11,05

Магнитные и мёссбауэровские исследования нанокомпозитов состава карбидосталей, легированных хромом и никелем

© А.А. Чулкина, А.И. Ульянов, А.Л. Ульянов, В.Е. Порсев

Удмуртский федеральный исследовательский центр УрО РАН, Ижевск, Россия

E-mail: chulkina@udman.ru

Поступила в Редакцию 27 июля 2023 г. В окончательной редакции 27 июля 2023 г. Принята к публикации 5 августа 2023 г.

Методами мёссбауэровской спектроскопия и магнитных измерений, с привлечением данных рентгенофазового анализа, исследованы свойства сплавов $(Fe_{0.95-y}Cr_{0.05}Ni_y)_{83}C_{17}$ и $(Fe_{0.90-y}Cr_{0.10}Ni_y)_{83}C_{17}$, где y=0.05 и 0.10, полученных механосинтезом и последующими отжигами. В результате отжигов при 500°C формируются нанокомпозиты с близким фазовым составом (включения феррита находятся в окружении цементита и аустенита) и максимальными значениями коэрцитивной силы H_c . При этом H_c высокохромистых композитов превышает более чем в 2 раза H_c композитов низкохромистых (210—250 и 100 A/cm, соответственно). Мёссбауэровские исследования показали, что цементит высокохромистых сплавов при этом находится в парамагнитном, а низкохромистых — в ферромагнитном состоянии. Это обстоятельство определяет особенности перемагничивания близких к критическому размеру однодоменности включений феррита, что приводит к различным максимальным значениям H_c низко- и высокохромистых нанокомпозитов.

Ключевые слова: сплавы и соединения переходных металлов, механосинтез, наноструктурные материалы, фазовые переходы, намагниченность насыщения, коэрцитивная сила, мёссбауэровская спектроскопия.

DOI: 10.61011/FTT.2023.10.56333.160

1. Введение

В промышленности достаточно широко используются карбидостали, состоящие из связующей фазы и твердых карбидов с массовой долей от 20 до 70%, которые по прочностным характеристикам занимают промежуточное положение между сталями и твердыми сплавами. Карбидостали получают чаще всего методом порошковой металлургии, при этом размер зерен твердой фазы находится обычно в микрометровой области [1]. По современным представлениям максимальные прочностные характеристики имеют сплавы, размер зерен которых находится в нанометровом диапазоне [2]. Таким требованиям отвечают сплавы, приготовленные методом механического синтеза (МС) в шаровых планетарных мельницах [3]. Механосинтезированные сплавы являются удобным модельным материалом для исследования закономерностей изменения наноструктурного состояния сплавов в процессах термических обработок, легирования, облучения и других видов физических воздействий. Известно [4], что в процессе механосинтеза железоуглеродистых сплавов обычно формируется аморфная фаза, а также кристаллические наноразмерные фазы, которые находятся в неравновесном напряженнодеформированном состоянии с сильными искажениями их кристаллических решеток. При отжигах происходит кристаллизация аморфной фазы с образованием цементита и других карбидов, снятие искажений кристаллических решеток фаз, рост размеров их нанозерен. Для улучшения эксплуатационных и технологических

характеристик сплавы легируют. Фазовый состав и структурное состояние фаз после МС и отжигов определяют чаще всего методом рентгеновской дифракции. Дополнительную информацию о магнитном состоянии фаз механосинтезированных сплавов, их легировании могут дать мёссбауэровские исследования, а также измерение таких магнитных характеристик, как удельная намагниченность насыщения $\sigma_{\rm s}$, коэрцитивная сила $H_{\rm c}$, магнитная восприимчивость χ .

Впервые магнитные свойства одной из основных фаз механосинтезированных карбидосталей — цементита Fe₃C — были исследованы в работе [5]. Оказалось, что коэрцитивная сила цементита изменяется в пределах от 80 (в состоянии после МС) до 240 А/ст (после отжига при 500°C). Отжиги при более высоких температурах снова уменьшают $H_{\rm c}$ цементита. Низкое значение $H_{\rm c}$ цементита после МС обусловлено, во-первых, тем, что в сильно искаженной кристаллической решетке цементита атомы углерода могут находиться не только в призматических, но и в неравновесных октаэдрических позициях его решетки. Это вызывает значительное снижение константы магнитокристаллической анизотропии К цементита [6] и, следовательно, обуславливает низкое значение его $H_{\rm c}$. Способствовать этому могут также низкие значения коэрцитивной силы аморфной фазы и феррита, которые обычно присутствуют в обсуждаемых сплавах по окончании MC. Отжиг при 500°C снимает искажения решетки, что обеспечивает переход атомов углерода в равновесные призматические позиции, восстанавливая, таким образом, константу K цементита. Высокое значе-

13 1825

ние константы K и достаточно высокая плотность линейных дефектов кристаллического строения приводят к максимальным значением $H_{\rm c}$ цементита после отжига при $500^{\circ}{\rm C}$. Отжиги при температуре $T_{\rm ann} > 500^{\circ}{\rm C}$ из-за интенсивного снижения плотности дефектов кристаллического строения снова понижают $H_{\rm c}$ цементита.

Легирование оказывает влияние не только на прочностные, но и на магнитные характеристики отдельных фаз и сплавов в целом. Например, легирование хромом снижает коэрцитивную силу H_c , удельную намагниченность насыщения σ_s и температуру Кюри T_C цементита [7,8]. Легирование никелем также снижает H_c и σ_s , но повышает T_C цементита [9,10].

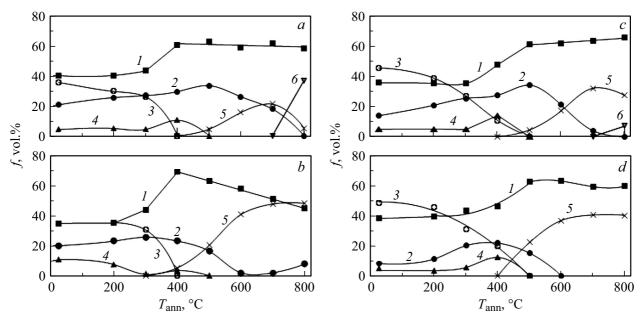
В [11] методом МС были получены легированные хромом и никелем карбидостали состава (Fe, Cr, Ni)₈₃C₁₇. Показано, что после отжигов карбидостали представляли собой композиты, состоящие из твердой фазы — наноразмерного цементита и связующей фазы — аустенита. В данной работе приводятся результаты исследования магнитных свойств композитов, полученных в [11]. В частности, обсуждается влияние структурного состояния феррита и магнитного состояния цементита на формирование магнитных характеристик исследуемых сплавов.

2. Образцы и методы исследования

Методом МС были изготовлены образцы нанокомпозитов состава карбидосталей. Для этого смесь порошков карбонильного железа чистотой 99.98%, никеля и хрома чистотой 99.9%, графита чистотой 99.99%, взятых в соотношениях $(Fe_{0.95-y}Cr_{0.05}Ni_y)_{83}C_{17}$ и $(Fe_{0.90-y}Cr_{0.10}Ni_y)_{83}C_{17}$, где y=0.05 и 0.10, подвергалась высокоэнергетическому воздействию в течение 16 h в атмосфере аргона в шаровой планетарной мельнице "Pulverisette-7". Удельная мощность мельницы составляла 2.0 W/g. Скорость вращения платформы 74 rad/c. Мелющие шары и сосуды были изготовлены из стали ШХ15. Отношение массы мелющих шаров диаметром 8 mm к массе загружаемого порошка 7 : 1. Привес массы порошка за счет намола железа с поверхности шаров и стенок сосудов — не более 1-3%. Средний размер частиц порошка композитов после механосинтеза составил $\approx 5 \,\mu \text{m}$.

Отжиг порошковых образцов проводили в атмосфере аргона в течение 1 h на установке по измерению температурной зависимости магнитной восприимчивости. Амплитуда зондирующего переменного поля составляла 1.25 A/cm, частота — 120 Hz. Скорость нагрева и охлаждения образцов — 30°C/min.

Для изучения состояния и свойств полученных композитов использовали рентгенофазовый анализ, мёссбауэровскую спектроскопию и магнитные измерения. Рентгеновский фазовый анализ проводили при комнатной температуре на дифрактометре Rigaku Miniflex 600 в геометрии Брэгга-Брентано в Со-К α излучении. Мёссбауэ-


ровские спектры получали при комнатной температуре в режиме постоянных ускорений источника γ -излучения 57 Co(Rh) на спектрометре SM2201DR. Дискретную обработку спектров проводили методом наименьших квадратов по алгоритму Левенберга—Марквардта. Математическую обработку спектров в непрерывном представлении с целью восстановления функции распределения сверхтонких магнитных полей выполняли в одноядерной модели с использованием обобщенного регуляризованного алгоритма решения обратных некорректных задач [12]. Магнитные характеристики образцов измеряли на вибрационном магнитометре с максимальным намагничивающим полем 13 kA/cm.

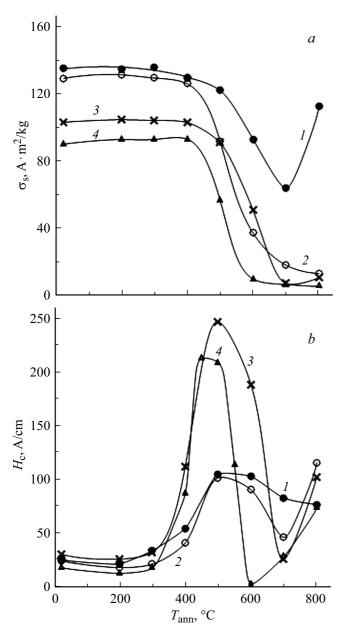
3. Результаты и их обсуждение

Фазовый состав низкохромистых $(Fe_{0.95-y}Cr_{0.05}Ni_y)_{83}C_{17}$ высокохромистых И $(Fe_{0.90-y}Cr_{0.10}Ni_y)_{83}C_{17}$ сплавов, где y=0.05 и 0.10, после механосинтеза и последующих отжигов, показан на рис. 1. После МС сплавы состоят из аморфной фазы (35-50 vol.%) и наноразмерных неравновесных фаз: легированного, в основном Сг, цементита и легированного, в основном Ni, феррита, а также небольшого количества χ -карбида (Fe,Cr,Ni) $_5$ C $_2$ [11]. В процессе отжигов до 400-500°C за счет большого запаса внутренней энергии МС-сплавов происходят интенсивные фазовые превращения: аморфная фаза (кривые 3) кристаллизуется с образованием цементита (кривые 1), χ -карбида (кривые 4) и феррита (кривые 2), у-карбид превращается в цементит. Отжиги при более высоких температурах приводят к образованию аустенита (кривые 5). В результате отжигов при температуре $T_{\rm ann} \geq 500^{\circ}{
m C}$ формируются композиты, состоящие в основном из цементита, феррита и аустенита. В низконикелевых сплавах (Fe_{0.90}Cr_{0.05}Ni_{0.05})₈₃C₁₇ (Fe_{0.85}Cr_{0.10}Ni_{0.05})₈₃C₁₇ в процессе охлаждения после отжига при 800°C образуется до 20 и 8 vol.% мартенсита (кривые 6, рис. 1a, 1c), соответственно. В высоконикелевых сплавах после отжига 700-800°C может вновь появиться феррит из-за распада цементита.

Фазовые и структурные изменения, происходящие при МС и последующих отжигах, определяют магнитные свойства нанокомпозитов. Из рис. 2, a следует, что после МС значения удельной намагниченности насыщения $\sigma_{\rm s}$ высокохромистых сплавов (кривые 3,4) значительно ниже, чем сплавов низкохромистых (кривые 1,2). Это обусловлено тем обстоятельством, что в высокохромистых сплавах, по сравнению с низкохромистыми, содержание высокомагнитного феррита значительно меньше (рис. 1). Еще одной причиной пониженных значений $\sigma_{\rm s}$ высокохромистых сплавов является более интенсивное легирование их цементита хромом [7,13].

После отжигов до 400° С удельная намагниченность сплавов, несмотря на происходящие фазовые изменения (рис. 1), остается практически неизменной (рис. 2, *a*).

Рис. 1. Зависимость от температуры отжига $T_{\rm ann}$ фазового состава f сплавов: a — $({\rm Fe_{0.90}Cr_{0.05}Ni_{0.05}})_{83}{\rm C}_{17};$ b — $({\rm Fe_{0.85}Cr_{0.05}Ni_{0.10}})_{83}{\rm C}_{17};$ c — $({\rm Fe_{0.85}Cr_{0.10}Ni_{0.05}})_{83}{\rm C}_{17};$ d — $({\rm Fe_{0.80}Cr_{0.10}Ni_{0.10}})_{83}{\rm C}_{17}.$ Фазы: I — цементит, 2 — феррит (α -Fe), 3 — аморфная фаза, 4 — χ -карбид, 5 — аустенит, 6 — мартенсит.


По-видимому, в этом интервале температур отжигов уменьшение магнитного момента одних фаз, например, исчезновение аморфной фазы, компенсируется возрастанием магнитных моментов других фаз. Значительное понижение $\sigma_{\rm s}$ сплавов наблюдается после отжигов при $T_{\rm ann} > 500^{\circ}{\rm C}$, когда начинается интенсивное перераспределение легирующих элементов (Cr и Ni), находящихся в большом количестве в сегрегациях по межзеренным границам фаз. В частности, уменьшение $\sigma_{\rm s}$ композитов в интервале $T_{\rm ann}$ от 400-500 до 700°C обусловлено в основном активным легированием цементита атомами Cr, а также появлением и последующим ростом объема парамагнитного аустенита (рис. 1, кривые 5). После отжигов при 700-800°C все композиты, за исключением $(Fe_{0.90}Cr_{0.05}Ni_{0.05})_{83}C_{17}$ становятся слабомагнитными (рис. 2, a). Высокое значение σ_s композита $(Fe_{0.90}Cr_{0.05}Ni_{0.05})_{83}C_{17}$ обусловлено формированием высокомагнитного мартенсита в процессе охлаждения этого сплава после отжига при 800°C.

Фазовые и структурные изменения, происходящие при МС и отжигах, определяют коэрцитивную силу $H_{\rm c}$ исследуемых нанокомпозитов (рис. 2, b). После механосинтеза $H_{\rm c}$ сплавов составляет 20—25 A/cm, что значительно ниже $H_{\rm c}$ механосинтезированного цементита ${\rm Fe}_3{\rm C}$ [5]. Это объясняется, во-первых, легированием фаз композитов хромом и никелем, которые понижают их $H_{\rm c}$ [7,9]. Во-вторых, достаточно высоким содержанием в них (от 8 до 40 vol.%) магнитомягких аморфной и ферритной фаз (рис. 1). Зависимости коэрцитивной силы от температуры отжига $H_{\rm c}(T_{\rm ann})$ исследованных сплавов представляют собой кривые с максимумом в области $T_{\rm ann} \approx 500^{\circ}{\rm C}$ (рис. 2, b). Обращают на себя внимание

высокие максимальные значения $H_{\rm c}$ высокохромистых композитов (кривые 3,4) по отношению к композитам низкохромистым (кривые 1,2), хотя их фазовый состав после отжига при $500^{\circ}{\rm C}$ примерно одинаков (сравнить содержание фаз в сплавах, приведенных на рис. 1,a,c и 1,b,d). Для прояснения этой ситуации необходима информация о магнитном состоянии фаз исследуемых композитов, которая была получена из мёссбауэровских измерений.

Рассмотрим сплавы с повышенным содержанием хрома. На рис. 3, a приведены мёссбауэровский спектр и функция P(H) отожженного при 500° С высокохромистого нанокомпозита $(Fe_{0.80}Cr_{0.10}Ni_{0.10})_{83}C_{17}$. Функция P(H) спектра отражает распределение сверхтонких магнитных полей на ядрах изотопов железа от атомов ближайшего окружения. Анализ этой функции показал, что $\approx 37\%$ от всех атомов Fe находится в ферромагнитных и $\approx 63\%$ в парамагнитных фазах.

Обработка мёссбауэровских спектров в дискретном представлении позволяет получить более подробную информацию о магнитном состоянии отдельных фаз композитов. Результаты такой обработки обсуждаемого сплава приведены в табл. 1, a (верхняя строка). Некоторая неопределенность возникла по распознаванию компоненты 3 (рис. 3,a) с широкими линиями и средним сверхтонким магнитным полем $\langle H \rangle \approx 118$ kOe, в которой находится $\approx 7\%$ атомов Fe. Из сравнения результатов рентгенофазового анализа по определению объемного содержания аустенита в сплаве (≈ 22 vol.%, рис. 1,d), данных мёссбауэровской спектроскопии по содержанию атомов Fe в парамагнитном аустените ($\approx 4\%$) и с учетом [14] следует, что компоненту 3 необхо-

Рис. 2. Зависимость от температуры отжига $T_{\rm ann}$: a — удельной намагниченности насыщения σ_s и b — коэрцитивной силы H_c сплавов: I — $({\rm Fe_{0.90}Cr_{0.05}Ni_{0.05}})_{83}{\rm C_{17}}$; 2 — $({\rm Fe_{0.85}Cr_{0.05}Ni_{0.10}})_{83}{\rm C_{17}}$; 3 — $({\rm Fe_{0.85}Cr_{0.10}Ni_{0.05}})_{83}{\rm C_{17}}$; 4 — $({\rm Fe_{0.80}Cr_{0.10}Ni_{0.10}})_{83}{\rm C_{17}}$.

димо отнести к легированному Ni ферромагнитному аустениту.

Аналогичная картина по магнитному состоянию фаз, за исключением аустенита, наблюдается и для образца ($Fe_{0.85}Cr_{0.10}Ni_{0.05}$) $_{83}C_{17}$, отожженного при $500^{\circ}C$ (табл. 1,a, нижняя строка). Из рис. 3,b (слева) можно сделать вывод об отсутствии в спектре этого композита парамагнитной составляющей аустенита. Следовательно, весь сформировавшийся в сплаве аустенит (рис. 1,c, кривая 5) должен быть ферромагнитным. Для доказательства этого нами был проведен вычет из спек-

тра сплава составляющей от феррита. На полученном спектре (см. рис. 4) вблизи основания парамагнитного дублета отчетливо видны уширенные линии секстета. Это свидетельствует о нахождении в спектре магниторасщепленной компоненты со средним сверхтонким магнитным полем $\langle H \rangle = 112\,\mathrm{kOe}$, которую идентифицируем как ферромагнитный аустенит.

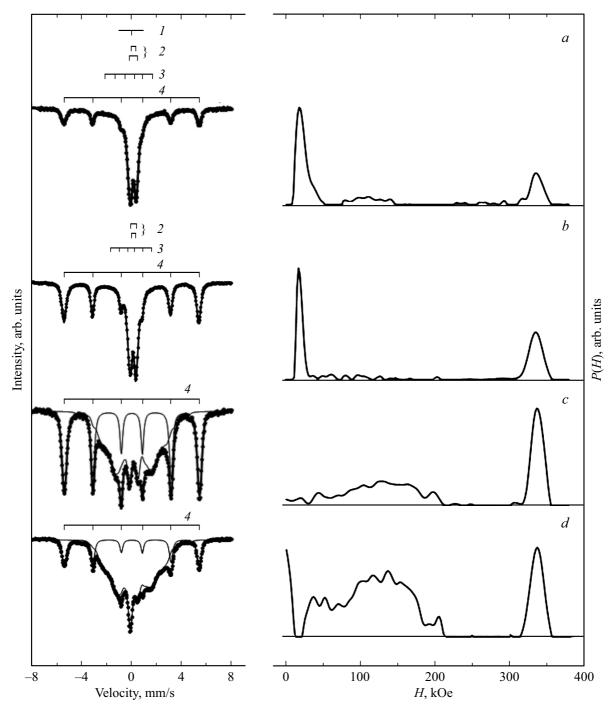
Наличие в мёссбауэровских спектрах высокохромистых сплавов, отожженных при 500° С, магниторасщепленных компонент аустенита со средним сверхтонким магнитным полем $\langle H \rangle \approx 110-120\,\mathrm{kOe}$, свидетельствует о невысокой намагниченности насыщения этой фазы. Коэрцитивная сила такого аустенита близка к $H_{\rm c}$ феррита. Таким образом, обсуждаемые композиты, в основном, содержат феррит и парамагнитные фазы (цементит + аустенит). Также имеется небольшое количество ферромагнитного аустенита с невысокой намагниченностью насыщения.

Феррит в обычных условиях является магнитомягкой фазой с H_c не более 5–10 A/cm [15]. Поэтому наблюдаемые на опыте высокие максимальные значения $H_{\rm c} \approx 210 - 240 \,{\rm A/cm}$ (рис. 2, b, кривые 3, 4) высокохромистых композитов можно объяснить, если предположить, что, во-первых, размеры ферромагнитных включений феррита после отжига при 500°C близки к критическому размеру их однодоменности d_{cr} . Так согласно [16], критический размер $d_{\rm cr}$ однодоменности частиц lpha-Fe составляет (21 ± 3) nm, при этом их $H_c > 500$ A/cm. Отклонение средних размеров частиц железа от значения $d_{\rm cr}$ в ту или другую сторону существенно понижает их $H_{\rm c}$. В случае легирования частиц железа никелем их $d_{\rm cr}$ может иметь более высокие значения, поскольку для никеля $d_{\rm cr} \approx (72 \pm 5)\,{\rm nm}$ [16]. Во-вторых, включения феррита должны быть удалены друг от друга или в магнитном отношении изолированы, например, прослойками парамагнитных фаз. Обсудим выполнение этих предположений для высокохромистых композитов.

Для нанокристаллических материалов средний размер областей когерентного рассеяния $\langle D \rangle$, определяемый рентгеновской дифракцией, близок к размеру его зерен. На рис. 5 (кривая I) представлена зависимость $\langle D \rangle$ феррита высокохромистого сплава (Fe_{0.80}Cr_{0.10}Ni_{0.10})₈₃C₁₇ от температуры отжига. Видно, что после отжига сплава при 500°C для легированного Ni феррита $\langle D \rangle \approx 60$ nm, что, по-видимому, близко к критическому размеру его однодоменности $d_{\rm cr}$.

Известно [17], что формирование наноструктурного состояния материалов сопровождается образованием значительной доли большеугловых межзеренных границ. Наноструктурное состояние исходных компонент (порошки α -Fe, Cr, Ni, графита) обсуждаемых сплавов реализуется практически на начальном этапе механосинтеза. Далее происходит проникновение атомов углерода, а затем и атомов легирующих элементов по границам зерен наноструктурного α -Fe и их адсорбирование на межзеренных границах с образованием сегрегаций. В результате в интерфейсах, содержащих границу и

приграничные искаженные зоны, образуется аморфная Fe-Cr-Ni-C фаза [18]. В процессе механосинтеза некоторые участки аморфной фазы, которые достигают состава (Fe, Cr, Ni) $_{75}$ C $_{25}$, кристаллизуются с образованием цементита. Кристаллизация аморфной фазы, оставшейся после завершения механосинтеза, происходит при отжигах с образованием легированного в основном хромом цементита и легированного в основном Ni феррита. Никель может входить в состав цементита, но в очень ограниченном количестве [9]. Никель, который не смог раствориться в феррите, находится в интерфейсной зоне зерен α -Fe (феррита), в том числе в виде сегрегаций, и участвует в формировании аустенита при отжигах. В результате отжига высокохромистых сплавов при температуре 500°C на поверхности некоторых зерен феррита, около которых сконцентрировано достаточное количество атомов никеля, формируется аустенит. В сплаве с пониженным содержанием никеля этот аустенит ферромагнитный, с небольшой удельной намагниченностью насыщения (слабомагнитный). В сплаве с высоким содержанием никеля присутствует как слабомагнитный, так и парамагнитный аустенит. Все зерна феррита, как с наличием аустенита на их поверхности, так и без него, окружены парамагнитным цементитом. Основной вклад в формирование высоких значений коэрцитивной силы высокохромистых сплавов, отожженных при 500°C, вносит перемагничивание однодоменных включений феррита (без присутствия ферромагнитного аустенита), которые находятся в окружении парамагнитных фаз. Это перемагничивание происходит путем необратимого когерентного вращения намагниченности [15]. При этом $H_{\rm c}$ ферритных включений становится максимальной. Между включениями феррита и слабомагнитным аустенитом, скорее всего, будет действовать обменное взаимодействие, которое внесет свой вклад в формирование коэрцитивной силы композита, уменьшая ее величину. Однако решающего значения этот вклад нести не будет. Повышение содержания ферромагнитного аустенита в высоконикелевом сплаве, по сравнению с низконикелевым (согласно мёссбауэровским данным, 7 и 2% атомов Fe содержатся в таких сплавах, соответственно), не приводит к существенному изменению величины H_c сплавов, отожженных при $T_{ann} = 500^{\circ}$ С. Таким образом, совместное действие механизмов перемагничивания путем необратимого когерентного вращения намагниченности однодоменных включений феррита и некогерентного перемагничивания находящихся в обменном взаимодействии включений феррита и ферромагнитного аустенита и обеспечивает высокое значение коэрцитивной силы высокохромистых композитов, равное 210-240 A/cm (рис. 2, b, кривые 3, 4).

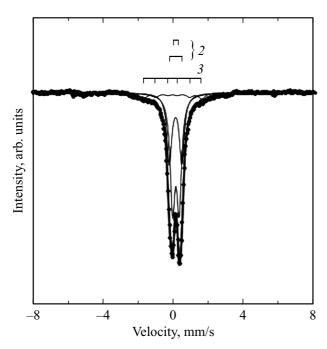

Коэрцитивная сила высокохромистых композитов после отжигов в интервале температур от 500 до $600-700^{\circ}\mathrm{C}$ существенно понижается (рис. 2, b, кривые 3, 4). Как следует из рис. 1, c и 1, d, объем аустенита в этом интервале T_{ann} возрастает (кривые 5), а содержание феррита (кривая 2) и средний размер его включений

(кривая I на рис. 5) уменьшается. Это приводит к постепенному переходу частиц феррита в суперпарамагнитное состояние, что вызывает резкое снижения $H_{\rm c}$ феррита и, следовательно, коэрцитивной силы образцов. Таким образом, коэрцитивная сила высокохромистых композитов в интервале $T_{\rm ann}$ от 500—600 до 700°C определяется, в основном, средним размером включений феррита [15], находящихся в окружении парамагнитных фаз.

Другая ситуация в формировании максимальных значений $H_{\rm c}$ складывается для низкохромистых композитов. На рис. 3, c и 3, d представлены мёссбауэровские спектры и функции P(H) композитов (Fe_{0.90}Cr_{0.05}Ni_{0.05})₈₃C₁₇ и $(Fe_{0.85}Cr_{0.05}Ni_{0.10})_{83}C_{17}$, отожженных при 500°C. Вид спектров указывает на присутствие в композитах нескольких ферромагнитных фаз. Из анализа функции P(H) сплава (Fe_{0.90}Cr_{0.05}Ni_{0.05})₈₃C₁₇ следует, что pprox 41% от всех атомов Fe композита содержится в легированном в основном никелем феррите, о чем свидетельствует пик функции P(H) в поле $H \approx 337 \, \text{kOe}$. Около 56% от всех атомов Fe содержится в легированном в основном хромом ферромагнитном цементите, распределение функции P(H) которого находится в интервале полей $H \approx (50-210)$ kOe. Остальные атомы Fe (около 3%) входят в состав парамагнитного аустенита (небольшое значение его функции P(H) наблюдается в поле H = 0 kOe (рис. 3, c)).

Фазы композита с повышенным содержанием никеля $(Fe_{0.85}Cr_{0.05}Ni_{0.10})_{83}C_{17}$ после подобной термообработки имеют, за исключением аустенита, аналогичное магнитное состояние (рис. 3, d). Аустенит, содержание которого в этом композите составляет около 20 vol.% (рис. 1, b), находится частично в парамагнитном, а частично в ферромагнитном состоянии. Анализ функции P(H)композита показал, что количество атомов Fe в парамагнитном аустените составляет $\approx 7\%$ (рис. 3, d, распределение функции P(H) в поле $H=0\,{\rm kOe})$. Остальные атомы Fe аустенита находятся в его ферромагнитной части. При этом функция P(H) ферромагнитного аустенита в интервале полей от 50 до 210 kOe, перекрывается с функцией P(H) ферромагнитного цементита (рис. 3, d). На рис. 3, c и 3, d (слева) также приведены составляющие феррита и компоненты с широким распределением сверхтонких магнитных полей, полученные в результате восстановления из спектра функции P(H). Таким образом, низкохромистые композиты после отжига при 500°C состоят в основном из смеси двух ферромагнитных фаз — феррита и цементита, которые находятся, скорее всего, в условиях обменных взаимодействий.

Рассмотрим более подробно композит $(Fe_{0.85}Cr_{0.05}Ni_{0.10})_{83}C_{17}$, в котором содержится 16 vol.% феррита и 63 vol.% ферромагнитного цементита (рис. 1, b). Средний размер зерен феррита и цементита этого композита после отжига при 500° C по рентгеновским данным составляют ≈ 48 (рис. 5, кривая 2) и 45 nm соответственно. При этом средний размер зерен феррита близок, скорее всего, к его однодоменному состоянию.


Рис. 3. Мёссбауэровские спектры (слева) и функции распределения P(H) (справа) механосинтезированных и отожженных при 500° С сплавов: a — $(Fe_{0.80}Cr_{0.10}Ni_{0.10})_{83}C_{17}$; b — $(Fe_{0.85}Cr_{0.10}Ni_{0.05})_{83}C_{17}$; c — $(Fe_{0.90}Cr_{0.05}Ni_{0.05})_{83}C_{17}$; d — $(Fe_{0.85}Cr_{0.05}Ni_{0.10})_{83}C_{17}$. Компоненты: I — парамагнитный аустенит, 2 — парамагнитный цементит, 3 — ферромагнитный аустенит, 4 — феррит.

Ширина доменных стенок цементита по [6] составляет $\delta \approx 6$ nm (для легированного Cr цементита δ может быть несколько выше). Это означает, что цементит композита находится в многодоменном состоянии. Известно, что между ферромагнитными фазами, находящимися в непосредственном контакте, происходят обменные взаимодействия. В частности, обменные взаимодействия с соседними ферромагнитными фазами приводят к

неоднородному распределению (изгибному, вихревому, веерному и др.) намагниченности в однодоменных ферромагнитных частицах. Перемагничивание таких частиц в процессе измерения коэрцитивной силы осуществляется некогерентным вращением намагниченности и в более низких, по сравнению с когерентным вращением, магнитных полях [19]. Поэтому однодоменные включения феррита низкохромистых композитов,

Таблица 1. (Мёссбауэровские параметры компонент спектров композитов ($Fe_{100-XY}Cr_XNi_Y)_{83}C_{17}$ при различных температурах отжига, полученные в результате обработки в дискретном представлении: (IS — изомерный сдвиг, QS — квадрупольное расщепление, $\Gamma_{1,6}$ — ширина I и 6 линии, S — доля атомов железа в фазе, $\langle H \rangle$ — среднее сверхтонкое магнитное поле на ядрах ^{57}Fe)

Состав композита (X; Y)	Парамагнитные фазы					Ферромагнитные фазы				
	Аустенит		Цементит			Феррит		Аустенит/цементит*		
			Дублет1/Дублет2			Ферри	.1	Аустенит/цементит		
	IS, mm/s	S,%	IS, mm/s	QS, mm/s	S, %	$\langle H \rangle$, kOe	S,%	$\langle H \rangle$, kOe	$\Gamma_{1,6}$, mm/s	S, %
Табл. 1, <i>a.</i> $T_{\rm ann}=500^{\circ}{ m C}$										
0.10; 0.10	-0.14	4	0.12/0.16	0.61/0.36	59	337	30	118	0.44	7
0.10; 0.05		_	0.13/0.15	0.82/0.42	51	338	47	112	0.44	2
Табл. 1, $b.~T_{ann} = 800^{\circ}\mathrm{C}$										
0.10; 0.10	-0.14	31	0.18/0.19	0.49/0.22	64	341	1	114*	0.32*	4*
0.05; 0.10	-0.13	37	0.20/0.17	0.49/0.30	42	339	18	88*	0.41*	3*

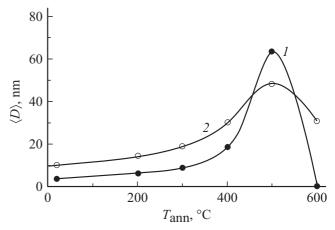
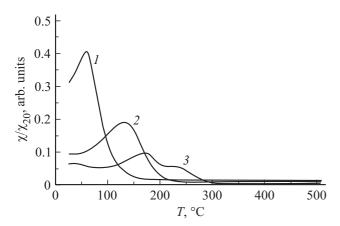


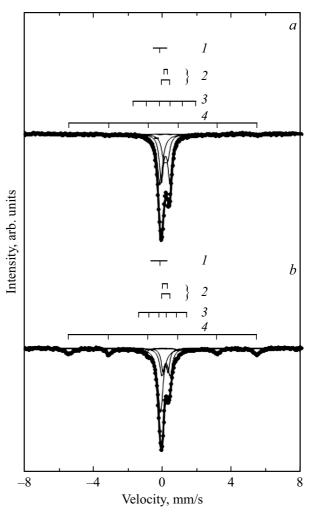
Рис. 4. Спектр Мёссбауэра механосинтезированного и отожженного при 500° С сплава ($Fe_{0.85}Cr_{0.10}Ni_{0.05})_{83}C_{17}$ с учетом вычета составляющей спектра от феррита. Компоненты: 2 — парамагнитный цементит; 3 — ферромагнитный аустенит. Обозначения как на рис. 3, b.


отожженных при 500° С (рис. 5, кривая 2), в процессе измерения $H_{\rm c}$ перемагничиваются некогерентным вращением в поле коэрцитивной силы ферромагнитного цементита. В результате $H_{\rm c}$ низкохромистых композитов будет в основном определяться коэрцитивностью цементита. Величина $H_{\rm c}$ цементита в этом случае определяется двумя факторами. Во-первых. структурным состоянием цементита [6]. Во-вторых, взаимодействием

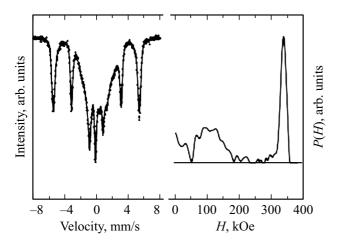
(пинингом) доменных стенок цементита с различного рода дефектами кристаллического строения.

Оценим возможное значение коэрцитивной силы цементита в обсуждаемых низкохромистых композитах по данным работы [7], в которой была измерена $H_{\rm c}$ механосинтезированных сплавов состава цементита (${\rm Fe_{0.95}Cr_{0.05}}_{7.5}{\rm C}_{2.5}$ и (${\rm Fe_{0.93}Cr_{0.07}}_{7.5}{\rm C}_{2.5}$. После отжига при $500^{\circ}{\rm C}$ содержание цементита в сплавах было близко к $100^{\circ}{\rm c}$, а их $H_{\rm c}$ составляла значения 186 и 147 А/ст, соответственно. Цементит исследуемых композитов легирован хромом, по нашим оценкам, несколько выше, чем в [7]. Кроме того, в цементите присутствуют и атомы Ni, что также понижает коэрцитивную силу цементита, легированного хромом и никелем [20]. Таким образом, коэрцитивная сила низкохромистых композитов после отжига при $500^{\circ}{\rm C}$ составляет $H_{\rm c}=100$ А/см (рис. 2,b, кривые 1,2), что находится в удовлетворительном со-

Рис. 5. Зависимость среднего размера областей когерентного рассеяния $\langle D \rangle$ феррита от температуры отжига $T_{\rm ann}$ сплавов: I — $({\rm Fe_{0.80}Cr_{0.10}Ni_{0.10}})_{83}{\rm C_{17}}$, 2 — $({\rm Fe_{0.05}Cr_{0.05}Ni_{0.10}})_{83}{\rm C_{17}}$.


Рис. 6. Зависимости относительной магнитной восприимчивости от температуры измерения $\chi/\chi_{20}(T)$, снятые при охлаждении сплава ($Fe_{0.80}Cr_{0.10}Ni_{0.10}$)₈₃ C_{17} после отжига при температуре T_{ann} : I = 600; 2 = 700; 3 = 800°C. Здесь $\chi = 700$ текущее значение восприимчивости; $\chi_{20} = 700$ значение восприимчивости при температуре 20°C, полученное в процессе нагрева от начальной температуры.

гласии с оценками $H_{\rm c}$ цементита, легированного Cr и Ni по данным работ [7,20]. При этом зависимость $H_{\rm c}(T_{\rm ann})$ низкохромистых композитов в интервале $T_{\rm ann}$ от 400 до 500°C определяется изменением структурного состоянием цементита [6]. С повышением $T_{\rm ann}$ от 500 до 700°C значение $H_{\rm c}$ таких композитов понижается (рис. 2, b, кпивые I, 2), что обусловлено, в первую очередь, уменьшением плотности дефектов кристаллического строения цементита [5].


Коэрцитивная сила всех сплавов, за исключением $(Fe_{0.90}Cr_{0.05}Ni_{0.05})_{83}C_{17}$, в интервале $T_{\rm ann}$ от 600-700 до 800° С снова возрастает (рис 2,b, кривые 2-4). Известно, что при повышенных температурах нагрева и выдержке при этих температурах, некоторая часть цементита может растворяться в аустените. В процессе охлаждения из аустенита обсуждаемых сплавов выделяется цементит (в рамках данной статьи назовем его "вторичным") с пониженным содержанием Ст по сравнению с исходным ("первичным") цементитом, образующемся при МС и отжигах.

Доказательством сказанного могут служить, например, зависимости относительной магнитной восприимчивости от температуры измерения $\chi/\chi_{20}(T)$, снятые при охлаждении образцов композита (Fe $_{0.80}$ Cr $_{0.10}$ Ni $_{0.10}$) $_{83}$ C $_{17}$ после отжигов при $T_{\rm ann}=(600-800)^{\circ}$ С (рис. 6). Температуры максимумов кривых I-3 соответствуют точкам Кюри $T_{\rm C}\approx 60$, 120 и 170°С ферромагнитного "вторичного" цементита образцов, отожженных при $T_{\rm ann}=600$, 700 и 800°С соответственно. Из полученных данных следует, что с повышением температуры отжига температура Кюри вторичного цементита возрастает. Учитывая [7], можно заключить, что "вторичный" цементит композита по мере увеличения $T_{\rm ann}$ содержит меньше хрома и, следовательно, имеет более высокие значения $H_{\rm c}$.

Коэрцитивная сила композитов зависит не только от коэрцитивности цементита, но и от магнитного состояния окружающих его фаз. На рис. 7, а и в приведены спектры Мёссбауэра отожженных при 800°C высокохромистого $(Fe_{0.80}Cr_{0.10}Ni_{0.10})_{83}C_{17}$ и низкохромистого $(Fe_{0.85}Cr_{0.05}Ni_{0.10})_{83}C_{17}$ сплавов, соответственно. Результаты анализа мёссбауэровских спектров в дискретном представлении приведены в таблице 1 в. Из таблицы следует, что доля атомов железа в парамагнитных фазах (аустените и остатках "первичного" цементита после выделения из него "вторичного" цементита) сплавов $(Fe_{0.80}Cr_{0.10}Ni_{0.10})_{83}C_{17}$ и $(Fe_{0.85}Cr_{0.05}Ni_{0.10})_{83}C_{17}$ составляет 95 и 79%, соответственно. Все фазы этих сплавов имеют аналогичное магнитное состояние. Различие наблюдается только по содержанию Fe в фазах: в низкохромистом сплаве атомов Fe больше в парамагнитном аустените и феррите, меньше — в парамагнитном цементите. Феррит в сплаве $(Fe_{0.85}Cr_{0.05}Ni_{0.10})_{83}C_{17}$ вновь

Рис. 7. Мёссбауэровские спектры механосинтезированных и отожженных при 800° С сплавов: a — $(Fe_{0.80}Cr_{0.10}Ni_{0.10})_{83}C_{17}$; b — $(Fe_{0.85}Cr_{0.05}Ni_{0.10})_{83}C_{17}$. Компоненты: I — парамагнитный аустенит, 2 — парамагнитный цементит, 3 — ферромагнитный цементит, 4 — феррит.

Рис. 8. Спектр Мёссбауэра (слева) и функция P(H) (справа) композита ($Fe_{0.90}Cr_{0.05}Ni_{0.05})_{83}C_{17}$ после отжига при $800^{\circ}C$.

появляется после отжига при повышенных температурах 700-800°C вследствие распада цементита. Содержание атомов Fe во "вторичном" цементите обоих сплавов примерно одинаково и составляет 3-4%. Аналогичные результаты были получены для отожженного сплава $(Fe_{0.85}Cr_{0.10}Ni_{0.05})_{83}C_{17}$. Отличие лишь в том, что в результате отжига при 800°C часть аустенита превращается в мартенсит (рис. 1, b). Таким образом, коэрцитивная сила низкохромистого сплава $(Fe_{0.85}Cr_{0.05}Ni_{0.10})_{83}C_{17}$ и сплавов с повышенным содержанием хрома, отожженных при температурах 700-800°C, будет, в основном, определяться коэрцитивностью окруженных парамагнитными фазами ферромагнитных включений "вторичного" цементита, H_c которых возрастает по мере увеличения температуры отжига, а также выделений феррита или мартенсита.

Коэрцитивная сила H_c низколегированного композита $(Fe_{0.90}Cr_{0.05}Ni_{0.05})_{83}C_{17}$ по мере роста температуры отжига от 500°C и вплоть до 800°C уменьшается монотонно (кривая 1, рис. 2, b). Обсудим возможные причины снижения $H_{\rm c}$ образцов сплава, отожженного в интервале $T_{\rm ann} = 700 - 800^{\circ}$ С. Для выяснения причины такого поведения $H_{\rm c}$ необходима информация о магнитном состоянии фаз этого сплава. На рис. 8 приведены спектр Мёссбауэра обсуждаемого сплава, полученный после отжига при $T_{\text{ann}} = 800^{\circ}\text{C}$, и функция P(H), отражающая распределение сверхтонких магнитных полей на ядрах изотопов Fe, находящихся в фазах, от атомов ближайшего окружения. Поскольку в состав образца входят в основном ферромагнитные фазы, их обсуждение удобнее проводить на основе анализа функции P(H)сплава. Из анализа функции P(H) следует, что 5% от всех атомов Fe, содержащихся в сплаве, находятся в парамагнитном аустените (максимум функции P(H)расположен в поле $H = 0 \, \text{kOe}$). В мартенсите (максимум функции P(H) в поле 337 kOe) обнаружено 40% атомов железа. В ферромагнитном цементите (распределение функции P(H) в интервале полей $H = 50-180\,\mathrm{kOe})$ —

49% атомов Fe. Остальные $\approx 6\%$ атомов Fe находятся, скорее всего, в парамагнитном или слабоферромагнитном цементите.

Весь имеющийся цементит в слаболегированном сплаве, отожженном при температурах 700-800°C, можно разделить на две части. Первая, основная часть его полного объема — это остатки от "первичного" цементита после выделения из него "вторичного" цементита. И вторая часть, в незначительном количестве собственно, "вторичный" цементит. Коэрцитивная сила и намагниченность насыщения $\sigma_{\rm s}$ "вторичного" цементита возрастают с ростом $T_{\rm ann}$. В то же время $H_{\rm c}$ и $\sigma_{\rm s}$ остатков "первичного" цементита, наоборот, уменьшаются вследствие хотя и незначительного, но все же повышения концентрации легирующих элементов в нем. При отжиге идет интенсивное снижения плотности дефектов кристаллического строения всего цементита, что приводит к понижению его коэрцитивной силы. Совместное влияние этих факторов в основном и приводит к снижению коэрцитивной силы нанокомпозита $(Fe_{0.90}Cr_{0.05}Ni_{0.05})_{83}C_{17}$ после отжига в интервале температур 700-800°C. Появление мартенсита, скорее всего, несколько повышает величину коэрцитивной силы обсуждаемого композита, отожженного при $T_{\rm ann}=800^{\circ}{\rm C}$, но не изменяет характера зависимости $H_{\rm c}(T_{\rm ann})$ в интервале температур отжига 700−800°C.

Таким образом, магнитные и мёссбауэровские измерения, в дополнение к рентгеновской дифракции, дают более полную информацию о фазовом составе, магнитном состоянии и легировании фаз исследуемых композитов на основе системы Fe-C. Полученная информация позволяет понять причину различия магнитных гистерезисных свойств легированных никелем высоко- и низкохромистых композитов, формирующуюся в результате проведения термической обработки этих сплавов.

4. Выводы

- 1. Исследованы магнитные свойства высокохромистых $(Fe_{0.90-y}Cr_{0.10}Ni_y)_{83}C_{17}$ и низкохромистых $(Fe_{0.95-y}Cr_{0.05}Ni_y)_{83}C_{17}$ нанокомпозитов, где y=0.05, 0.10, после механосинтеза и последующих отжигов в зависимости от фазового состава и структурного состояния фаз.
- 2. Зависимости коэрцитивной силы H_c исследуемых сплавов от температуры отжигов представляют собой кривые с максимумом при $T_{\rm ann}\approx 500^{\circ}{\rm C}$. Максимальная величина коэрцитивной силы H_c высокохромистых композитов достигает при этом значений (210-240) A/cm, что более чем в два раза выше максимальных H_c низкохромистых композитов. Такое соотношение H_c композитов определяется магнитным и структурным состоянием их фаз. Было показано, что после отжига при $500^{\circ}{\rm C}$ высокохромистые композиты представляют собой матрицу, в основном, из парамагнитного цементита, в которой находятся наноразмерные включения феррита.

В низкохромистых отожженных при 500°C нанокомпозитах наноразмерные включения феррита находятся в окружении ферромагнитного цементита.

- 3. Для объяснения максимальных значений H_c высокохромистых композитов высказано предположение, что после отжигов при 500°C включения ферритной фазы имеют средний размер, близкий к критическому размеру однодоменности. В процессе измерения коэрцитивной силы $H_{\rm c}$ перемагничивание однодоменных включений феррита, находящихся в матрице из парамагнитных фаз, происходит необратимым когерентным вращением намагниченности. Это обеспечивает высокое значение коэрцитивной силы однодоменных включений феррита и, следовательно, высокие значения $H_{\rm c}$ высокохромистых композитов. У низкохромистых нанокомпозитов однодоменные включения феррита находятся в среде из многодоменного ферромагнитного цементита. Коэрцитивная сила таких сплавов определяется уже другим механизмом. Перемагничивание происходит некогерентным вращением в поле коэрцитивной силы ферромагнитного цементита, что обеспечивает максимальное значение их $H_{\rm c} \approx 100 \, \text{A/cm}.$
- 4. Уменьшение коэрцитивной силы $H_{\rm c}$ исследуемых нанокомпозитов в интервале отжигов от 500 до $600-700^{\circ}{\rm C}$ происходит, в основном, за счет уменьшения содержания и размеров включений ферритной фазы, а также снижения плотности дефектов кристаллического строения цементита.
- 5. Некоторое возрастание $H_{\rm c}$ всех, за исключением (Fe_{0.90}Cr_{0.05}Ni_{0.05})₈₃C₁₇, композитов, в интервале $T_{\rm ann}$ от 700 до 800°C обусловлено, в основном, появлением в процессе охлаждения после отжигов ферромагнитного "вторичного" цементита в окружении парамагнитных фаз. Содержание хрома в таком цементите понижается с повышением температуры отжига $T_{\rm ann}$, а его коэрцитивная сила возрастает.

Финансирование работы

Исследования выполнены с использованием оборудования ЦКП "Центр физических и физико-химических методов анализа, исследования свойств и характеристик поверхности, наноструктур, материалов и изделий" УдмФИЦ УрО РАН в рамках государственного задания Министерства науки и высшего образования РФ (№ гос. регистрации 121030100003-7).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Л.И. Свистун. Изв. вузов. Порошковая металлургия и функциональные покрытия 3, 41 (2009).
- [2] T.G. Langdon. Acta Mater. 61, 19, 7035 (2013).

- [3] C. Suryanarayana, N. Al-Aqeeli. Prog. Mater. Sci. 58, 4, 383 (2013).
- [4] Е.П. Елсуков, В.М. Фомин, Д.А. Вытовтов, Г.А. Дорофеев, А.В. Загайнов, Н.Б. Арсентьева, С.Ф. Ломаева. ФММ 100, 3, 56 (2005).
- [5] E.P. Elsukov, A.I. Ul'yanov, A.V. Zagainov, N.B. Arsent'eva. JMMM 258–259, 513 (2003).
- [6] A.K. Arzhnikov, L.V. Dobysheva, C. Demmangeat. J. Phys.: Condens. Mater. 19, 19 (2007).
- [7] А.А. Чулкина, А.И. Ульянов, А.Л. Ульянов, И.А. Баранова, А.В. Загайнов, Е.П. Елсуков. ФММ 116, 1, 21 (2015).
- [8] F. Zhao, O. Tegus, B. Fuquan, E. Brück. Int. J. Minerals Metallurgy Mater. 16, 3, 314 (2009).
- [9] А.И. Ульянов, А.А. Чулкина, В.А. Волков, А.Л. Ульянов, А.В. Загайнов. ФММ 118, 7, 725 (2017).
- [10] T. Shigematsu. J. Phys. Soc. Jpn. 37, 4, 940 (1974).
- [11] А.И. Ульянов, А.А. Чулкина, В.А. Волков, А.Л. Ульянов, А.В. Загайнов. Материаловедение 12, 17 (2020).
- [12] E.V. Voronina, N.V. Ershov, A.L. Ageev, Yu.A. Babanov. Phys. Status Solidi B 160, 2, 625 (1990).
- [13] А.А. Чулкина, А.И. Ульянов, В.А. Волков, А.Л. Ульянов, А.В. Загайнов. ЖТФ 65, 5, 787 (2020).
- [14] В.А. Шабашов, В.В. Сагарадзе, А.В. Литвинов, А.Е. Заматовский. ФММ 116, 9, 918 (2015).
- [15] J.M.D. Coey. Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2010). 633 p.
- [16] V.I. Petinov. Tech. Phys. **59**, 1, 6 (2014)
- [17] Р.З. Валиев, И.В. Александров. Наноструктурные материалы, полученные интенсивной пластической деформацией. Логос, М. (2000). 272 с.
- [18] Е.П. Елсуков, Г.А. Дорофеев, В.В. Болдырев. Докл. АН **391**, *5*, 640 (2003).
- [19] С.И. Вонсовский. Магнетизм. Наука, М. (1971). 805 с.
- [20] А.А. Чулкина, А.И. Ульянов, А.Л. Ульянов. Химическая физика и мезоскопия **22**, *2*, 230 (2020).

Редактор Т.Н. Василевская