of

only the high-frequency branch. Therefore, we will not

consider plasmon-phonons of the low-frequency branch in

the following.

The plasmon-phonon dispersion law strongly depends on

the concentration of non-equilibrium carriers. A decrease

in concentration leads to a decrease in the phase velocity

of the plasmon-phonon (i. e., for a given wave vector of the

plasmon-phonon, its frequency decreases). When a certain

concentration of non-equilibrium carriers is exceeded, the

law of energy-momentum conservation at interband electron

transitions with emission of plasmon-phonon [6] starts to

be fulfilled. In conditions of inverse population, plasmon-

phonon gain is possible at concentrations greater than the
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indicated concentration. The carrier concentration, at which

the plasmon-phonon gain begins, is called the threshold

concentration. The reduction of the band gap width of the

QW leads to the fact that the intersection of the plasmon-

phonon dispersion curve and Egeff(q) occurs at lower carrier
concentrations. Thus, a decrease in the effective band

gap width allows to reduce the concentration of non-

equilibrium carriers, exceeding which becomes possible

gain and generation of plasmon-phonons, in the presence

of inverse population of the bands.

Earlier in the papers [11,12] various properties of

plasmon-phonons in HgTe/CdHgTe structures with 5 nm

wide QWs were studied. This corresponds to a band gap

width of 35meV. However, the issue of optimizing the

structure parameters for plasmon-phonon generation has not

been considered. In the present paper, we have made an

attempt to fill this gap. We have shown that a decrease in

the band gap width of the QW from 35 to 25meV leads

to a significant decrease in the threshold concentrations of

carriers in structures with a single QW.

2. Calculation method

2.1. Plasmon-phonon spectrum

Consider a structure consisting of a single HgTe QW sur-

rounded by solid solution barriers CdxHg1−xTe containing

cadmium x = 0.7. Barriers of such composition are often

used in such structures for the generation of electromagnetic

waves of the range of interest [13,14]. We assume that

a plasmon-phonon with wave vector q and frequency ω

propagates in the QW plane. Plasmon-phonons, which can

propagate in the considered structures, have a wavelength

much larger compared to the QW width. Therefore,

when studying the characteristics of plasmon-phonons, we

will characterize the QW by two-dimensional polarizability,

which is composed of the polarizability of free charge

carriers, the polarizability due to the lattice vibrations of the

QW and the electrons of the filled bands. In the framework

of the random phase approximation, the expression for the

two-dimensional polarizability of charge carriers, taking into

account the collision frequency of non-equilibrium carriers,

can be represented by the expression [6]:

χ(ω, q) =
e2

(2π)2q2

×
∑

s ,s ′

∫

d2k

[

f s(k) + f s ′(k + q)
]∣

∣

∫

dzψ∗

k+q,s ′ψk,s

∣

∣

εs ′(k + q) − εs (k) − ~ω(q) − i~ν
, (1)

where e is the electron charge, f (k) is the distribution

function for non-equilibrium carriers, ν is the phase relax-

ation frequencies of non-diagonal elements of the density

matrix, ψ
k
is the electron wave function with wave vector k,

coordinate z is directed perpendicular to the QW plane. The

summation is based on the indices s and s ′, which describe

the subband number and spin states. Non-equilibrium
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Figure 1. Electronic spectrum in HgTe QW surrounded by

Cd0.7Hg0.3Te barriers. The lattice temperature is 4.2K. Blue

dashed curves correspond to the spectrum in a 5 nm wide QW;

red curves — in a 5.3 nm wide QW. (A color version of the figure

is provided in the online version of the paper).

carriers in the bands will be described by Fermi-Dirac

statistics with effective temperature Teff.

As can be seen from (1), to find the polarizability

associated with the charge carriers, it is necessary to

calculate the energies of the electrons and their wave

functions. The Kane model was used to calculate them,

taking into account deformation effects [15]. In calculating

the energies and wave functions, we assume that the QW

is grown in the (013) plane, and the lattice temperature

is 4.2 K. We neglect the removal of spin degeneracy due

to the absence of the inversion center and the lowering

of symmetry at the heteroboundary. The influence of this

effect on the characteristics of plasmon-phonons is small.

It is possible to decrease the band gap width in the QW

at the fixed barrier composition and lattice temperature by

increasing the QW width. In this paper, we will compare

the characteristics of plasmon-phonons in structures with

QW widths of 5 and 5.3 nm. The calculated spectra of

electrons in HgTe QWs with widths of 5 and 5.3 nm are

shown in Fig. 1. The band gap width of the 5.3 nm wide

QW is 25meV. Note that this value is slightly larger than

the energy of the longitudinal optical phonon in the barrier.

In calculating the polarizability by formula (1), we have

taken into account 6 subbands: the first subband of the

conduction band, the first and second subbands of the

valence band (each subband is doubly degenerate in spin).
The two-dimensional polarizability of the QW associated

with phonons in the QW and filled band electrons is

determined by the expression:

χph(ω) = κ(ω)d/4π,

where κ(ω) is the contribution to the dielectric constant

of the QW due to the electrons of the filled bands

and phonons in the QW; d is the width of the QW.
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Figure 2. High-frequency branch plasmon-phonon spectra calculated for two effective temperatures of non-equilibrium carriers Teff:

panel a — corresponds to Teff = 4.2K, panel b — corresponds to Teff = 77K. The black dashed and solid lines show the Egeff(q)
dependences at QW widths of 5 and 5.3 nm, respectively.

Thus, the total polarizability of the QW has the form:

χtot(ω, q) = χ(ω, q) + χph(ω). The contribution to the

dielectric constant of HgTe due to lattice vibrations and

filled band electrons in the case of low temperatures is

determined by expression [16]:

κ(ω) = κ∞ +
Fω2

TO

ω2
TO − ω2 − iγω

, (2)

where F is the oscillator strength, ωTO is the transverse

optical phonon frequency in the QW, γ is the phonon

attenuation frequency, κ∞ is the dielectric permittivity

associated with remote bands electrons. Electron transitions

between the conduction band and the valence band do not

contribute to the value of κ∞ . The frequency dependence of

the dielectric constant of the κB(ω) barrier material is taken

from the paper [17].
The formula (1) is obtained for the case, when the fre-

quencies and wave vectors of the plasmon-phonon are real.

However, if one considers the propagation of a plasmon-

phonon with the real frequency ω in a medium with absorp-

tion, then the components of its wave vector are complex

quantities. To make the wave vector of the plasmon-

phonon propagating in the QW plane real, we consider

the propagation of the plasmon-phonon in
”
ideal medium“.

In this case, we artificially add a addition source to the QW

to compensate for the absorption (gain) of the plasmon-

phonon in the QW. We assume that the two-dimensional

polarizability of this source is purely imaginary and opposite

in sign to the imaginary part of the QW polarizability, i. e.

χsourceQW = −i Im
[

χtot(ω, q)
]

. In addition, we introduce a

source that compensates for the wave absorption in the

barrier as well by adding an addition source to the barrier.

Its bulk polarizability is also purely imaginary and opposite

in sign to the imaginary part of the barrier polarizability,

i. e χsourceB = −i Im
[

κB(ω)4π
]

. Taking into account these

statements, the total polarizability of the QW is determined

by the expression χ id.med
tot (ω, q) = Re

[

χtot(ω, q)
]

, and the

permittivity of the barriers is κ id.med
B (ω) = Re

[

κB(ω)
]

. The

dispersion equation for plasmon-phonons in a structure with

one QW in
”
ideal medium“ has the following form

1 + 2π
Re

[

χtot(ω, q)
]

Re
[

κB(ω)
] Q = 0 (3)

where

Q2 = q2 − ω2

c2
Re

[

κB(ω)
]

.

The question arises as to how fair this approximation is. To

analyze the accuracy of this approximation, we can compare

the solutions obtained from equation (3) and the exact

solutions of equation (3) obtained in the absence of spatial

dispersion of polarizability. These solutions agree well in

the case when Re [q] > Im [q]. Solutions of the dispersion

equation (3) for high-frequency plasmon-phonon modes in

the considered structures are given in Fig. 2 at two effective

temperatures of non-equilibrium carriers. When calculating

the plasmon-phonon spectra, we neglected the equilibrium

concentration of electrons and holes in the bands and

assumed the concentration of non-equilibrium electrons to

be equal to the concentration of non-equilibrium holes.

The concentration of non-equilibrium carriers used in the

calculation of the plasmon-phonon spectra is slightly higher

than the threshold concentration (i. e., such concentrations

were chosen whose decrease by 1010 cm−2 would lead to

no gain).
It can be seen from Fig. 2, that QW width increase

from 5 to 5.3 nm leads to a decrease in the effective band

gap width Egeff(q). A decrease in Egeff(q) leads to a

decrease in the threshold concentration of non-equilibrium

carriers. Although the plasmon-phonon phase velocity

(νph = ω/q) becomes lower with the decreasing carrier

concentration, the intersection with the Egeff(q) dependence
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Figure 3. Plasmon-phonon gain spectra calculated for two effective temperatures of non-equilibrium carriers in structures with QW

widths of 5 and 5.3 nm: a — corresponds to Teff = 4.2K, b —corresponds to Teff = 77K.

occurs at smaller plasmon-phonon wave vectors (red curve

in Fig. 2). A decrease in the threshold concentration of non-

equilibrium carriers leads to the fact that the generation of

plasmon-phonons with lower energies and wave vectors at

lower concentrations of non-equilibrium carriers is possible

in a narrower band gap QW. Due to the fact that the high-

frequency plasmon-phonon branch of the spectrum begins

at a finite frequency, plasmon-phonons with small wave

vectors have a greater phase velocity (i. e., the refraction

index of these waves is smaller than the refraction index of

waves that can be amplified in a wide-band structure).

One of the problems complicating the detection of

plasmon-phonons is the emission of this wave from the

structure. The reflectance of these waves from the edge of

the structure is large because of the large effective refraction

index of the plasmon-phonon. The reflectance of plasmon-

phonons from the edge of the structure rises with the

effective refraction index growth.

In the structure with a 5 nm wide QW, the effective

refraction index at the point of intersection of the plasmon

dispersion curve with Egeff(q) is 395, and in the structure

with a QW with a width of 5.3 nm is 64. Thus, the plasmons

reflectance from the narrow-gap structure boundary with air

is smaller than the same value for the wide-band structure.

One of the ways to lead plasmon-phonons out of the

structure is to lead them out using a lattice created on the

surface of the structure parallel to the QW plane. The lattice

is necessary to fulfil the law of conservation of momentum

plasmon emission [18]. The period of such a lattice is

proportional to 2π/q. To emit plasmon-phonons with small

wave vectors, a lattice with a large period is required. For

example, to emit plasmon-phonons from a structure with a

5.3 nm wide QW, a lattice with a period ∼ 0.6 µm is needed,

while to emit plasmon from a structure with a 5 nm wide

QW, a lattice with a period ∼ 0.06 µm is needed, which is

more difficult to realize.

2.2. Plasmon-phonon gain

The plasmon-phonon absorption coefficient is the ratio

of the difference between the absorbed and emitted power

densities during plasmon-phonon propagation in the struc-

ture to the plasmon-phonon energy flux per unit length.

Power absorption occurs due to Drude losses, phonon losses

in the QW and barriers, as a result of intersubband electron

transitions in the valence band, interband electron transitions

from the valence band to the conduction band, and Landau

damping (intraband absorption of plasmons by electrons).
The power release is due to electron transitions from the

conduction band to the valence band.

The total power density absorbed by the QW is equal to:

PQW (ω, q) = 2|E0|2ω Im
[

χtot(ω, q)
]

, (4)

where E0 is the magnitude of the electric field component

lying in the QW plane.

The power absorbed by a unit area of the barrier due to

phonon losses is equal to:

PB(ω) = 2|E0|2ω Im

[

κB(ω)

4πQ

(

1 + q2/Q2
)

]

. (5)

Using the expression for the Pointing vector, an expres-

sion for the plasmon-phonon energy flux in a structure with

a single QW can be obtained:

I(ω, q) =
ωq

2πQ3
Re

[

κB(ω)
]

|E0|2. (6)

Dividing by (6) the sum of (4) and (5), we obtain an

expression for the plasmon-phonon absorption coefficient:

α(ω, q)=
4πQ3

q Re
[

κB(ω)
] Im

[

χtot(ω, q)+
κB(ω)

4πQ

(

1+
q2

Q2

)]

.

(7)

In the frequency range where this value is negative, the

plasmon-phonon is amplified. It is more convenient to
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consider the value G(ω, q) = −α(ω, q), called the mode

gain.

The dependences of the gain on frequency calcu-

lated using formula (7) are shown in Fig. 3. The

concentrations of non-equilibrium carriers, at which the

plasmon-phonon mode gain spectra shown in Fig. 3 are

found, are slightly higher than the threshold ones and

equal to QW 5nm n = 1.74 · 1011 cm−2 at Teff = 4.2K

and n = 3.49 · 1011 cm−2 at Teff = 77K. For the struc-

ture with a 5.3 nm QW width, the concentrations are

n = 0.6 · 1011 cm−2 at Teff = 4.2K and n = 1.9 · 1011 cm−2

at Teff = 77K.

It can be seen from Fig. 3, when the effective band gap

width is reduced from 35 to 25meV, it becomes possible

to gain longer wavelength plasmon-phonons. In addition,

the threshold concentrations of non-equilibrium carriers

decrease significantly with increasing the width of the QW.

An increase in Teff leads to an increase in threshold

concentration. This can be explained by the fact that the

electron population of states above the Fermi quasi-levels

will increase as the effective temperature of non-equilibrium

carriers increases. Due to the non-parabolicity of the

electron spectrum, the density of electron states increases

with increasing electron energy in the conduction band and

decreases in the valence band. This will lead to a decrease

in the Fermi quasi-level difference with increasing Teff at a

fixed carrier concentration. Consequently, the number of

interband electron transitions contributing to the plasmon-

phonon enhancement will decrease. The same consequence

leads to a decrease in the population of electron states under

the Fermi quasi-levels with increasing effective temperature

of non-equilibrium carriers. In addition, an increase in the

effective temperature of non-equilibrium carriers will lead to

an increase in the Landau damping. This is explained by the

fact that at the temperature increase above the Fermi quasi-

level in the conduction band, there will be more electrons

able to participate in the process of intraband absorption

of plasmon-phonons. Therefore, the threshold concentration

increases with increasing temperature.

3. Conclusion

In paper, we have compared the plasmon-phonon charac-

teristics of high-frequency branch plasmons in heterostruc-

tures with quantum wells with band gap widths of 35 and

25meV grown on the plane (013). It is shown that a

reduction of the band gap width to 25meV leads to a

threefold decrease in the threshold concentration of non-

equilibrium carriers at the effective temperature of non-

equilibrium carriers at 4.2K and a twofold at 77K. High-

frequency branch plasmon-phonons with small wave vectors

have a smaller reflectance from the edge of the structure

compared to plasmon-phonons with large wave vectors. An

increase in the effective temperature of non-equilibrium

carriers leads to an increase in the threshold concentration.

Note that the spectrum of plasmon-phonons in the

considered structures is mainly determined by electrons,

since they have greater mobility compared to holes. The
electron spectra in the conduction band of the structures

grown on the (001) and (013) planes and having the same
band gap width differ slightly. Therefore, the conclusions

obtained in this paper about the optimal band gap width

∼ 25meV for plasmon-phonon generation are also valid for
structures grown on the plane (001).
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