05,11

Магнитные свойства Rb₂KFeF₆

© А.Д. Балаев, В.Н. Воронов, В.М. Соснин, Д.А. Балаев

Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия E-mail: dabalaev@iph.krasn.ru

Поступила в Редакцию 10 июля 2023 г.

В окончательной редакции 10 июля 2023 г. Прнинята к публикации 16 июля 2023 г.

Исследованы статические магнитные свойства монокристалла Rb₂KFeF₆ в области температур T = 1.8-300 K в магнитных полях H до 90 kOe. При T > 1.8 K кристалл магнитно не упорядочен, однако поведение обратной восприимчивости $\chi^{-1}(T)$ указывает на отрицательную парамагнитную температуру Кюри $\Theta \approx -0.8$ K. Это согласуется с анализом кривой намагничивания M(H) путем замены внешнего поля эффективным полем $H_{\rm eff}$ с отрицательной константой молекулярного поля.

Ключевые слова: монокристалл Rb₂KFeF₆, магнитные свойства, отрицательные магнитные взаимодействия.

DOI: 10.21883/FTT.2023.09.56252.143

1. Введение

Кристаллическая структура Rb₂KFeF₆ относятся к семейству эльпасолита — природного минерала — K₂NaAlF₆ с кубической структурой. Общая формула $A_2^+B^+M^{3+}X_6^-$, где A, B — щелочной, M — трехвалентный катион, Х — галоген. Известно огромное число таких соединений [1,2]. Начиная с 70-х годов прошлого столетия и до настоящего времени существует значительное число работ по этому семейству, посвященных синтезу, исследованию рентгеноструктурных и нейтронографических данных, теплофизических свойств, теоретическому симметрийному анализу структур и т.д. Это отражено в далеко не полном перечне работ [1-11]. С понижением температуры многие галоидные эльпасолиты претерпевают структурный фазовый переход из высокосимметричной кубической фазы вплоть до моноклинной в зависимости от сочетания формы и размеров катионов и анионов, входящих в общую формулу.

Исследуемый нами кристалл Rb₂KFeF₆ обладает при комнатной температуре кубической пространственной группой Fm3m с параметром решетки a = 8.869 Å [3]; температура фазового перехода T_0 составляет $\approx 170 \, \text{K}$ [4–6]. В работе [7] подробно выполнен анализ и указаны соображения причин фазовых переходов в эльпасолитах на основе изменения размера катионов и энтропии при фазовом переходе. В работе [8] опубликованы данные по нейтронной дифракции при температурах 290 и 10К, согласно которым кристалл принадлежит кубической пространственной группе Fm3m при T > 170 K, а в области низких температур имеет орторомбическую симметрию Pmnn. Причиной структурного перехода по мере понижения Т, согласно [8], является действие двух факторов: упорядочение ионов F^{1+} с поворотом октаэдров FeF_6 и KF_6 , а также смещением атомов Rb.

К сожалению, в литературе мало данных о магнитных свойствах эльпасолитов с парамагнитными трехвалентными ионами. Следует отметить работы [9,10] по исследованию восприимчивости в соединениях с трехвалентными 4*f*-ионами в октаэдрах ReF₆. В [9] для соединений с крамерсовскими ионами Gd, Er, Yb магнитного упорядочения в интервале температур выше 0.45 К не обнаружено, и поведение обратной восприимчивости $\chi^{-1}(T)$ дает значение парамагнитной температуры Кюри ≈ 0 К. Для некрамерсовских 4*f*-ионов обнаружено ван-флековское поведение температурной зависимости восприимчивости. Четкий пик Нееля обнаружен в Cs₂NaHoF₆ при $T_N = 0.62$ К. На системах Cs₂NaReCl₆ (*Re* — редкоземельный элемент) в работе [10] получены результаты, схожие с данными [9].

В работе [11] методом ЭПР в перовскитоподобных кристаллах были исследованы и обнаружены точечные дефекты (вакансии на месте M^{3+}). Показано, что Rb₂KFeF₆ — парамагнетик при T = 300, 77 K с *g*-фактором, равным 2.04. Также отмечено, что фтористые эльпасолиты гигроскопичны.

2. Выращивание монокристаллов

Исходными компонентами послужили RbF (XЧ), KF·HF, FeF₃ — (Ч). Дегазация приготовленных исходных реактивов проводилась в вакуумном сушильном шкафу при 500 К с остаточным давлением 0.1 Ра в течение суток, в основном, для избавления от адсорбированной и частично кристаллизационной влаги. Синтез Rb₂KFeF₆ проводился в два этапа: (1) спеканием стехиометрического состава с последующим (2) плавлением и кристаллизацией в платиновых лодочках в атмосфере аргона с 10 mol.% HF. Нагрев проводился в горизонтальной трубчатой печи с постоянным аксиальным градиентом температуры 25 К/ст, скорость роста первичных блоков 3.5 mm/h. Отбирались прозрачные незагрязненные блоки, которые использовались для перекристаллизации.

Повторная кристаллизация проводилась методом Бриджмена без затравок в тонкостенных платиновых ампулах диаметром 10 mm с толщиной стенок 0.2 mm снижением температуры печи от (1373–1573) К до (773–923) К, где первая цифра показывает температуру в начале лодочки, вторая — в конце. Аксиальный градиент температуры в зоне кристаллизации 20 К/ст, скорость кристаллизации 0.8 mm/h.

Были получены монокристаллические образцы для исследования с размерами по ребрам до 5 mm. Рентгеноструктурный анализ при комнатной температуре показал соответствие полученных монокристаллов эльпасолита Rb_2KFeF_6 с кубической структурой Fm3m с параметром элементарной ячейки a = 8.869 Å.

3. Кристаллическая структура

На рис. 1 показана кристаллическая структура при T = 290 К согласно [8]. Элементарная ячейка кристалла содержит четыре формульные единицы. Из рисунка видно, что имеется два сорта ионных групп — октаэдров FeF₆ и KF₆. Эти октаэдры соединены общими вершинами, чередуются и образуют цепочки вдоль трех четверных осей. Соседние цепочки также соединены вершинами и образуют слои типа {100}. Соседние слои сдвинуты относительно друг друга на половину расстояния решетки. Каждый из восьми ионов Rb¹⁺ с координатами 1/4, 1/4, 1/4 находятся в центрах кубооктаэдров с двенадцатью вершинами, образованными ионами F¹⁺. Основные межатомные расстояния указаны на рисунке. Сведения для параметров для низкой температуры даны в обсуждении (раздел 5).

4. Магнитные измерения

Статические магнитные свойства монокристалла Rb_2KFeF_6 измерялись на вибрационном магнитометре (далее — VSM) со сверхпроводящим соленоидом [12] в области температур от 4.2 до 300 K в магнитных полях до 80 kOe, а также на установке PPMS-9 (Quantum Design) в области температур от 1.8 до 300 K в полях до 90 kOe.

Образец, в основном, представлял собой прямоугольный параллелепипед размером $\sim 2.5 \times 3.5 \times 4.5$ mm с ребрами, параллельными четверным осям. Кроме того, на кристалле была еще одна естественная грань — плоскость типа (110) размером $\sim 2 \times 2$ mm. Образец клеился на кварцевую площадку на нужную грань так, что поле *H* было перпендикулярно этой грани. Привязка магнитного поля *H* к осям кристалла была проведена для кубической фазы *Fm3m*.

Рис. 1. Кристаллическая структура Rb_2KFeF_6 при T = 290 K.

Была измерена температурная зависимость намагниченности M(T) в диапазоне 4.2–300 К в поле H = 1 kOe параллельно [100] вдоль одной из осей С₄. Построив молярную восприимчивость $\chi(T)$ и обратную ей величину $\chi^{-1}(T)$, были определены парамагнитная температура Кюри Θ , составившая $\approx -0.5 \, \mathrm{K}$ и эффективный магнитный момент $\mu_{\rm eff}$ атома Fe³⁺ ($\mu_{\rm eff} \approx 5.9 \mu_{\rm B}$, где $\mu_{\rm B}$ — магнетон Бора). Для перепроверки отрицательного значения Θ были измерены зависимости M(T)при Н параллельно этому же направлению, а также двум другим осям С₄. Также была исследована зависимость M(T) при направлении поля **H**, перпендикулярном естественной грани — плоскости типа (110) — т.е. при **H** || $[110] - C_2$ и **H** || [101]. Результаты всех измерений показаны на рис. 2. Видно, что зависимости $\chi(T)$ для всех направлений представляют собой гиперболы, а зависимости $\chi^{-1}(T)$ — прямые. Т. о., выполняется закон Кюри-Вейсса

$$\chi(T) = C/(T - \Theta),$$

где $\Theta = \lambda_T C$, С — константа Кюри, λ_T — молярная постоянная среднего поля [13,14].

На вставке рис. 2 показано детальное поведение зависимостей $\chi(T)$ для направлений **H**, параллельных осям C_4 . При температуре $T_0 \approx 170.5$ К видно начало особенности в поведении $\chi(T)$, что, несомненно, указывает на фазовый переход [4,5,7]. В эксперименте температура повышается со скоростью, указанной на рисунке. В области $170.5 \leq T \leq 173$ К намагниченность остается практически постоянной. Это возможно при постоянной температуре образца, т.е. проявляется поглощение образцом тепла. Поскольку обнаруживается

Рис. 2. Температурные зависимости восприимчивости $\chi(T)$ (ось ординат справа) и обратной величины $\chi^{-1}(T)$ (ось ординат слева) монокристалла Rb₂KFeF₆ в поле **H** = 1 kOe, параллельном направлениям, указанным на рисунке. Эксперимент — символы, обозначенные цветами, соответствующими разным направлениям. Штриховая прямая проведена по данным **H** || [100] методом наименьших квадратов. На вставке — подробное поведение $\chi(T)$ в области фазового перехода.

скрытая теплота перехода, этот переход следует считать переходом I рода. Отметим, что ниже и выше T_0 магнитное состояние не изменилось. Об этом свидетельствует отсутствие скачка $\chi(T)$ либо изменения наклона в $\chi^{-1}(T)$ при T = 170.5 К (рис. 2).

Рис. 2 (за исключением вставки) содержит семь почти неразличимых зависимостей, содержащих до 7000 экспериментальных точек в каждой. Количественный итог обработки зависимостей $\chi^{-1}(T)$ для каждого направления с учетом проведения эксперимента несколько раз (для направления **H** || [100] — отмечено как 1-st, 2-nd и 3-d run) решением линейной регрессии, выполненной по методу наименьших квадратов, представлен в таблице. В таблице также приведены полученные значения эффективного магнитного момента $\mu_{\rm eff}$ и λ_T — молярной постоянной среднего поля. Значения постоянной среднего поля, приходящейся на один ион Fe³⁺ — λ_{T1} , необходимые ниже для сравнения с аналогичной величиной, полученной из измерений M(H), представлены в последней строке таблицы.

Из таблицы видно, что имеется некоторый разброс значений Θ , μ_{eff} и λ_T . На наш взгляд, это следует отнести не к анизотропии этих величин, а, скорее, к ошибке измерений. В эту ошибку входит не только погрешность измерения температуры, но и знание точных значений абсолютных величин магнитного момента (исследование проведено на двух установках), величины внешнего поля, массы образца, а также влияние размагничивающего фактора образца для различных направлений. Отметим, что по прошествии двух недель работы было замечено помутнение кристалла и рыхлость его поверхности, и подобное поведение отмечалось авторами работы [11]. В работе [3] отмечено, что при фазовом переходе происходит деструкция монокристалла, что, видимо,

Установка	PPMS	VSM					
Диапазон температур, К	1.8-300	4.2-300				4.2-130	4.2-80
Направление Н	[100]	[100]	[100]	[010]	[001]	[110]	[101]
Θ, Κ	-1.25	-0.45	-0.87	-0.9	-0.47	-1.1	-0.81
$\mu_{\mathrm{eff}},\ \mu_{\mathrm{B}}$	5.93	5.91	5.87	5.865	5.85	5.9	5.87
λ_T , cm ⁻³	-0.28	-0.16	-0.2	-0.207	-0.11	-0.25	-0.19
λ_{T1} , Gs	-1560	-897	-1125	-1160	-630	-1415	-1045

Значения парамагнитной температуры Кюри Θ , эффективного магнитного момента μ_{eff} и λ_T , λ_{T1} — постоянной среднего поля, полученных из измерений M(T) для различных (в том числе для повторяющихся) направлений кристалла Rb₂KFeF₆

и является причиной видимой деградации кристалла после неоднократного циклирования температуры при измерениях.

В итоге, из исследования температурных зависимостей намагниченности для различных направлений кристалла Rb₂KFeF₆ вытекает, что в области температур $1.8 \le T \le 300$ К магнитного упорядочения не наблюдается и анизотропии $\chi(T)$ для разных направлений нет. Зависимости обратной восприимчивости $\chi^{-1}(T)$ — линейные функции температуры, т.е. выполняется закон Кюри–Вейсса; отрицательная температура Кюри (средняя) $\Theta \approx -0.83 \pm 0.25$ К указывает на незначительное отрицательное взаимодействие между ионами Fe³⁺; эффективный магнитный момент (средний) $\mu_{\rm eff} = 5.89 \,\mu_{\rm B}$ близок к теоретическому значению для иона Fe³⁺ в S состоянии, равном 5.916 $\mu_{\rm B}$; при $T_0 \approx 170.5$ К обнаружен отклик структурного фазового перехода I рода.

Для подтверждения отрицательного взаимодействия в кристалле между ионами Fe³⁺ были проведены исследования зависимости намагниченности от поля M(H). На рис. 3 символами показано экспериментальное поведение зависимостей M(H) в направлениях **H** || [100] и **H** || [110] при T = 4.23 К. Анизотропия в полевом поведении в этих направлениях не проявляется. На этом же рисунке показана полевая зависимость намагниченности для парамагнетика $M(H) = M_0 B_{5/2}(x)$ (сплошная линия) в соответствии с функцией Бриллюэна $B_{5/2}(x)$ при $x = gS\mu_{\rm B}H/kT$. Здесь $M_0 = gS\mu_{\rm B}$ — магнитный момент насыщения, приходящийся на один ион Fe³⁺, *g*-фактор, равный 2, S = 5/2 — спин, k — постоянная Больцмана. Видно, что модель простого парамагнетика не описывает экспериментальные зависимости.

Для объяснения эксперимента было взято приближение двух подрешеток [13], в котором внешнее поле *H* заменяется на эффективное поле: $H_{\text{eff}} = H + \lambda M$, где λ — константа среднего поля, *M* — намагниченность во внешнем поле *H*. Зависимости $M(H) = M_0 B_{5/2}(H_{\text{eff}})$, полученные при условиях наилучшего описания экспериментальных данных, приведены на рис. 3. Можно констатировать очень хорошее согласие с экспериментом при варьировании всего одного подгоночного параметра — λ (*g*-фактор принят равным 2 [11], *S* = 5/2). Значения λ для направлений **H** || [100] и [110] подбирались таким образом, чтобы отклонение разности между экспериментом и теорией (показано на вставке рис. 3) в положительную и отрицательную стороны от нулевой линии было примерно одинаковыми во всем диапазоне внешнего поля. Максимальное расхождение не превышает величину ~ 0.5%. Значения λ приведены на рис. 3, они отрицательны (подобно величинам λ_{T1} и λ_T , см. таблицу) и незначительно различаются для различных направлений.

5. Обсуждение результатов

В результате магнитных измерений получены отрицательные значения Θ из зависимостей M(T) и отрицательные величины λ из зависимостей M(H). Это указывает на отрицательное взаимодействие между ионами Fe³⁺. Значение (среднее) λ_{T1} ($\approx 1120 \text{ Gs}$ — см. последнюю строку таблицы), определенное из измерений M(T) незначительно меньше величины λ ($\approx -1200-1230 \text{ Gs}$), полученной из зависимостей M(H) (рис. 3).

Следует отметить, что при $T < 170 \, {\rm K}$ при фазовом переходе параметры кристаллической ячейки меняются очень существенно в ав плоскости и незначительно (в третьем знаке) вдоль оси с. При этом для низкотемпературной фазы, согласно [7], постоянные решетки при T = 10 К составляют a = 6.157 Å, b = 6.151 Å, c = 8.894 Å. В работах [4,5] указано, что при T < 170 К решетка Браве принадлежит Р — типу, являющемуся подгруппой І4/ттт или І4/т. Нам для качественной оценки энергии взаимодействия и расстояния между ионами Fe³ достаточно представить решетку Браве псевдотетрагональной с симметрией *I4/m* с параметрами $a \approx b \approx a^{\text{cub}}/\sqrt{2}, c \approx c^{\text{cub}}$ [4]. Можно представить, что оси кристалла а и b при структурном переходе поворачиваются вокруг оси c на 45°. При этом для низкотемпературной фазы, согласно [8], ионы Fe³⁺ занимают такую же высокосимметричную позицию 2а с практически

Рис. 3. Зависимости намагниченности от внешнего поля M(H) монокристалла Rb₂KFeF₆ при указанных направлениях; T = 4.23 К. Символы — эксперимент, сплошные кривые — функция Бриллюэна $B_{5/2}(\lambda = 0)$ и результаты подгонки в рамках теории среднего поля (см. текст раздела 4) — $B_{5/2}(\lambda \neq 0)$ для указанных в легенде взаимных ориентаций внешнего поля **H** и кристаллографических направлений кристалла. На вставке: разность между экспериментом и теорией в единицах магнетон Бора в зависимости от *H*.

неизменными расстояниями между собой, как и для кубической фазы 4*a*. О сохранении расстояний между ионами Fe также косвенно свидетельствуют данные вставки рис. 2, как отмечалось выше, —- отсутствие скачка либо изменения наклона на зависимости $\chi(T)$ при прохождении фазового перехода при $T \sim 170$ K.

Поскольку анизотропия магнитных свойств экспериментально не наблюдается, оценим энергию взаимодействия для средних величин Θ и λ . К отрицательному взаимодействию может приводить диполь—дипольное и обменное взаимодействие. Средняя величина парамагнитной температуры $\Theta \approx -0.8$ K, что соответствует $E_{\rm Fe-Fe} \approx 1.1 \cdot 10^{-16}$ erg.

Энергия диполь-дипольного взаимодействия для пары моментов оценивалась согласно известной формуле $E_{d-d} = (g S \mu_B)^2 / r^3$, с расстояниями r между центрами атомов Fe³⁺. Для кубической фазы Fm3m минимальное расстояние между ближайшими соседями Fe³⁺, позиции 4*a*, согласно [8] (см. также рис. 1), при 290 К равно r = 6.27 Å. Это дает величину $E_{d-d}(290 \text{ K}) = 8.72 \cdot 10^{-18}$ erg. Для низкотемпературной фазы в *ab* плоскости расстояние r = 6.154 Å и $E_{d-d,(ab)}(10 \text{ K}) = 9.23 \cdot 10^{-18}$ erg. В плоскости типа {112} минимальное расстояние r = 6.22 Å и $E_{d-d,\{112\}}(10 \text{ K}) = 8.92 \cdot 10^{-18}$ erg. Это соответствует температуре $T = E_{d-d}/k_B = 0.072$ К. Т.е. диполь-дипольное взаимодействие далеко не полностью объясняет полученные величины парамагнитной температуры Кюри ($\Theta \approx -0.8$ K) и соответствующей ей энергии $E_{\text{Fe-Fe}} \approx 1 \cdot 10^{-16}$ erg.

Косвенное обменное взаимодействие между 12 ближайшими соседями Fe³⁺ может осуществляться по цепочкам Fe-F-K-F-Fe. Для линейных связей оно отрицательное. Возможно, присутствует, по крайней мере, геометрическая фрустрация. К тому же парамагнитная (и, по простой модели антиферромагнетика равная ей температура упорядочения) очень мала, также нам неизвестны энергии возбуждения лиганд — катион для ионов F и K. Для таких систем расчет и даже оценка весьма затруднительны. Это представляет отдельную задачу. Ограничимся экспериментальным результатом: $E_{\rm Fe-Fe} \approx 10^{-16}$ erg.

6. Заключение

Исследованы магнитные свойства монокристалла эльпасолита Rb_2KFeF_6 в области температур 1.8–300 К в магнитных полях H до 90 kOe. Кристалл является парамагнетиком с незначительным отрицательным взаимодействием между ионами Fe^{3+} . Температурная зависимость следует закону Кюри–Вейсса с парамагнитной температурой Кюри $\Theta \approx -0.8$ К. Эффективный магнитный момент атома Fe^{3+} составляет $\approx 5.9 \,\mu_{\rm B}$. Зависимость намагниченности от магнитного поля описывается функцией Бриллюэна с эффективным полем с отрицательной константой взаимодействия. При $T \approx 170$ К проявляется структурный фазовый переход I рода.

Благодарности

Авторы благодарят М.С. Павловского за обсуждение результатов.

Финансирование работы

Исследование выполнено в рамках госзадания ИФ СО РАН. Часть магнитных измерений (установка PPMS-9) были проведены с использованием оборудования Центра коллективного пользования ФИЦ КНЦ СО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- I.N. Flerov, M.V. Gorev, K.S. Aleksandrov, A. Tressaud, J. Grannec, M. Couzi. Mater. Eng. Sci. R 24, 3, 81 (1998).
- [2] Б.В. Безносиков, К.С. Александров. Кубические галоидные эльпасолитоподобные кристаллы. Препринт № 798Ф. Институт физики СО РАН, Красноярск (2000). 44 с.
- [3] R. Haegele, W. Verscharen, D. Babel. Z. Naturforsch B 30, 3, 462 (1975).
- [4] A. Tressaud, S. Khaïroun, J.P. Chaminade, M. Couzi. Phys. Status Solidi A 98, 2, 417 (1986).
- [5] M. Couzi, S. Khaïroun, A. Tressaud. Phys. Status Solidi A 98, 2, 423 (1986).
- [6] S. Khaïroun, A. Tressaud, J. Grannec, J.M. Dance, A. Yacoubi. Phase Transitions 13, 157 (1988).
- [7] И.Н. Флеров, М.В. Горев. ФТТ 43, 1, 124 (2001).

- [8] S.G. Vasilovski, V.C. Sikolenko, A.I. Beskrovnyi, A.V. Belushkin, I.N. Flerov, A. Tressaud, A.M. Balagurov. Z. Kristallographie S 23, 467 (2006).
- [9] E. Bucher, H.J. Guggenheim, K. Andres, G.W. Hull Jr., A.S. Cooper. Phys. Rev. B 10, 7, 2945 (1974).
- [10] M.V. Hoehn, D.Q. Karraker. J. Chem. Phys. 60, 393 (1974).
- [11] В.Н. Воронов, Э.А. Петраковская. ФТТ 55, 4, 671 (2013).
- [12] A.D. Balaev, Yu.V. Boyarshinov, M.M. Karpenko, B.P. Khrustalev. Prib. Tekh. Eksp. 3, 167 (1985).
- [13] Дж. Смарт, Эффективное поле в теории магнетизма. Мир, М. (1968). 272 с.
- [14] Ч. Киттель, Введение в физику твердого тела. Наука, М. (1978). 792 с.

Редактор К.В. Емцев