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Control of magnetoelastic waves in structure containing thin

antiferromagnetic films on an elastic substrate
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In this work we present a model explaining the properties of magnetoelastic waves propagation in the

heterostructure containing an antiferromagnetic layer on a non-magnetic elastic substate. The dispersion

characteristic of magnetoelastic waves in such structure was obtained, and the effect of variation of the thickness of

the antiferromagnetic layer and the external magnetic field on the frequency of the magnetoelastic resonance on the

elastic structure was also studied. It was found that an increase in the magnetic field magnitude leads to the increase

with pressure of the magnetoelastic resonance frequency, and, on the contrary, with an increase in the thickness of

the AFM layer the magnitude of the magnetoelastic resonance frequency decreases. The results obtained can be

used to create devices for generating and processing signals in the gigahertz and terahertz frequency ranges
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1. Introduction

Recently the possibility is considered to expand the range

of operating frequencies for electronic devices through

application of new technologies and materials using achieve-

ments of spintronics and magnonics [1–3]. Within these

areas the spin transfer processes or magnetic moment are

researched in the structures containing magnetic materials.

Besides, it is proposed to use spin waves to build ele-

ment base of instruments for information processing and

storage [2,4].

In particular, antiferromagnetics (AFM) attract high

attention in connection with the possibility to develop high

speed devices for processing signals of terahertz (THZ)
range of frequencies [2,4,5]. In AFM-materials the superfast

spin dynamics is due to strong exchange interaction between

magnetic sublattices.

AFM may be divided into two classes, where magnetic

sublattices have compensated magnetic moments (full mag-

netization is equal to 0), and also materials with non-

compensated sublattices, namely, having low ferromag-

netism. For the first time AFM-materials with non-zero

full magnetization were described by Dzyaloshinski and

Moriya [6,7]. Ratio of fields of Dzyaloshinski−Moriya to

the exchange one determines the angle of skew between

magnetic sublattices and makes 0.2%. Dynamics of mag-

netizations of sublattices for AFM-materials with weak fer-

romagnetism is described using standard Landau−Lifshitz

equations. However, in virtue of low value of magnetization

vector |m̄| ≪ |l̄| and l̄2 = 1−m̄2 ≈ 1, where m̄ = M̄1+M̄2

2M0

and l̄ = M̄1−M̄2

2M0
, the system of sublattice magnetization

vector equations may be reduced to motion equation only

of the antiferromagnetic vector l̄ (Neel vector) [8–10].

Spin waves in AFM may exist in a wide range of

frequencies, from units of gigahertz to several dozens of

terahertz. Since AFM materials have low total magnetiza-

tion vector, this makes it possible to apply magnetic fields

of lower order for generation of spin waves. Such properties

make AFM good candidates for development of microwave

devices and potential applications for magnetic storage [11],
generators [12–14], waveguides [15] etc., since research in

this area is relevant [16–18].

The possibility to control properties of spin waves in AFM

with the help of elastic stresses [19,20] is also of interest.

So far, however, the question remains open on the impact of

mechanical deformations at frequency of antiferromagnetic

mode, having higher frequencies that ferromagnetic mode.

This article considers the properties of the propagating

magnetic elastic waves in the structure containing the

AFM layer placed on an elastic non-magnetic substrate.

A mathematical model is described for propagation of

related magnetic elastic waves in the structure of AFM-

film—elastic substrate; a numerical calculation is presented
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for the dispersion ratio of magnetic elastic waves with

specific selected materials of AFM and elastic substrate, and

also the questions are considered regarding the impact of the

external magnetic field and various thickness of AFM-film

with fixed pressure at the frequency of magnetic elastic

resonance.

2. Model

Let us consider the propagation of surface elastic Love

waves [21,22] in a heterostructure containing a thin layer on

an elastic substrate. Love waves are shear elastic waves. For

their existence it is necessary that the speed of transverse

acoustic waves in a layer is lower than in the substrate:

St1 < St2, (1)

where St1 — speed of body shear waves in a layer, St2 —
speed of body shear waves in a substrate.

Guided magnetic elastic waves may propagate in a

heterostructure containing a thin magnetic AFM layer on

an elastic substrate [23,24]. In Figure 1 there is such

structure of a thin AFM-layer 1 on an elastic non-magnetic

substrate 2. To transfer external deformations, one can

select a piezoelectric substrate and apply voltage through

electrodes. Then, whenever the electric field is applied,

mechanical stresses in the substrate will impact the magnetic

subsystem of the AFM-layer.

The paper used the equation for dynamics of Neel’s

vector l̄ [8,9,10]. In this case vector m̄ is determined by

vector l̄ and its derivative in time ∂ l̄/∂t . Equations for such
model may be produced directly from Lagrangian operator

using magnetic symmetry of AFM [9]. Lagrangian operator

variation produces closed equations for the Neel’s vector.

Using Lagrangian operator variation, the general equation

was produced [9]:

(

∂2

∂t2
−V 2

m∇2

)

l̄ × l̄ =2g(l̄H̄)
∂ l̄
∂t

− g2
{

lz (ly ēx −lx ēy )HD

+ 2blz (l̄ × ēz )M0He

}

+g2

(

l̄
∂(Fme + Fms)

∂L̄

)

He, (2)

where L̄ = M̄1−M̄2 = 2l̄M0 — antiferromagnetic vector,

Vm — phase speed of spin wave, g — gyromagnetic

ratio, b — heterogeneous exchange constant, HD —
Dzyaloshinski−Moriya field, He — exchange field, ēx ,y,z —
single vector along the corresponding axis, Fme — magnetic

elastic energy and Fms — induced magnetostriction energy.

Calculations are made in approximation of isotropy of elastic

and magnetic elastic properties of antiferromagnetic.

To account for induced magnetostriction, this paper used

a model that takes into account the impact of the external

elastic pressure [25]. If, for example, a substrate — is

piezoelectric, the electric field applied thereto causes elastic

stresses therein. Such stresses induce additional magnetic

anisotropy in the crystal plane. Since antiferromagnetic is

IrMn

z d=

z = 0
–

H P

z

x

y 1

2

–
l

LiNbO3

Figure 1. Geometry of thin AFM layer (IrMn) structure with

thickness of d = 6 µm on elastic substrate (LiNbO3).

subjected to deformations, energy of elastic stresses is added

to its full energy. Equation expressing dependence of energy

on the value of deformation and direction of spontaneous

magnetization is the following [25]:

Fms = −3

2
λσ

(

cos2(ϕ) − 1

3

)

, (3)

where λ — magnetostriction constant, the value of which

depends on the crystallographic direction; σ — normal

component of the mechanical stresses tensor; and ϕ —
angle between the vector of spontaneous magnetization and

direction of the stressed state axis.

Hooke’s law was used to describe the elastic wave

properties in the following form:

ρ
∂2ui

∂t2
=

∂σiκ

∂xκ

, (4)

where σiκ — tensor of mechanical stresses. Let us

find the solution for the longitudinal and transverse wave

numbers in the form of lx = exp[i(ky−ωt) + qz ] and for

ux = exp[i(ky−ωt) + κz ] motion equation, and we get the

following conditions:

κ1 =

[

ω2

S2
t1

− κ2
]

−1/2

, (5)

κ2 =

[

−ω2

S2
t2

+ κ2
]

−1/2

, (6)

q =

[ω4 + (k2 + κ2)(ω2S2
t + V 2

mS2
t −V 2

mS2
t − ωskS2

t )

−V 2
mk2 − ωmeωeω

2
tk ]

V 2
mω

2

[

1 +
S2

t
ω2 (k2 + κ2)

] ,

(7)

where k — wave number, St =
[

C44

ρ

]1/2
— transverse sound

velocity, ωme, ωe — magnetic elastic and elastic frequencies,

accordingly,

ωsk = [V 2
mk2 + ωH(ωH − ωD) + ωeωme]

1/2,
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ωtk = Stk . To find dispersion, let us use the harmonic form

of function

lx =
[

A sin(qz ) + B cos(qz )
]

exp[i(ky − ωt)]

for exponential attenuation of elastic waves in the substrate.

Produced forms of functions are added to the boundary

conditions. Boundary conditions consist in the conditions

of spin fixation at the boundary of the magnetic layer with

the substrate, equality of elastic stresses tensor components

to zero at the free boundary and equality of normal stresses

components between the layers. As a result, we get the

following equations

σ1 + 4bM2
0lx = 0, z = d; (8)

σ1 + 4bM2
0lx = σ2, z = 0; (9)

uz1 = uz2, z = 0; (10)

ly
∂lx

∂z
− lx

∂ly

∂z
= 0, z = d; (11)

ly
∂lx

∂z
− lx

∂ly

∂z
= 0, z = 0. (12)

To find dispersion dependence of magnetic elastic waves

in AFM heterostructure on an elastic substrate set by

expressions (8−12), it is necessary to find the solution for

the determinant of matrix 5× 5.

3. Numerical computation

For numerical computation we used the following param-

eters of IrMn layer and elastic substrate LiNbO3 :

d = 6µm, ρ1 = 15.6 g/cm3, ρ2 = 4.65 g/cm3,

C1
44 = 5.02 · 1011 dyn/cm3, C2

44 = 6.1 · 1011 dyn/cm3,

M0 = 970G, Dz = 1.01 · 10−9 Oe/cm3,

b = 7 · 108 erg/cm3, γ = 1.78 · 107 g/cm2

and HE = 1.4 · 103 Oe.
Numerically computed dispersion characteristic (8−12) is

given in Figure 2. For AFM the spectrum of purely spin

waves consists of two branches (low frequency and high

frequency). As a rule, the low frequency branch is in the

gigahertz range, and high-frequency one — in terahertz one.

Frequency of magnetic elastic resonance, as shown

in Figure 2, a, is equal to

ωGHz

2π
≈ 7.87GHz

for the lowest mode. In terahertz range (Figure 2, b) the

frequency of magnetic elastic resonance is

ωTHz

2π
≈ 0.7895THz.

Such accuracy of frequency ωTHz is caused by narrow

resonance in the terahertz branch.
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Figure 2. Dispersion characteristic of magnetic elastic waves in

the structure containing AFM on an elastic non-magnetic substrate

in the external magnetic field 190Oe: a) magnetic elastic slot in

GHz-range ωGHz, b) magnetic elastic slot in THz-range ωTHz .

Figures 3 and 4 show in blue — non-interacting spin

waves, red — non-interacting elastic Love waves, black —
solution for matrix determinant (8−12) and green —
solution with account of pressure.

Figure 3 shows dispersion dependence of magnetic elastic

waves at various pressures for the lower mode. As

external pressure increases, the frequency of magnetic

elastic resonance changes. Please note that resonance moves

to a longer-wave area.

Figure 4 presents dispersion characteristic of magnetic

elastic surface Love waves for a heterostructure containing

an antiferromagnetic layer on an elastic substrate, with

various pressure for the upper mode. By nature of pressure

impact at resonance properties it is possible to see that

increased pressure leads to wider spectrum and changes

resonance frequency. It is noticeable that nature of pressure

interaction at lower and upper modes differs. It is related to

the fact that in the terahertz area the resonance is narrower,

and to shift the resonance frequency to a longer-wave area,

higher pressure values are required.

In Figure 5, a it is shown that as external field in-

creases, the resonance frequency of surface spin waves

also increases. In case of zero magnetic field the value

of the resonance frequency must be proportionate to value√
ωEωA, where ωE — frequency of effective exchange field,
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Figure 3. Dispersion characteristic for the heterostructure

containing a layer of AFM on an elastic substrate in the external

field and at different external pressure in the gigahertz range. Thin

blue line — comparative curve for magnetic subsystem, red —
comparative curve for elastic Love waves.
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Figure 4. Dispersion characteristic for the heterostructure

containing a layer of AFM on an elastic substrate in the external

field and at different external pressure in the terahertz range. Thin

blue line — comparative curve for magnetic subsystem, red —
comparative curve for elastic Love waves.
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Figure 5. Dependence of resonance frequency on external conditions: a) on external field under pressure, and b) on thickness of

AFM-layer under pressure.

and ωA — frequency of anisotropy field. In Figure 5, b there

are results of resonance frequency change with change of

AFM layer thickness. It can be seen that the value of the

resonance magnetic elastic frequency reduces with the in-

creased thickness of the AFM layer. Therefore, by changing

the thickness of AFM-layer or the external static magnetic

field, it is possible to control the resonance frequency.

4. Conclusion

This paper considered propagation of the magnetic elastic

Love waves in a thin layer of antiferromagnetic on an

elastic substrate, when the film is exposed to external

pressure. The following materials were used for numerical

estimates: AFM-layer — IrMn and elastic substrate —
LiNbO3, and also dispersion characteristic of magnetic

elastic waves in such structure was obtained. It was

established that the frequency of the magnetic elastic

resonance of the first mode for structure IrMn—LiNbO3

makes 7.87GHz, resonance frequency in the terahertz

range becomes 0.79 THz, and under pressure the spectrum

widens in the terahertz area and in the gigahertz area —
frequency shift to a longer-wave area. As pressure is applied

to the AFM-structure, the internal frequency substantially

increases regarding oscillations of magnetic sublattices of

AFM ferromagnetic mode.

Study of the structures containing a thin AFM layer

expands the prospects of using and developing the magnetic

elastic sensors, magnetic media for information recording

and memory devices.
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