01.1;01.4;06.1;06.4

Исследование скоростных термокинетических характеристик синтеза алюминидов никеля и титана в слоистых нанокомпозитных структурах тонких пленок на основе молекулярно-динамического моделирования

© В.И. Иордан^{1,2}, И.А. Шмаков¹

¹ Алтайский государственный университет, Барнаул, Россия ² Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск, Россия E-mail: W_Jordan@mail.ru

Поступило в Редакцию 26 января 2023 г. В окончательной редакции 28 июля 2023 г. Принято к публикации 1 августа 2023 г.

На основе молекулярно-динамического моделирования в качестве скоростных термокинетических характеристик процесса самораспространяющегося высокотемпературного синтеза алюминидов никеля и титана исследуются максимальная скорость роста температуры во фронте горения и скорость движения фронта горения в слоистых нанокомпозитных тонких пленках Ni/Al и Ti/Al. Максимумы скорости роста температуры во фронте горения и скорости движения фронта горения, рассчитанные по термограммам в различных сечениях исследуемых тонких пленок с толщиной слоев от 1.3 до 8.13 nm, достигаются в диапазонах $10^{11} - 10^{12}$ K/s и 17 - 50 m/s соответственно. Установлены линейные зависимости скоростных термокинетических характеристик от удельной поверхности раздела гетерогенных слоев при неизменности стехиометрии и температуры участков стационарного режима горения.

Ключевые слова: самораспространяющийся высокотемпературный синтез, термокинетические характеристики, скорость роста температуры, скорость движения фронта волны горения, удельная поверхность, слоистые нанокомпозитные тонкие пленки, молекулярно-динамическое моделирование.

DOI: 10.61011/PJTF.2023.19.56268.19513

Самораспространяющийся высокотемпературный синтез (СВС) является одной из перспективных технологий получения из наноразмерных исходных реагентов наноразмерных упрочняющих частиц и тонких пленок, предназначенных для экстремальных условий эксплуатации. Термодинамическая устойчивость синтезированного материала обеспечивается за счет экзотермического тепловыделения в реакции СВС, также за счет высокой скорости реакции СВС удается ограничивать рост размеров и химическую деградацию тонких пленок и частиц упрочняющей фазы. В области физики металлов и современного материаловедения одними из перспективных материалов, применяемых в высокотехнологичных областях машиностроения (в авиа- и ракетостроении, а также в других отраслях), являются интерметаллиды на основе алюминидов никеля и титана. Эффективными функциональными характеристиками интерметаллидов являются относительно низкая плотность, высокая твердость, жаропрочность, высокая износо- и коррозионная стойкость.

Хотя, казалось бы, многие аспекты CBC алюминидов никеля и титана в экспериментальном плане уже хорошо изучены, однако недостаточно полно исследованы особенности микрокинетики CBC этих интерметаллидов в наночастицах [1,2] и других слоистых и матричных нанокристаллических композитных структурах [3,4].

В настоящей работе использованы результаты молекулярно-динамического моделирования СВС алюминидов никеля и титана в слоистых нанокристаллических композитных структурах (рис. 1, a), полученные с использованием программного пакета LAMMPS [5]. Результаты сохранялись на внешнем диске в виде файлов Res_i.dat, где i = 1, 2, ..., K. Файловые номера iсоответствуют моментам времени t_i в "системе отсчета моделируемого процесса СВС" с шагом 0.1 ns (конечное время t_K — планируемая длительность моделируемого процесса CBC, $t_k = 0.1K$ ns). Каждый файл Res i.dat содержит записи выходных данных по каждому из N атомов системы в следующем формате: тип атома (Ni, либо Ti, либо Al); координаты атома (x, y, z); скорости атома (v_x , v_y , v_z); действующие на атом силы $(f_x, f_y, f_z); E_a$ — кинетическая энергия атома. Разбивая объем слоистой структуры (рис. 1, a) на тонкие домены (параллелепипеды) с малым шагом, например с шагом 4 nm вдоль оси X (вдоль длины A = 420 nm), в каждом из доменов определяли суммарную энергию всех входящих в домен атомов (для каждого момента времени t_i). Затем, используя суммарную энергию атомов каждого домена и константу Больцмана, для всех моментов времени t_i оценивали "осредненные" температуры всех доменов. Высота всех доменов H (по оси Z) одинакова и равна сумме толщин всех пяти слоев. Глубина домена (по оси Y) совпадает с размером B = 1.4 nm.

Рис. 1. a — изображение слоистых нанокомпозитных структур для систем R_1-R_2 (R_1 — слой атомов Ni для первой системы Ni–Al либо слой атомов Ti для второй системы Ti–Al, R_2 — слой атомов Al для обеих систем); b — типовые термограммы в трех сечениях структуры для первой системы Ni–Al, содержащей 404 270 атомов.

Рис. 2. Зависимости максимальной скорости роста температуры во фронте горения (*a*) и скорости движения фронта горения (*b*) от удельной поверхности S_{SSA} для системы Ni–Al.

Для расчета термограмм (рис. 1, *b*) были выбраны три поперечных сечения для структур обеих систем Ni–Al и Ti–Al (домены с номерами 25, 50 и 75) с координатами 100, 200 и 300 nm вдоль оси *X*. По линейным участкам термограмм определялась максимальная скорость роста температуры $k_{T,max} = (dT/dt)_{max}$, которая пропорциональна скорости экзотермического тепловыделения во фронте горения (скорости реакции CBC).

На рис. 1, *b* показаны три термограммы, рассчитанные для трех сечений слоистой системы Ni–Al, содержащей 404 270 атомов (N_{total}), включая 222 270 атомов Ni и 182 000 атомов Al (стехиометрическое отношение $N_{\rm Ni}/N_{\rm Al} \approx 1.221$). По трем термограммам (рис. 1, *b*) на промежутке от 100 до 300 nm вдоль оси *X* оценены два (близкие между собой) значения "осредненной"

скорости движения фронта горения U_{front} (порядка 45 и 43.5 m/s), т.е. скорость движения фронта горения в макроразмерных порошковых смесях, не превышающая 10 сm/s, почти в 1000 раз меньше скорости фронта горения в наноструктурах.

Удельная поверхность S_{SSA} (SSA — specific surface area) измеряется в единицах $[m^2/kg]$ или $[m^2/g]$ и определяется отношением $S_{SSA} = S/m$, где S — площадь границы раздела между твердой фазой (в нашем случае слоем Ni либо слоем Ti) и слоем жидкого Al; m — масса твердой фазы. Для крайних слоев твердой фазы (для первого и пятого) площадь границы раздела с жидким Al равна $S_1 = S_5 = AB$, а для центрального (третьего) слоя необходимо учесть обе площади контакта со слоем Al, т.е. $S_3 = 2AB$. Поэтому общая площадь контакта

Рис. 3. Зависимости максимальной скорости роста температуры во фронте горения (*a*) и скорости движения фронта горения (*b*) от удельной поверхности S_{SSA} для системы Ti–Al.

Таблица 1. Параметры слоистых нанокомпозитных структур Ni–Al и скоростные термокинетические характеристики CBC (при температуре стационарного горения 1690–1730 K)

Стехио- метрия N _{Ni} /N _{Al}	Коли- чество атомов в системе N _{total}	Толщина слоев, nm				Удель- Ско	Скорость		Скорость
		h_1	$h_2 = h_4$	h ₃	h5	ная поверх- ность $S_{\rm SSA}$, ${\rm m}^2/{\rm g}$	роста темпера- туры $k_{T,\max} \cdot 10^{-11},$ K/s	Отношение $\gamma = \frac{k_{T,\max}}{\frac{K \cdot g}{s \cdot m^2}} \cdot 10^{-9},$ $\frac{K \cdot g}{s \cdot m^2}$	движения фронта горения U _{f ront} , m/s
1.275	946580	3.63	8.130	6.13	3.63	33.558	6.056	18.046	26.0
1.219	840346	3.00	7.500	5.50	3.00	39.073	7.477	19.136	28.9
1.228	741490	2.50	6.500	5.00	2.50	44.934	8.429	18.759	32.5
1.214	642736	2.35	5.600	4.00	2.35	51.648	9.901	19.170	35.8
1.217	587850	2.25	5.125	3.50	2.25	56.167	10.760	19.157	38.1
1.227	496520	1.77	4.380	3.38	1.77	64.933	12.199	18.787	43.1
1.221	404270	1.30	3.551	3.05	1.30	79.529	15.214	19.130	50.2

слоев твердой фазы (первого, третьего и пятого) со слоями жидкого Al равна $S_{total} = 4AB$, их общая толщина равна $H_{solid} = h_1 + h_3 + h_5$, а их общий объем равен $V_{total} = ABH_{solid}$. Тогда общая масса твердой фазы определяется как $m_{total} = \rho_{solid}V_{total}$, а удельная поверхность S_{SSA} определяется следующим образом:

$$S_{\rm SSA} = S_{total} / m_{total} = 4 / (\rho_{solid} H_{solid}), \tag{1}$$

где ρ_{solid} — плотность твердой фазы ($\rho_{\rm Ni} = 8.902 \, {\rm g/cm^3}$, $\rho_{\rm Ti} = 4.51 \, {\rm g/cm^3}$).

С учетом близости значений толщин h_1 и h_5 и того, что $h_3 \approx h_1 + h_5$, формула (1) приобретает вид $S_{\rm SSA} = 4/(\rho_{solid}H_{solid}) \approx 1/(\rho_{solid}h)$, где $h = (h_1 + h_5)/2$. Поэтому удельная поверхность в тонких пленках в большей степени определяется минимальной толщиной слоев (для дисперсных систем — дисперсностью частиц,

равной 1/h, где h — характерный размер частиц). Результаты расчетов удельной поверхности и скоростных параметров реакции СВС для слоистых нанокомпозитных структур Ni–Al и Ti–Al сведены в табл. 1 и 2, а также отображены в виде графиков на рис. 2 и 3 (флуктуации температур не более 2–3%).

В работе [6] на рис. 4 перепад температуры в 600 К для линейного участка фронта горения соответствует времени порядка 1.1 пѕ при полном расплаве Ni и Al. Оценка $k_{T,\text{max}}$ приблизительно равна $5.45 \cdot 10^{11}$ K/s и довольно близка к данным табл. 1.

Аппроксимация табличных данных оптимизировала линейные зависимости

$$k_{T,\max} = \gamma \cdot 10^9 S_{\rm SSA},\tag{2}$$

$$U_{front} = a + bS_{\rm SSA}.\tag{3}$$

Стехио- метрия N _{Ti} /N _{Al}	Коли- чество атомов в системе N _{total}	Толщина слоев, nm				Удель-	Скорость		Скорость
		h_1	$h_2 = h_4$	h ₃	h5	ная поверх- ность S _{SSA} , m ² /g	роста темпера- туры $k_{T,\max} \cdot 10^{-11},$ K/s	Отношение $\gamma = \frac{k_{T,\max}}{\frac{K \cdot g}{s \cdot m^2}} \cdot 10^{-9},$	движения фронта горения U _{f ront} , m/s
1.240	946682	3.965	6.000	7.80	3.80	56.982	1.725	3.027	17.00
1.150	936998	3.695	6.150	7.55	3.90	58.562	1.808	3.087	17.25
1.209	726024	3.100	4.600	5.40	3.10	76.458	2.331	3.049	19.86
1.242	530820	2.416	3.500	4.60	2.05	97.829	2.975	3.041	22.80
1.260	492707	1.817	3.175	4.55	2.00	106.002	3.219	3.037	24.40
1.215	485587	1.622	3.225	4.50	2.00	109.200	3.330	3.049	24.90
1.215	482740	2.135	3.100	4.00	1.90	110.382	3.421	3.099	25.00
1.182	475620	1.891	3.175	3.95	1.90	114.574	3.528	3.079	25.50
1.156	469923	2.085	3.250	3.45	1.95	118.493	3.758	3.171	25.90
1.045	445715	1.477	3.285	3.63	1.85	127.486	4.059	3.184	27.00

Таблица 2. Параметры слоистых нанокомпозитных структур Ti-Al и скоростные термокинетические характеристики CBC (при температуре стационарного горения 1460–1490 K)

Для наноструктур Ni-Al:

1) $\gamma = 18.977 \pm 0.113$ (0.596%); 2) $a = 8.4383 \pm 0.3803$ (4.507%), $b = 0.52869 \pm 0.00694$ (1.313%).

При этом отклонения стехиометрии от среднего значения 1.221 были не более 0.5%. Для значения стехиометрии 1.275 (табл. 1) отклонение составило 4.4%, что привело к понижению на 4.9% параметра γ до значения 18.046. Для наноструктур Ti-Al:

1) $\gamma = 3.0963 \pm 0.0191$ (0.617%); 2) $a = 8.7501 \pm 0.2574$ (2.942%), $b = 0.14561 \pm 0.00256$ (1.76%).

При этом отклонения стехиометрии от среднего значения 1.208 составили 2–4%. Для значения стехиометрии 1.045 отклонение оказалось равно 13.5%, что привело к повышению на 2.84% параметра до значения 3.184 (табл. 2).

Скорость реакции СВС (максимум скорости роста температуры во фронте горения) увеличивается с ростом температуры горения и удельной поверхности раздела фаз, но уменьшается с ростом концентрации твердой фазы.

Для порошковых частиц Ni и Ti с размерами $d = 25-50\,\mu$ m по известной формуле $S_{\rm SSA} = 6/(\rho d)$ диапазоны удельной поверхности оценены соответственно как 0.0135-0.027 и 0.027-0.54 m²/g. Тогда значения параметра γ с учетом (2) дают прогноз значений $k_{T,\rm max} = 2.55 \cdot 10^8 - 5.1 \cdot 10^8$ K/s для системы Ni-Al и 0.84 $\cdot 10^8 - 1.68 \cdot 10^8$ K/s для системы Ti-Al. На основе данных [7] по пунктирной кривой на рис. 10 из указанной работы для композитных частиц Ni/Al с размерами 25-50 μ m оценено время реакции внутри частиц τ_r диапазоном 5–20 μ s. Деление перепада температуры порядка 1000 K, образующегося за время реакции τ_r , на время τ_r дает для оценки $k_{T,\text{max}}$ диапазон $0.5 \cdot 10^8 - 2 \cdot 10^8$ K/s, близкий к полученному при прогнозе диапазону $2.55 \cdot 10^8 - 5.1 \cdot 10^8$ K/s,

Таким образом, показано, что скоростные термокинетические характеристики СВС в слоистых нанокомпозитах на три (и более) порядка выше значений аналогичных скоростных термокинетических характеристик СВС, происходящего в порошковых смесях.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S.O. Kart, H.H. Kart, T. Cagin, J. Nanoparticle Res., 22 (6), 140 (2020). DOI: 10.1007/s11051-020-04862-2
- [2] V.I. Jordan, I.A. Shmakov, Commun. Comput. Inf. Sci., 1526, 101 (2022). DOI: 10.1007/978-3-030-94141-3_9
- [3] A.S. Rogachev, S.G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, M.D. Grapes, T.P. Weihs, A.S. Mukasyan, Combust. Flame, 166, 158 (2016). DOI: 10.1016/j.combustflame.2016.01.014
- [4] V.I. Jordan, I.A. Shmakov, Commun. Comput. Inf. Sci., 1304, 43 (2020). DOI: 10.1007/978-3-030-66895-2_4
- [5] S. Plimpton, J. Comput. Phys., 117, 1 (1995).
 DOI: 10.1006/jcph.1995.1039
- [6] B. Witbeck, D.E. Spearot, J. Appl. Phys., 127 (12), 125111 (2020). DOI: 10.1063/5.0002036
- J.M. Pauls, C.E. Shuk, A.S. Rogachev, A.S. Mukasyan, Combust. Sci. Technol., **190** (5), 893 (2018).
 DOI: 10.1080/00102202.2017.1417269