03;01

Генерация зарядов на гидрофобной поверхности как источник стабильности поверхностных нанопузырьков

© С.И. Кошоридзе

Институт прикладной механики РАН, Москва, Россия E-mail: koshoridze-semen@yandex.ru

Поступило в Редакцию 12 июля 2023 г. В окончательной редакции 27 июля 2023 г. Принято к публикации 27 июля 2023 г.

Предлагается новый механизм стабилизации поверхностных нанопузырьков, основанный на явлении контактной электризации — генерации электрической энергии при перемещении воды относительно гидрофобных поверхностей. Вычисления, проведенные на основе построенной модели, показывают, что явление контактной электризации способно замедлить процесс диффузионного растворения поверхностных нанопузырьков и повысить их время жизни.

Ключевые слова: поверхностный нанопузырь, контактная электризация, гидрофобная поверхность, двойной слой.

DOI: 10.61011/PJTF.2023.19.56264.19684

Количество экспериментальных и теоретических исследований поверхностных нанопузырьков (ПНП) в последние годы резко возросло, что связано с их широким применением в различных областях науки и технологии. Несмотря на это, причина больших времен жизни и стабильности ПНП в течение продолжительного времени (от нескольких часов до нескольких дней) до сих пор неясна [1-5]. В работе [5] отмечено, что пиннинг (закрепление тройной линии границы раздела трех фаз: жидкой, твердой и газообразной) вместе с пересыщением раствора является достаточным условием стабильности ПНП. Причина довольно проста: в процессе растворения постепенно уменьшается угол, отсчитываемый со стороны газовой фазы, и, следовательно, растет радиус кривизны R (считается, что поверхность раздела жидкой и газовой фаз сферическая), уменьшая лапласовское давление на газ. Поскольку время жизни ПНП пропорционально квадрату радиуса R^2 [6], наступает стабилизация.

Однако ПНП может быть стабильным и без пиннинга тройной линии [4]. В работах [2,3] показано, что если подложка мягкая (деформируемая) и имеет вязкоупругие свойства, то на тройной линии возникает так называемый гребень смачивания, поглощающий механическую энергию, повышающий динамический контактный угол по сравнению с равновесным и стабилизирующий ПНП от диффузионного растворения.

Однако ПНП стабильны не только на мягких, но и на жестких гидрофобных подложках. В настоящей работе предлагается новый физический механизм объяснения данного феномена.

Как известно, при движении водяной капли по наклонной к горизонту жесткой плоской подложке, покрытой полимерной пленкой, происходит генерация энергии: капля и поверхность приобретают противоположные заряды — происходит превращение механической энергии в электрическую. Литература по явлению контактной электризации (КЭ) обширна (см. работы [7-12] и ссылки в них). Согласно данным [12], при $pH > pH_{zch}$ (*pH_{zch}* — кислотность воды, соответствующая точке нулевого поверхностного заряда) из раствора на поверхность полимера переходит группа ОН-, поэтому вода заряжается положительно, а полимерная подложка отрицательно. В этом случае говорят, что вода основание Льюиса, а полимер — кислота Льюиса. При $pH < pH_{zch}$ воду покидает группа H⁺, и она становится отрицательно заряженной (кислота Льюиса), а полимер приобретает положительный заряд (основание Льюиса). Согласно данным работы [10], КЭ наиболее эффективна для деионизированной воды, а добавление электролита существенно уменьшает сгенерированный заряд. Известно, что КЭ наблюдается также на границе объемных нанопузырьков с водным раствором [13]. Тогда ясно, что двойной электрический слой (ДЭС) будет существовать и на границе ПНП с водой. При $pH > pH_{zch}$ ПНП можно рассматривать как гидрофобную поверхность, приобретающую отрицательный заряд при контакте с водой.

Рассмотрим ПНП с радиусом основания r на гладкой гидрофобной поверхности (рис. 1). В процессе растворения электростатическая энергия ДЭС подложка—водный раствор увеличивается, а энергия ДЭС ПНП—водный раствор, наоборот, уменьшается. КЭ в первом случае будет препятствовать, а во втором способствовать диффузионному растворению ПНП. Пусть σ_s — плотность поверхностного заряда подложки на границе с водой. ДЭС в слабом водном растворе имеет толщину, при-

$$L_{\rm D} = \sqrt{\frac{\varepsilon\varepsilon_0 k_{\rm B} T}{2c N_{\rm A} e^2}},\tag{1}$$

где e — элементарный заряд, $k_{\rm B}$ и $N_{\rm A}$ — постоянная Больцмана и число Авогадро соответственно, T абсолютная температура, ε — диэлектрическая проницаемость воды, ε_0 — электрическая постоянная, c мольная концентрация ионов [mol/m³] (для простоты воду считаем симметричным электролитом с однократно ионизированными ионами).

Электростатическую энергию *W_s* взаимодействия разделенных зарядов в воде и подложке можно представить в виде энергии конденсатора

$$W_s = \frac{q_s^2}{2C},\tag{2}$$

где $q_s = \sigma_s S$ — заряд, приходящийся на площадь контакта S. Поскольку подложка плоская, конденсатор тоже считаем плоским, а расстояние между обкладками в хорошем приближении приравниваем к ширине ДЭС L_D . $C = \frac{\varepsilon_0 \varepsilon S}{L_D}$ — емкость плоского конденсатора. При растворении ПНП его радиус основания уменьшается на величину dr. Тогда прирост электрической энергии на единицу длины контакта трех фаз будет равен

$$\frac{1}{2\pi r}\frac{dW_s}{dt} = -\frac{\sigma_s^2 L_{\rm D}}{2\varepsilon\varepsilon_0}\frac{dr}{dt}.$$
(3)

Таким образом, диффузионное растворение ПНП, а следовательно, уменьшение термодинамического потенциала Гиббса системы ПНП—вода (допустим, что процесс происходит при постоянном давлении и температуре) сопровождаются увеличением электростатической энергии системы подложка—вода. Тогда коэффициент, стоящий перед скоростью тройной линии (-dr/dt),

$$F_s = \frac{\sigma_s^2 L_{\rm D}}{2\varepsilon\varepsilon_0} \tag{4}$$

можно трактовать как силу сопротивления (на единицу длины), направленную против движения тройной линии, препятствующую диффузионному растворению ПНП.

Аналогично рассуждаем и о контакте ПНП-вода. Согласно данным работы [14], падение потенциала $\Delta \Phi$ в ДЭС в дипольном приближении равно $\Delta \Phi = D/\varepsilon\varepsilon_0$ (здесь D — дипольный момент единицы площади). Толщину двойного слоя приравняем к длине экранирования Дебая. Тогда $D = \sigma_g L_D$ (где σ_g — плотность поверхностного заряда ПНП). Если учесть, что площадь контакта ПНП-вода $S_g = \frac{2\pi r^2}{1+\cos\theta}$, для электростатической энергии двойного слоя на границе вода-ПНП получим $W_g = \frac{\Delta \Phi \sigma_g S_g}{2} = \frac{2\pi r^2 L_D \sigma_g^2}{2\varepsilon_0 \varepsilon (1+\cos\theta)}$. Взяв производную $\frac{1}{2\pi r} \frac{dW_g}{dt}$ (считаем, что в процессе растворения ПНП его

Рис. 1. Схематическая картина ПНП, растворяющегося в воде. Коэффициенты поверхностного натяжения границ раздела подложка—газ и подложка—вода для простоты принимаются равными друг другу, взаимно уравновешиваются и не показаны на рисунке.

Рис. 2. Зависимость динамического контактного угла θ от плотности поверхностного заряда гидрофобной подложки σ_s при различных мольных концентрациях *с* электролита в воде. Расчеты проведены при комнатной температуре, поверхностные плотности зарядов измеряются в e/nm^2 (число элементарных зарядов на квадратный нанометр). $\gamma = 0.072$ N/m, $\sigma_g = 5 \cdot 10^{-3} e/nm^2$, $\varepsilon = 80$. $c = 3 \cdot 10^{-6}$ (1), $2 \cdot 10^{-6}$ (2) и 10^{-6} М (3).

динамический контактный угол θ не меняется), для силы на единицу длины получаем окончательное выражение

$$F_g = \frac{\sigma_g^2 L_{\rm D}}{\varepsilon \varepsilon_0 (1 + \cos \theta)}.$$
 (5)

Сила F_g способствует диффузионному растворению ПНП (рис. 1).

Для простоты расчетов будем считать, что поверхностное натяжение сухой и мокрой подложек одинаково [2,3]. Тогда равновесный контактный угол (угол, который вычисляется из обычной формулы Юнга при отсутствии КЭ, т.е. при $\sigma_s = \sigma_g = 0$) прямой: $\theta_0 = 90^\circ$, а динамический вычисляется из соотношения

Рис. 3. Зависимость динамического контактного угла θ от плотности поверхностного заряда ПНП на границе с водой σ_g при различных мольных концентрациях *с* электролита в воде. $\sigma_s = 5 \cdot 10^{-3} e/\text{nm}^2$. $c = 3 \cdot 10^{-6} (1)$, $2 \cdot 10^{-6} (2)$ и 10^{-6} М (3).

 $(\gamma$ — поверхностное натяжение воды):

$$\cos\theta = \frac{F_s}{F_g + \gamma}.$$
 (6)

Результаты расчета динамического контактного угла θ по формулам (4)–(6) приведены на рис. 2, 3. Рост плотности заряда на гидрофобной поверхности σ_s и длины Дебая L_D , увеличивая силу сопротивления F_g , уменьшают контактный угол θ (рис. 2). Рост поверхностной плотности заряда σ_g ПНП, наоборот, увеличивает контактный угол θ и способствует диффузионному растворению ПНП (рис. 3).

На основе полученных расчетов можно оценить влияние КЭ на время жизни ПНП. Как известно, в классической работе [6] она не учитывалась. Обозначим времена жизни и радиусы кривизны ПНП без учета и с учетом зарядов через τ_0 , R_0 и τ , R соответственно. Как уже отмечалось выше, $\tau_0 \propto R_0^2$ и $\tau \propto R^2$. Если с начала диффузионного растворения не прошло много времени и радиус основания r не успел существенно измениться, то выполняется условие $\frac{R}{R_0} \approx \frac{\sin \theta_0}{\sin \theta}$, и тогда окончательно получим

$$\frac{\tau}{\tau_0} \approx \left(\frac{\sin\theta_0}{\sin\theta}\right)^2.$$
 (7)

Согласно (7), если динамический угол равен $\theta = 10^{\circ}$, время жизни увеличивается в 33 раза, при $\theta = 5^{\circ} \frac{\tau}{\tau_0} \approx 132$. Таким образом, можно сделать следующие выводы.

1. Заряды, сгенерированные на гидрофобной подложке и ПНП, несомненно, оказывают влияние на процессы диффузионного растворения ПНП. Согласно данным работ [7–12], плотность поверхностного заряда на разных гидрофобных полимерных подложках σ_s варьируется в диапазоне $6.25 \cdot 10^{-5} - 1.25 \cdot 10^{-3} e/\text{nm}^2$, однако данных о величине плотности заряда на ПНП σ_g нет. Есть основания считать, что эти заряды примерно одного порядка: $\sigma_g \approx \sigma_s$. Полученные выражения (6), (7) позволяют вычислить контактный угол θ и время жизни τ . Результаты расчетов θ проиллюстрированы на рис. 2, 3.

2. Если плотность заряда σ_s настолько мала, что для силы сопротивления подложки выполняется неравенство $F_s \ll \gamma$, то, как следует из (6), контактная электризация не сможет предотвратить диффузионное растворение ПНП.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- M. Alheshibri, J. Qian, M. Jehannin, V.S.J. Craig, Langmuir, 32 (43), 11086 (2016). DOI: 10.1021/acs.langmuir.6b02489
- [2] С.И. Кошоридзе, Инженерная физика, № 9, 28 (2022).
 DOI: 10.25791/infizik.9.2022.1286
- [3] С.И. Кошоридзе, Письма в ЖТФ, 49 (1), 14 (2023).
 DOI: 10.21883/PJTF.2023.01.54050.19357 [S.I. Koshoridze, Tech. Phys. Lett., 49 (1), 12 (2023).
 DOI: 10.21883/TPL.2023.01.55338.19357].
- [4] Z. Guo, X. Wang, X. Zhang, Langmuir, 35 (25), 8482 (2019).
 DOI: 10.1021/acs.langmuir.9b00772
- [5] D. Lohse, X. Zhang, Phys. Rev. E, 91 (3), 031003 (R) (2015).
 DOI: 10.1103/PhysRevE.91.031003
- [6] S. Ljunggren, J.C. Eriksson, Coll. Surf. A, 129-130, 151 (1997). DOI: 10.1016/S0927-7757(97)00033-2
- [7] D. Ratschow, L.S. Bauer, P. Bista, S.A.L. Weber, H.-J. Butt, St. Hardt, arXiv:2305.02172 [cond-mat.soft].
 DOI: 10.48550/arXiv.2305.02172
- [8] X. Li, P. Bista, A.Z. Stetten, H. Bonart, M.T. Schur, S. Hardt, F. Bodziony, H. Marschall, A. Saal, X. Deng, R. Berger, S.A.L. Weber, H.-J. Butt, Nat. Phys., 18, 713 (2022). DOI: 10.1038/s41567-022-01563-6
- [9] F. Zhan, A.C. Wang, L. Xu, S. Lin, J. Shao, X. Chen, Z.L. Wang, ACS Nano, 14 (12), 17565 (2021).
 DOI: 10.1016/j.cocis.2021.101428
- [10] Y. Sun, X. Huang, S. Soh, Chem. Sci., 6 (6), 3347 (2015).
 DOI: 10.1039/c5sc00473j
- [11] S. Lin, L. Xu, A.C. Wang, Z.L. Wang, Nat. Commun., 11, 399 (2020). DOI: 10.1038/s41467-019-14278-9

- M.D. Sosa, M.L. Martínez Ricci, L.L. Missoni, D.H. Murgida,
 A. Cánneva, N.B. D'Accorso, R.M. Negri, Soft Matter, 16 (30), 7040 (2020). DOI: 10.1039/D0SM00738B
- [13] S.A. Hewage, J. Kewalramani, J.N. Meegoda, Coll. Surf. A, 609, 125669 (2021). DOI: 10.1016/j.colsurfa.2020.125669
- [14] Дж. Джексон, Классическая электродинамика (Мир, М., 1965). [J.D. Jackson, Classical electrodynamics (John Wiley & Sons, Ltd., 1999).