02,05

Внешние и внутренние поля размагничивания как одна из основных фундаментальных причин низкой плотности критического тока двойниковых высокотемпературных сверхпроводников YBa₂Cu₃O_{7-x}

© Х.Р. Ростами

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, Фрязино, Россия

E-mail: rostami@ms.ire.rssi.ru

Поступила в Редакцию 27 июня 2023 г. В окончательной редакции 27 июня 2023 г. Принята к публикации 10 июля 2023 г.

> С помощью осцилляционной дифференциальной методики локального приближения исследовано влияние внутренних локальных и внешних полей размагничивания на величину плотности критического тока J_c междвойниковых джозефсоновских слабых связей высокотемпературных сверхпроводящих (ВТСП) образцов YBa₂Cu₃O_{7-x}. В режимах охлаждения в нулевом поле и охлаждения в нулевом поле с накоплением магнитного потока для образцов с разными J_c и размерами двойников d измерены поля размагничивания образцов Н_D. Определены значения: d; термодинамических первых критических магнитных полей двойников *H*_{ic1}; полей размагничивания двойников *H*_{Dtr}; плотности внутридвойниковых эффективных критических токов J_{ceff}; критических токов пиннинга J_{cp} и экранирующих мейснеровских критических токов J_{ce}. Показано, что при полях H_{icl} двойники больших размеров скачкообразно "распадаются" на группу двойников меньших размеров с близкими размагничивающими факторами. Обнаружено, что увеличение J_{cg}, J_{ceff} и уменьшение d, с одной стороны, приводят к снижению $J_{\rm c}$ из-за увеличения $H_{\rm D}$ и $H_{\rm Dtr}$, созданных $J_{\rm ceff}$ и $J_{\rm cg}$, а с другой стороны — к усилению J_{ceff} и J_{cg} за счет уменьшения d. Для образцов с высокими J_c и d, а также с низкими значениями J_c и d при поле $\sim 8 \cdot 10^{-2}$ T, H_D и H_{Dtr} подавляют J_c на ~ 70 и $\sim 60\%$ соответственно. Из полученных результатов вытекает, что при увеличении J_{cg}, как и в случае известных из литературы данных, происходит уменьшение J_c , при этом уменьшение *d* приводит не к росту, а, наоборот, к уменьшению J_c . Так как наличие слабых связей и низкий Ј_с являются фундаментальными свойствами ВТСП-материалов, то необходимо скорректировать результаты литературных работ с учетом важных фактов существенного влияния $H_{\rm D}$ и $H_{\rm Dtr}$ на $J_{\rm c}$.

> Ключевые слова: двойники, монодомены, кристаллиты-зерна, суб- и нанокристаллиты, поля размагничивания, размагничивающий фактор, захват магнитного потока, критические токи.

DOI: 10.21883/FTT.2023.09.56244.126

1. Введение

В настоящее время путем создания сильных центров пиннинга разработаны высокотемпературные сверхпроводящие (ВТСП) эпитаксиальные пленки REBa₂Cu₃O₇ (REBCO, где RE — редкоземельный элемент) и проводники с покрытием REBa₂Cu₃O₇ с предельно высокими критическими токами $J_{\rm c} \approx 5 \cdot 10^9 - 10^{10} \, {\rm A/m^2}$. Однако, несмотря на достигнутые успехи, полученные значения критических токов продолжают оставаться существенно ниже критического тока распаривания Гинзбурга-Ландау ($J_c^{GL} \approx 10^{13} \text{ A/m}^2$). С исчерпанием возможностей повышения J_c в ВТСП-материалах лишь с помощью техники пиннинга становится очевидным поиск и других фундаментальных причин ограничения J_c в ВТСПматериалах. Выявление новых проблем и нахождение других технологических рецептов дополнительного повышения J_c в ВТСП-материалах до уровня J_c^{GL} и их правильная интерпретация будет иметь большое значение как для физики, так и для электроники, электро- и магнитоэнергетики. Для более доступного

с технологической точки зрения YBa₂Cu₃O_{7-x} (YBCO) установлено, что даже самые совершенные монокристаллы ҮВСО содержат большое количество регулярно расположенных границ двойникования (ГД) с плоскостью двойникования (110). В зависимости от способа приготовления материала ГД могут иметь ширину $\Delta d \approx (30-50) \cdot 10^{-10}$ m, а расстояние между ГД может составлять $d \approx (200-2000) \cdot 10^{-10} \,\mathrm{m}$ [1,2]. Такое соотношение параметров приводит к тому, что физические свойства слоистых ВТСП-материалов становятся очень чувствительными к незначительным пространственным неоднородностям, так как их длина когерентности является величиной одного порядка с шириной ГД, межслойными, межатомными и межэлектронными расстояниями [2,3]. Следует отметить, что наличие ГД присуще самой природе ВТСП-УВСО, так как двойниковые домены образуются в результате структурного фазового перехода из тетрагонального (несверхпроводящего) в орторомбическую (сверхпроводящую) фазу при температуре $\sim 700^{\circ}{
m C}$ и/или изменения стехиометрии образцов путем легирования [4,5]. Так как свойства ГД ярко проявляются также и в других купратах (лучше — в соединениях LaSrCuO), а также в пниктидах железа (двойниковых, ромбических, недостаточно допированных кристаллах Ва(Fe_{1-x}Co_x)₂As₂) [6], то от ГД избавиться не удастся, и с ними придется считаться. С другой стороны, как вытекает из вышесказанного, ВТСП-материалы имеют сложную кристаллическую структуру, состоящую из двойников (монодомены, кристаллиты-зерна, суб- и нанокристаллиты), соединенных между собой слабыми джозефсоновскими связями. Это приводит к сильной зависимости магнитотранспортных свойств ВТСПматериалов от плотности "разрезающих" их сети слабых связей, в частности, от плотности и пространственного распределения ГД. В работах [3,7] показано, что с ростом внешнего магнитного поля из-за подавления междвойниковых джозефсоновских критических токов и слабых связей с внешними и внутренними локальными полями размагничивания, ВТСП-образец поэтапно скачком "распадается" на группы двойников с квантованными пространственными масштабами. Развитие такого сценария приводит к тому, что возникающие в процессе "деления" образца группы двойников еще и сортируются по размагничивающим факторам *п*. Из-за высокого уровня внутридвойниковых токов происходит повышение уровня сигнала магнитного отклика за счет одновременного охвата рабочей поверхностью датчика большого количества двойников с близкими *n*, которые содержатся в каждой группе двойников. Кроме того, распад образца на двойники приводит к тому, что линейные размеры двойников, поэтапно уменьшаясь, становятся намного меньше, чем λ — глубина проникновения магнитного поля в образец и в его двойники [3,7]. Исходя из сложившейся ситуации, возникают вопросы о правомерности применения к ВТСП-материалам имеющихся в настоящее время скорректированных аналитических [8] и обобщенных [9] моделей критического состояния Бина [10] для жестких сверхпроводников II рода, позволяющих адекватно описать распределения профиля потока и плотности тока в образце, а также однозначного определения $J_{\rm c}$ из экспериментальных результатов. С ростом поля ВТСП-УВСО скачкообразно распадаются на двойники все меньших размеров с упрочняющимися междвойниковыми слабыми связями, увеличивающимися междвойниковыми и внутридвойниковыми критическими токами. Следовательно, в процессе проникновения поля в образец и двойники происходит изменение *n*, и для описания магнитных свойств ВТСПматериала и физических процессов в джозефсоновской среде необходимо исследовать магнито-полевую зависимость эффективного размагничивающего фактора образца $n_{\rm eff}(H_0)$ (см. ниже). Кроме этого, до сих пор не проведены исследования по выяснению влияния на плотность междвойникового критического тока Ј с полей размагничивания образца (H_D) и его двойников (H_{Dtr}) , созданных экранирующими мейснеровскими критическими токами двойников (*J*_{cg}), внутридвойниковыми критическими токами пиннинга (J_{cp}) и эффективными критическими токами двойников (J_{ceff}) . Следовательно, определение при помощи магнитных и магнитотранспортных методов фундаментальных величин первого (H_{c1}) и второго (H_{c2}) критических магнитных полей и практически значимой величины J_c, которые играют исключительно важную роль в электродинамике сверхпроводников II рода, без учета $J_{\rm c}(H_{\rm D})$ образца и $J_{\rm c}(H_{\rm Dtr})$ двойников, является достаточно корректным для изотропных (с кубической симметрией кристаллической решетки) длинных цилиндрических или бесконечных плоских образцов однородных сверхпроводников с поверхностью, параллельной магнитному полю. Даже при восстановлении по результатам рентгенографических или нейтронографических исследований функций распределения двойников по форме, размерам, взаиморасположению и ориентации, получение достоверной информации об H_{c1} , H_{c2} , J_c без учета $J_{\rm c}(H_{\rm D})$ образца и $J_{\rm c}(H_{\rm Dtr})$ двойников представляется весьма проблематичным. Таким образом, учитывая определяющую роль H_D и H_{Dtr} в формировании макроскопических параметров поликристаллических ВТСПматериалов, при построении модели критического состояния необходимо скорректировать и численно смоделировать уравнения, представляющие модель. При наличии информации о величине $J_{\rm c}(H_{\rm D})$ и $J_{\rm c}(H_{\rm Dtr})$, их зависимости от внешнего поля, температуры, размеров и пространственного распределения двойников можно установить величину, пространственное распределение, а также полевую и температурную зависимость термодинамического поля H_i [3,7]. Это, в свою очередь, поможет построить обобщенную аналитическую модель однородно намагниченного образца, позволяющую адекватно описать пространственные распределения профиля потока и плотности тока в ВТСП-образце. Построение такой модели очень важно для более глубокого изучения физических процессов, происходящих в образце, двойниках и джозефсоновской среде в целом. Кроме того, создается возможность однозначно определить Јс из экспериментальных результатов, упростить процедуру расчета J_c и повысить его точность.

Экспериментальные методики и образцы

2.1. Детали эксперимента

Вышеуказанные исследования проводились с помощью ранее предложенной осцилляционной дифференциальной методики локального приближения для изучения особенностей взаимодействия кристаллической и магнитной микроструктур сверхпроводников. Методика, разработанная на принципиально новой физической основе, позволяет повлиять на образец осциллирующим затухающим локальным магнитным полем со ступенчато регулируемой амплитудой и частотой. Путем локального приближения к пространственной области магнитного отклика и дифференциального способа регистрации сигнала создается возможность экспериментально выделить границу раздела вихревых и мейснеровских областей и исследовать распределение внутренних локальных полей размагничивания в ВТСП-ҮВСО вблизи и на ГД. В основе разработанной прецизионной осцилляционной дифференциальной методики локального приближения [3,7] лежит регистрация вызванных захваченным магнитным потоком величин H_D и H_{Dtr} , которые возникают только от фронта осциллирующего затухающего локального магнитного поля. Для этого параллельно создающему внешнее поле соленоиду с индуктивностью $L \approx 4.22 \,\mathrm{Hn}$ и активным сопротивлением обмотки $R \approx 92.6 \,\Omega$ при температуре 77.4 К включается емкость $(C \approx 2.5 \cdot 10^{-8} \,\mathrm{F})$. После подачи на образованный LCконтур ступени постоянного напряжения в соленоиде возникало осциллирующее затухающее локальное магнитное поле $H(t) = H_0 \exp(-\beta t) \cos \Omega t$. В этом выражении $\beta = R/(2L) \approx 22 \,\mathrm{s}^{-1}$ — коэффициент затухания, $\Omega = (\omega^2 - \beta^2)^{1/2} \approx 352 \,\mathrm{Hz}$ — собственная частота колебательного контура, $\omega^2 = 1/(LC)$. Так как амплитуда колебания $H_{o} \exp(-\beta t)$ от значений H_{o} до $-H_{o}$ экспоненциально затухала до нуля, то захват потока от переменного поля не происходил, и фиксировался захват только от поля H_o. Максимальная амплитуда осциллирующего затухающего локального магнитного поля достигала $\sim 8\cdot 10^{-2}\,T$ и менялась ступенчато с шагом $\Delta H_0 \approx 4.66 \cdot 10^{-4}$ Т.

Исследование $H_D(H_o)$ с помощью предложенной методики проводилось в режимах охлаждения в нулевом поле (zero field cooling, ZFC) и охлаждения в нулевом поле с накоплением магнитного потока (zero field cooling with magnetic flux accumulation, ZFCMFA) следующим образом:

а) Режим ZFC — образец охлаждался до температуры жидкого азота в нулевом магнитном поле, затем подавалась ступенька внешнего магнитного поля, и через 300 s на поверхности в центре образца измерялось $H_{\rm D}$. Далее образец нагревался до температуры выше $T_{\rm c}$, и эксперимент повторялся для другой ступеньки $\Delta H_{\rm o}$.

б) Режим ZFCMFA отличается от режима ZFC тем, что после первоначального захвата без изменения величины H_D и без нагревания образца подавалось поле ΔH_o следующей ступени и через 300 s измерялось суммарное H_D и т.д.

В режиме ZFC обеспечивается непосредственное взаимодействие магнитного поля с образцом, находящимся в мейснеровском состоянии, тем самим исследуются макроскопические свойства образца. Так как в режиме ZFCMFA магнитный поток от предыдущей ступени уже заморожен в образце, то в данном режиме производится поэтапное подавление токов слабых связей полями рассеяния предварительно захваченных в образце вихрей и по возможности обеспечивается взаимодействие внешнего поля с раздельными двойниками [3,7]. Таким образом, в отличие от режима ZFC, режим ZFCMFA, кроме макроскопических BTCП-свойств, позволяет также изучить физические процессы внутри образца.

Рис. 1. Временная диаграмма работы установки для произвольных параметров L и C контура LC, демонстрирующая процесс создания осциллирующего затухающего локального магнитного поля в режимах ZFC и ZFCMFA. Для упрощения процедуры анализа полученных результатов величину ступеней монотонно шаг за шагом увеличивали на равную величину через одинаковые интервалы времени t.

На рис. 1 для произвольных параметров L и C контура LC приведена временная диаграмма работы установки, демонстрирующая процесс создания осциллирующего затухающего локального магнитного поля в режимах ZFC и ZFCMFA. Для упрощения процедуры анализа полученных результатов величину ступеней монотонно шаг за шагом увеличивали на равную величину через одинаковые интервалы времени. Пространственные разрешения используемых методик и точность измерения также зависят от длительности подачи ступени, времени после снятия ступени осциллирующего затухающего локального магнитного поля и начала измерения, так как с возрастанием t сокращается влияние релаксационных процессов (время входа потока в образец и время выхода потока из него) на результат измерения. Обычно за время $t = 300 \, \text{s}$ заканчивается быстро релаксирующая часть плотности захваченного магнитного потока, и в образце устанавливается "жестко" закрепленная вихревая решетка. С помощью процедуры вычитания из измеренной в режиме ZFC H_{D1} величины H_{D2}, измеренной в режиме ZFCMFA, исключалось влияние на результаты измерений поверхностного барьера, краевого и объемного пиннингов образца и двойников. Такая процедура вместе со ступенчатым изменением амплитуды ΔH_{0} приложенного к образцу осциллирующего затухающего локального магнитного поля позволяет осуществить переход от гауссовского к δ-подобному пространственному распределению H_{Dtr}. Кроме этого, проведенная таким образом процедура дифференцирования магнито-полевой зависимости $[(H_{D1} - H_{D2})/\Delta H_o](H_o)$ позволяет обнаружить скачкообразное изменение производной $\Delta H_{\text{Dtr}}/\Delta H_{0}$ в области полей, когда граница раздела вихревых и мейснеровских областей пересекает ГД. Это существенно сужает ширину σ -подобного распределения и с более высокой точностью выделяет составляющие, связанные с мейснеровскими экранирующими токами образца и его двойников. Таким способом удается отделить ГД от межзеренных слабых джозефсоновских связей и обнаружить не только протяженные ГД, но и мелкие ГД, замаскированные со стороны длинных межзеренных связей, дислокаций и других линейных дефектов. С целью плавного перехода от больших пространственных масштабов к малым после каждого цикла измерений высоту ступенек поля ΔH_{o} постепенно уменьшали до минимальной, при этом образец нагревали до температуры выше Т_с и заново охлаждали до температуры T = 77.4 К. Такой подход позволял поэтапно передвигать фронт магнитного поля вглубь образца, двойников и обратно. В свою очередь это давало возможность следить за движением границы раздела вихревых и мейснеровских областей. Так как по условию эксперимента влияние заднего фронта осциллирующего затухающего локального магнитного поля исключалось, то зондирование объема образца с помощью фронта переменного затухающего магнитного поля позволяло раздельно исследовать магнитное состояние областей с одинаковыми критическими параметрами, производить "локальный" захват потока и изменять топологию захваченного магнитного потока с помощью фронта поля, и с ростом внешнего поля границу раздела вихревых и мейснеровских областей постепенно локализовать вокруг двойников с наиболее высокими критическими параметрами (H_{c1i}, J_{ci}, T_{ci}). Это позволяет селективно разделить малоугловые и большеугловые границы зерен. Таким способом также создается возможность получить полезную информацию о магнитных свойствах образцов в зависимости от кристаллографической микроструктуры таких пространственно неоднородных сверхпроводников, каковыми являются ВТСП-материалы.

Исследования зависимости $H_{\rm D}(H_{\rm o})$ проводились при температуре жидкого азота (77.4 К) с помощью преобразователей Холла (ПХ) с размерами рабочей области $(0.1 \times 0.05)10^{-6} \text{ m}^2$ и коэффициентами преобразования $\sim 0.12 \,\mathrm{V} \cdot \mathrm{T}^{-3}$. Для измерения $H_{\mathrm{D}}(H_{\mathrm{o}})$ один из преобразователей ПХ1 устанавливался в центре геометрической оси на поверхности образца, а второй ПХ₂ — в невозмущенном поле вдали от образца. Оба ПХ имели близкие технические параметры, находились в одной плоскости и были включены в противофазе. Коэффициенты преобразования ПХ выравнивались за счет независимой регулировки тока через ПХ2. Для исключения влияния паразитных полей тока через ПХ1 на результаты измерения ток пропускался через бифилярно намотанные проволоки с малым шагом накрутки. Второй из медных проводов наклеивался посередине с обратной стороны подложки ПХ₁ и питался от отдельного регулируемого источника тока. Установка позволяла регистрировать сигнал ПХ с точностью не хуже $2.5 \cdot 10^{-7}$ Т и перемещать ПХ от центра вдоль оси z и к периферии образца [11,12]. Магнитное поле было направлено перпендикулярно плоскости образцов. Компонента поля Земли Н₂ компенсировалась катушкой, коаксиальной задающему внешнее магнитное поле соленоиду.

2.2. Образцы

Для сравнительного анализа исследования проводились на образцах ҮВСО с разными толщинами, микроструктурами и с разной высотой краевого барьера, объемным пиннингом, размагничиванием и величиной J_c. Образцы в форме диска диаметром $\sim 8 \cdot 10^{-3}$ m, изготовленные из массивных текстурированных (ось с перпендикулярна плоскости образца) квазимонокристаллических и поликристаллических YBCO, имели толщину $\sim (0.7 - 4.2) \cdot 10^{-3}$ m. Из температурной зависимости индуктивности $\ell(T)$ для квазимонокристаллического и поликристаллического образцов ҮВСО были получены $T_{\rm c} \approx 92 \, {\rm K}$ и $\Delta T_{\rm c} \approx 1 \, {\rm K}$. Критическая температура измерялась с помощью резонансного измерителя индуктивности чувствительностью ~ 10⁻⁶ Hn в частотном диапазоне (355-505) · 10³ Hz с температурной зависимостью индуктивности микросоленоида $\ell(T)$, где $\ell \approx 6.5 \cdot 10^{-5}\,\mathrm{Hn.}$ Квазимонокристаллические и поликристаллические образцы вырезались из заготовки цилиндрической формы. С целью исключения неоднородности распределения кислорода на торцах по отношению к объему торцевые поверхности образцов удалялись алмазным резцом. Квазимонокристаллические плавленые текстурированные образцы ҮВСО синтезировались с помощью затравки, устанавливаемой сверху при высокой температуре. Под микроскопом по периметру и на хорошо отполированной механическим образом поверхности были видны блестящие (монокристаллические) блоки с размером $\sim 10^{-5} \, {
m m}^2$, разделенные узкими включениями зеленного оттенка. Это подтверждало картографирование захваченного магнитного потока с помощью ПХ. Критический ток измерялся по четырехзондовой схеме на брусках сечением $\sim (0.7 \times 0.7) \cdot 10^{-6} \, m^2$, вырезанных из тех же заготовок и зашлифованных по толщине и по ширине. Контакты наносились с помощью серебряной пасты. Поликристаллические текстурированные образцы YBCO радиусом $R \approx 4 \cdot 10^{-3}$ m и толщиной $h \approx 0.7 \cdot 10^{-3}$ m со средним размером двойников $\sim 10^{-6}$ m имели $J_c \approx 6.5 \cdot 10^6$ A/m² (образец № 1). Квазимонокристаллические текстурированные образцы YBCO радиусом $\sim 4 \cdot 10^{-3}\,m$ и толщиной $\sim 0.7 \cdot 10^{-3}\,m$ имели $J_c \approx 4.5 \cdot 10^6 \text{ A/m}^2$ (образец № 2).

3. Результаты

На рис. 2 для образцов № 1 и 2 приведены а) магнитополевые зависимости полей размагничивания образца $H_D(H_o)$ и b) нормированного на максимальное значение поля размагничивания $(H_D/H_D^{max})(H_o)$. Кривые 1 и 2 соответствуют образцу № 1, кривые 3 и 4 — образцу № 2. Кривые 1 и 3 измерены в режиме ZFC, а кривые 2 и 4 — в режиме ZFCMFA. Как видно из рис. 2, *a*, при слабых полях кривые 1-4 слабо растут, после значения полей $H_{c1} \approx 70 \cdot 10^{-4}$ T (кривая 1) и $H_{c1} \approx 60 \cdot 10^{-4}$ T (кривая 3) кривые 1-4 начинают расти резко, и в области сильных полей постепенно достигают

Рис. 2. *a*) Типичные магнитополевые зависимости $H_D(H_o)$. *b*) Нормированные $(H_D/H_D^{max})(H_o)$. Кривые *1* и 2 — для образца № 1, кривые 3 и 4 — для образца № 2. Кривые *1* и 3 измерены в режиме ZFC, кривые 2 и 4 — в режиме ZFCMFA. Температура $T \approx 77.4$ К. (μ_0 — магнитная постоянная.)

насыщения. При этом кривые 1 и 3 растут быстрее по сравнению с кривыми 2 и 4. Зависимости $H_{\rm D}(H_{\rm o})$, приведенные на рис. 2, а для образца N_{0} 1 (кривые 1 и 2) и для образца № 2 (кривые 3 и 4), позволяют разделить величины H_{Dtr} двойников и H_D образца, вызванные поверхностными токами образца J_c. С другой стороны, согласно рис. 2, b, на зависимостях $(H_D/H_D^{max})(H_o)$, как кривые 1 и 2 для образца № 1, так и кривые 3 и 4 для образца № 2 почти сливаются, при этом кривые 3 и 4 быстрее достигают области насыщения, чем кривые 1 и 2. Как будет показано ниже, такой результат указывает на то, что поскольку плотность экранирующих мейснеровских критических токов Јсд двойников более чем на два порядка превышает плотность критических токов пиннинга двойников Јср и примерно на пять порядков превышает плотности внутридвойниковых эффективных критических токов двойников J_{ceff} , то в присутствии внешнего магнитного поля локальные поля размагничивания в основном создаются током J_{cg} , а в отсутствие поля — током J_{cp} .

На рис. 3 для образцов № 1 и 2 приведены магнитополевые зависимости полей размагничивания двойников $H_{\text{Dtr}}(H_{\text{o}})$, отражающие динамику изменения разности $H_{\text{Dtr}} = H_{\text{D1}} - H_{\text{D2}}$ в зависимости от поля. Кривая 1 соответствует разности кривых 1 и 2 для образца № 1, кривая 2 соответствует разности кривых 3 и 4 для образца № 2. Как видно из рис. 3, при термодинамических первых критических магнитных полей двойников (H_{ic1}) на кривых 1 и 2 возникают скачки. H_{ic1} это поле внутри образца, которое можно определить из выражения $H_{\text{ic1}} = H_{\text{o}}/(1 - n_{\text{eff}})$, где n_{eff} описывает изменение n по ходу проникновения поля в образец. Вышеописанная осцилляционная дифференциальная методика локального приближения позволяет селективно

Рис. 3. Магнитополевые зависимости полей размагничивания двойников $H_{\text{Dtr}}(H_{\text{o}})$ отражающие разницу кривых *1* и *2* из рис. 2, *a* (кривая *1*) и *3*, и *4* из рис. 2, *a* (кривая *2*). Температура T = 77.4 К.

выделить границу раздела вихревых и мейснеровских областей и усилить проявление ГД. Как показано [3,7], граница раздела вихревых и мейснеровских областей, в свою очередь, представляет собой *n*_{eff}.

На рис. 4, *а* для образца № 1 (кривая *I*) и для образца № 2 (кривая *2*) приведены магнито-полевые зависимости $H_{ic1}(H_0)$. Как видно из рис. 4, *a*, с ростом поля растет H_{ic1} ; это вызвано тем, что с распадом образца на все более мелкие двойники растет J_{cg} этих двойников и уменьшается их *n*, из-за чего усложняется проникновение поля в образец.

Рис. 4. Магнитополевые зависимости: *a*) термодинамического первого критического магнитного поля $H_{ic1}(H_o)$ для образца № 1 (кривая *I*) и для образца № 2 (кривая *2*); *b*) зависимости $J_{cg}(H_{ic1})$ в полулогарифмическом масштабе для образцов № 1 (кривая *I*) и № 2 (кривая *2*). Точки на кривой соответствуют значениям J_{cg} , рассчитанным для характерных значений $H_{textic1}$, при которых на кривых *I* и *2* рис. 3 появляются особенности. Температура T = 77.4 К.

Плотность экранирующих мейснеровских критических токов J_{cg} двойников можно определить из выражения [13]:

$$J_{\rm cg} = 10H_{\rm c}/(4\pi\lambda). \tag{1}$$

На рис. 4, b в полулогарифмическом масштабе приведены магнито-полевые зависимости $J_{cg}(H_{ic1})$ для образцов № 1 (кривая 1) и № 2 (кривая 2). Точки на кривых 1 и 2 соответствуют значениям J_{сg}, рассчитанным для характерных значений H_{ic1} , при которых на кривых 1 и 2 на рис. З появляются особенности. Как видно из рис. 4, b, мейснеровские экранирующие критические токи линейно зависят от поля. Такой результат связан с тем, что в области слабых полей (после проникновения магнитного потока в образец происходит быстрый рост) поле в основном сосредоточено в междвойниковом пространстве. Происходит поэтапное подавление междвойниковых джозефсоновских критических токов контуров больших размеров, состоящих из двойников, соединенных между собой слабыми джозефсоновскими связями. Постепенная трансформация контуров больших размеров в конгломераты двойников и контуры меньших размеров заканчивается проникновением потока в междвойниковом пространстве. Далее поток проникает вовнутрь двойников с более высокими критическими токами и растущих в процессе распада двойников на более мелкие двойники. Таким образом, замедляется процесс роста $J_{cg}(H_{ic1})$. Согласованный ход зависимостей J_{cg}(H_{ic1}) для образцов № 1 и 2 показывает, что несмотря на усиление критических токов слабых связей с уменьшением размеров двойников, они тем не менее распадаются на более мелкие двойники. Из полученных результатов также следует, что именно распад образца на суб- и нанокристаллы с малыми размагничивающими факторами является причиной ослабления влияния на критический ток внешнего магнитного поля и протекание через ВТСП-образец ненулевого транспортного тока вплоть до очень сильных магнитных полей.

С целью выбора модели, позволяющей определить плотность эффективного критического тока намагничивания образца J_{ceff} в областях насыщения, возникающих после скачков H_{Dtr} на рис. 3, были проведены следующие операции. Сначала с помощью ПХ₁ для разных амплитуд осциллирующего затухающего локального магнитного поля и транспортных токов, проходящих перпендикулярно силовым линям осциллирующего затухающего локального магнитного поля, были измерены осевые распределения плотности захваченного магнитного потока $[H_{\text{tr}}(z)](H_{\text{o}}), [H_{\text{tr}}(z)](I)$ и построены нормированные осевые распределения $[H_{\text{tr}}(z)/H_{\text{tr}}(0)](H_{\text{o}}, I)$. Затем по закону Био-Савара в рамках модели Бина [10] для не зависящей от поля тока постоянной J_{c} рассчитывались осевые распределения

$$H_{\rm tr}(z) = (2\pi/c)J_{\rm c} \times \{(h+z) \arcsin h[(R/(h+z)] - z \arcsin h(R/z)\}.$$
(2)

и нормированные осевые распределения

$$H_{\rm tr}(z)/H_{\rm tr}(0) = [1/h \arcsin h(R/h)] \\ \times \{(h+z) \arcsin h[(R/(h+z)] - z \arcsin h(R/z)\}.$$
(3)

Далее по закону Био-Савара при использовании приближенной модели однородно намагниченного образца

Рис. 5. Для образцов № 1 и 2 приведены: *a*) магнитополевая зависимость линейных размеров суб- и нанокристаллитов *d* от характерных значений H_{ic1} , кривая 1 - для образца № 1, кривая 2 - для образца № 2; *b*) зависимости $J_{cg}(1/d)$. Температура T = 77.4 К.

рассчитывались осевые распределения

$$H_{\rm tr}(z) = (2\pi/c)J_{\rm c} \times \{(h+z)^2/[(h+z)^2 + R^2]^{1/2} - z^2/(z^2 + R^2)^{1/2}\}.$$
(4)

и нормированные осевые распределения

$$H_{\rm tr}(z)/(H_{\rm tr}(0) = [(h^2 + R^2)^{1/2}/h^2] \times \{(h+z)^2/[(h+z)^2 + R^2]^{1/2} - z^2/(z^2 + R^2)^{1/2}\}.$$
(5)

Сравнение экспериментальных кривых $H_{tr}(z)/H_{tr}(0)$ с теоретическими кривыми, построенными по формулам (3) и (5), показало, что в полях $\sim (1-60) \cdot 10^{-4} \,\mathrm{T}$ экспериментальная кривая хорошо описывается формулой (3), а при полях $\sim (1-800) \cdot 10^{-4} \,\mathrm{T}$ — формулой (5). При пропускании транспортного тока через образец увеличение тока также приводит к разрушению слабых связей, и отношение $H_{tr}(z)/H_{tr}(0)$ приближается к случаю одинаково намагниченных изолированных двойников. Следует отметить, что для сравнительного анализа мы также проводили исследование с помощью ПХ с разными рабочими поверхностями S_{HP}. Было обнаружено, что как при росте, так и при уменьшении расстояния между поверхностями образца и ПХ, рост $S_{\rm HP}$ демонстрировал все больший уход $H_{\rm tr}(z)/H_{\rm tr}(0)$ от модели Бина, описываемой формулой (3). С увеличением z увеличивается поле обзора, и ПХ начинает замечать изменение распределения двойников и вихрей от центра к краю образца. В случае модели однородно намагниченного образца рассчитанная по формуле (5) зависимость $H_{tr}(z)/H_{tr}(0)$ и измеренные кривые, как при росте, так и при уменьшении z, хорошо ложились друг на друга и почти не менялись при заменах ПХ с разными S_{HP}.

Таким образом, в центре на поверхности образца из формулы (4) для z = 0 имеем

$$J_{\text{ceff}} = (c/2\pi)H_{\text{Dtr}}(h^2 + R^2)^{1/2}/h^2.$$
 (6)

Размеры двойников можно определить из следующего выражения

$$d = (\Phi_0/H_{\rm ic1})^{1/2},\tag{7}$$

где Φ_0 — квант магнитного потока.

Как видно из рис. 5, *a*, с ростом поля кривые *1* и *2* имеют плавный монотонный характер спада, при этом линейные размеры суб- и нанокристаллитов *d* для образца № 1 спадают от $4.9 \cdot 10^{-7}$ m до значения $1.8 \cdot 10^{-7}$ m (для наглядности начальные точки на графике не приведены). Погрешность определения *d* определяется разбросом размеров суб- и нанокристаллитов из-за нестрогой параллельности ГД и непостоянства их периода.

4. Модели и обсуждение

При помещении массивного сверхпроводника в слабое внешнее магнитное поле на поверхности образца индуцируются экранирующие токи, которые создают поле размагничивания H_D , направленное против внешнего магнитного поля H_o и компенсирующее его внутри образца. Именно поле H_D и вызывает искажение распределения поля вблизи поверхности сверхпроводника. Для эллипсоидального образца $H_D = 4\pi nI$, где I = M/V эффективная намагниченность образца, M — магнитный момент сверхпроводника, созданный экранирующими токами, а V — объем образца. Чем больше намагниченность образца $4\pi nI$, тем сильнее поле размагничивания H_D [14]. Производя в образце захват магнитного потока,

с его ростом можно проследить динамику образования изолированных двойниковых конгломератов, либо не взаимодействующих между собой одинаково намагниченных двойников, либо их сочетания [3,7]. Эффективная намагниченность двойников $I_{geff} = V_g^{-1}M_{geff}$ будет определяться эффективными сверхтоками отдельных двойников $J_{ceff} = c \cdot \text{rot}M_{geff}$ (где V_g — объем двойников, M_{geff} — эффективный магнитный момент двойников, c — скорость света).

В работе [3] приведена модель, демонстрирующая процесс распада монодомена квадратной формы (для удобства) на четыре кристаллита, каждый из которых, в свою очередь, распадается на четыре суб- и нанокристаллита. Согласно такой картине, внутри двойников в точках пересечения периодически расположенных ГД образуются внутридвойниковые стыковые вихри, а между ними — абрикосовские вихри. Вокруг этих вихрей циркулируют токи пиннинга J_{cp} . Также в междвойниковом пространстве в точках пересечения ГД образуются междвойниковые стыковые антивихри и джозефсоновские вихри, через которые замыкаются поля рассеяния внутридвойниковых стыковых вихрей и абрикосовских вихрей. Внутридвойниковые стыковые вихри и междвойниковые стыковые антивихри между собой сжимают абрикосовские и джозефсоновские вихри, ограничивая их движение; об этом свидетельствует слабая релаксация захваченного магнитного потока, с постепенным сведением его к нулю с ростом поля. При приложении осциллирующего затухающего локального магнитного поля по поверхности двойников текут токи J_{cg} обратного направления, которые создают поля размагничивания, направленные противоположно полям размагничивания, связанным с полями рассеяния вихрей, поддерживаемыми внутридвойниковыми токами J_{ср}. Экранирующие токи сжимают и локализуют поля размагничивания в ГД, и таким образом, результирующее полеH_{Dtr} подавляет критические токи J_c через междвойниковые слабые связи и приводит к распаду двойников больших размеров на более мелкие изолированные однородно намагниченные двойники с токами J_{ceff}. После снятия осциллирующего затухающего локального магнитного поля усиленная путем локализации H_{Dtr} по закону самоиндукции "замораживается", сохраняя образец в однородно намагниченном состоянии. Таким образом

$$J_{\rm cp} = J_{\rm cg} - J_{\rm ceff}.\tag{8}$$

Модель, объясняющую приведенные на рис. 2 результаты, можно качественно изобразить с помощью рис. 6. Для этого в режиме ZFCMFA путем первоначального захвата магнитного потока искусственно в виде полей размагничивания двойников *H*_{Dtr} в образце создается магнитный барьер для входа вихрей от следующей ступени поля. В дальнейшем, чтобы произвести захват магнитного потока от следующей ступени осциллирующего затухающего локального магнитного поля, сначала необходимо компенсировать поля размагничивания от

Рис. 6. Модель, объясняющая результаты, приведенные на рис. 2.

плотности захваченного магнитного потока B_{tr2} и снять заранее созданный магнитный барьер. Затем необходимо увеличивать магнитное давление на экранирующие мейснеровские токи двойников до тех пор, пока не произойдет распад образца на очередные более мелкие группы двойников с близкими п. С увеличением внешнего магнитного поля в итоге происходит полная компенсация H_{Dtr} , и силовые лини H_{o} приближаются к краям образца (штриховые красные линии на рис. 6). Согласно рис. 2, из-за многочисленных линейных и точечных дефектов в массивных образцах № 1 и 2 на кривых 1-4 не обнаруживаются скачки при одновременном проникновении потока в двойники после каждого их деления. Однако, как видно из рис. 3, после дифференцирования на кривых 1 и 2 отчетливо видны скачки при полях *H*_{ic1}. Согласно [3,7], для более чистых эпитаксиальных пленок YBCO на зависимостях $B_{tr2}(H_0)$ скачки обнаруживаются и без дифференцирования.

На рис. 7 для образцов № 1 (кривая *1*) и № 2 (кривая *2*) приведены зависимости: *а*) $J_{ceff}(H_{ic1})$; *b*) $J_{ceff}(J_{cg})$ и *c*) $J_{ceff}(1/d)$. Участки быстрого роста (a-b), (b-c) на кривых *1* рис. 7, *a* и *b* соответствуют тому, что при больших значениях *n* двойников с ростом поля они распадаются на группы двойников меньших размеров с близкими *n*, и это приводит к быстрому росту их H_{ic1}, J_{cg} и как следствие, к росту J_{ceff} . На кривых *1* рис. 7, *b* и *c*, скачкообразный рост J_{ceff} на участке (d-e) также связан с резким ростом J_{cg} и уменьшением *d* после распада двойников. Это было хорошо видно при сканировании полем с мелким шагом (на рисунках не показано). Области ,плато" отрезков (c-d), (e-f) на кривых *1* рис. 7, *a* и *b* и участки (c-d), (f-g) на рис. 7, *a*, области (b'-c'), (d'-e'), (f'-g') на кривых *2* рис. 7, *a*, области

Рис. 7. Зависимости эффективного критического тока двойников: *a*) $J_{ceff}(H_{ic1})$; *b*) $J_{ceff}(J_{cg})$ и *c*) $J_{ceff}(1/d)$. Кривая I - дляобразца № 1, кривая 2 - для образца № 2. Температура T = 77.4 К.

(a'-b'), (c'-d'), (e'-f'), (g'-h') на кривых 2 рис. 7, b и с соответствуют тому, что в этих областях не происходит деление двойников и сохраняются величины J_{cg}, J_{cp}, J_{ceff} . Отличие значений J_{ceff} на кривых 1 и 2 рис. 7 вызвано разными начальными значениями параметров J_c и d для образцов № 1 и 2.

На рис. 8 для образцов № 1 (кривая 1) и № 2 (кривая 2) приведены зависимости тока, представляющие собой разницу между J_c и J_{ceff}, измеренным по четырехзондовой схеме и по магнитным измерениям соответственно: $a) (J_{c} - J_{ceff})(H_{ic1}); b) (J_{c} - J_{ceff})(J_{cg})$ и c) $(J_{\rm c} - J_{\rm ceff})(1/d)$. В соотношении $J_{\rm c} - J_{\rm ceff}$ задающим является J_{ceff} . Следовательно, рост J_{ceff} на рис. 7 приводит к спаду $J_{\rm c} - J_{\rm ceff}$, качественному сохранению вида плато и спаду на кривых 1 и 2 рис. 8. Таким образом, как видно из полученных результатов, именно соотношение токов (8) влияет на появление участков роста, спада и плато, изменение их протяженности, линейных участков с изломами зависимостей, приведенных на рис. 7 и 8. От соотношения (8) также зависит разный характер поведения кривых 1 и 2 для образца № 1 и кривых 3 и 4 для образца № 2 рис. 2, *b*.

Подстановкой в (8) значений $J_{\rm ceff}$ и $J_{\rm cg}$ для $J_{\rm cp}$ при поле ~ $8 \cdot 10^{-2}$ Т получим ~ 10^9 А/м², что хорошо согласуется с приведенными в разных источниках оценками внутризеренных токов.

Как видно из рис. 8, а и формулы (8), для образцов № 1 и 2 при поле $\sim 8 \cdot 10^{-2} \,\mathrm{T}$ H_{D} и H_{Dtr} подавляют $J_{\rm c}$ на ~ 70 и 60% соответственно. Для образцов с высокими $J_{\rm c}$ такое падение тока составляет существенную долю уменьшения тока при магнитотранспортных измерениях. Согласно литературным данным, поле $\sim 10^{-2}\,{
m T}$ более чем на два порядка подавляет $J_{\rm c}$ со значением $\sim 5 \cdot 10^7 \, {\rm A/m^2}$. Как вытекает из приведенных на рис. 8 в,г данных, с ростом J_{cg} и уменьшением d снижается $J_{\rm c} - J_{\rm ceff}$. Однако, согласно рис. 5, b, с уменьшением d происходит рост J_{cg} , и это обстоятельство приводит к тому, что влияние на J_c экранирующего тока J_{cg} становится более сильным и, как было сказано выше, с уменьшением d влияние J_{cg} еще усиливается из-за уменьшения числа ГД внутри двойников. В работах [15,16] без учета влияния H_D и $H_{\rm Dtr}$ на $J_{\rm c}$ показано, что низкие значения $J_{\rm cg}$ и dприводят к увеличению J_c, так как с уменьшением d увеличивается влияние пиннинга внутри двойников и в междвойниковом пространстве. Именно для проверки данного заключения мы изначально взяли образцы с меньшими значениями *d* и высокими *J*_c (образец № 1) и образцы с большими значениями d и низкими J_c (образец № 2). Как вытекает из полученных результатов, приведенных на рис. 7 и 8, при увеличении J_{cg} (как и в случае работ [15,16]) происходит уменьшение J_c , а уменьшение d приводит не к увеличению, а наоборот, к уменьшению J_c. Такой результат также подтверждается тем, что с ростом поля при распаде двойников больших размеров на двойники меньших размеров с близкими *n*,

Рис. 8. Зависимости разницы токов J_c и J_{ceff} , измеренным по четырехзондовой схеме и по магнитным измерениям соответственно: a) $(J_c - J_{ceff})(H_{ic1})$; b) $(J_c - J_{ceff})(J_{cg})$ и c) $(J_c - J_{ceff})(1/d)$. Кривая I — для образца № 1, кривая 2 — для образца № 2. Температура T = 77.4 К.

4 Физика твердого тела, 2023, том 65, вып. 9

с одной стороны, увеличиваются J_{cg} и J_{ceff} из-за уменьшения числа ГД внутри двойников, что приводит к уменьшению J_c; с другой стороны, согласно рис. 5, b и рис. 8, b и c, влияние J_{cg} и J_{ceff} на J_c усиливается с уменьшением влияния H_{Dtr} за счет уменьшения n двойников из-за их меньших размеров. Таким образом, необходимо скорректировать результаты работ [15,16] с учетом фактов о существенном влиянии $H_{\rm D}$ и $H_{\rm Dtr}$ на $J_{\rm c}$. Как видно из полученных результатов, предложенная модель однородно намагниченного образца, в отличие от скорректированных аналитических и обобщенных моделей критического состояния Бина, позволяет однозначно определить не только междвойниковые, внутридвойниковые и экранирующие мейснеровские критические токи, термодинамические первые критические магнитные поля двойников, линейные размеры двойников, эффективный размагничивающий фактор образца в процессе проникновения в него поля и т.д., но и описать физические процессы в такой сложной естественно образованной джозефсоновской среде, каковой являются ВТСП-материалы. Кроме того, так как с ростом поля происходит поэтапный скачкообразный распад двойников больших размеров на группы двойников меньших размеров, которые в свою очередь сортируются с близкими размагничивающими факторами, токами J_{cg}, J_{ср} и междвойниковыми джозефсоновскими энергиями связей между ними, то соответственно этим параметрам, внутри каждой отдельно взятой изолированной группы двойников может реализоваться модель Бина. Дальнейший рост поля приведет к распаду уже этих двойников на сравнительно меньшие по размерам двойники с более высокими энергиями связи и токами J_{cg}, J_{cp}. Внутри образовавшихся групп также может реализоваться модель Бина, и будет происходить переход от двойников с низкими параметрами к двойникам с более высокими параметрами, и т.д. Самой высокой междвойниковой джозефсоновской энергией связи обладают нанокристаллиты, которые не имеют внутри себя ГД. Таким образом, согласно полученным результатам, ВТСП-материалы являются многоступенчатой системой, и это приводит к тому, что из-за постепенного скачкообразного подавления междвойниковой энергии джозефсоновских связей модель Бина на макроскопическом размере образца не наблюдается. Следовательно, для описания магнитных свойств ВТСП во всем диапазоне магнитных полей и токов с помощью обобщенной модели Бина необходимо "сшивать" друг с другом весь спектр моделей Бина, описывающих распределения поля и тока в пределах отдельно взятых изолированных двойников со своими размерами, критическими токами и полями. Таким образом, однозначное определение критических токов с помощью модели Бина в такой сложной, меняющейся с изменением поля джозефсоновской ВТСП-среде, является сложной, порой нерешаемой задачей. Из полученных результатов также следует, что модель Бина можно применить для описания пространственного распределения тока и поля в ВТСП-материале в области полей ниже первого критического магнитного поля двойников. Учитывая обстоятельства, что в области слабых полей в образце образуется иерархия сверхпроводящих контуров с разными критическими токами, полями и *n*, модель однородно намагниченного образца применима для описания магнитных свойств ВТСП-материала во всем диапазоне полей и токов.

5. Заключение

Путем воздействия осциллирующим затухающим локальным магнитным полем на поликристаллические и квазимонокристаллические текстурированные двойниковые образцы ҮВСО с разными размерами и критическими токами исследовано влияние полей размагничивания двойников на физические процессы в ВТСПобразце и его двойниках. Выяснена роль полей размагничивания образца H_D и H_{Dtr} двойников в формировании макроскопических и локальных фундаментальных параметров образцов ҮВСО. Показано, что в области полей $\sim (1-60) \cdot 10^{-4} \, \mathrm{T}$ нормированное осевое распределение остаточного поля хорошо описывается в рамках модели критического состояния Бина, а в диапазоне $\sim (1 - 800) \cdot 10^{-4} \,\mathrm{T}$ — в рамках модели однородно намагниченного образца. Такой результат также подтверждается при пропускании тока через образец в перпендикулярном к силовым линиям магнитного поля направлении. Предложенная модель объясняет перетрансформацию физических процессов в ВТСП под влиянием $H_{\rm D}$ и $H_{\rm Dtr}$ в однородно намагниченном образце с изолированными двойниками. При приложении осциллирующего затухающего локального магнитного поля по поверхности двойников текут экранирующие мейснеровские токи J_{сg}, создающие поля размагничивания, направленные противоположно полям размагничивания, связанным с полями рассеяния вихрей, которые поддерживаются внутридвойниковыми токами пиннинга J_{ср}. Таким образом, $H_{\rm D}$ и результирующее поле $H_{\rm Dtr}$ подавляют критические токи J_c через междвойниковые слабые связи и приводят к распаду двойников больших размеров на более мелкие изолированные однородно намагниченные двойники с токами $J_{\text{ceff.}}$ При поле $\sim 8 \cdot 10^{-2} \, \mathrm{T}$ получено значение $J_{\rm cp} \approx 10^9 \, {\rm A/m^2}$, что хорошо согласуется с приведенными в разных источниках оценками внутризеренных токов. Полученные результаты можно также распространить и на другие "многосвязные" имеющее двойниковую структуру сверхпроводники с разными свойствами и морфологией.

Финансирование работы

Работа выполнена за счет бюджетного финансирования в рамках государственного задания ФИРЭ им. В.А. Котельникова РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Nakahara, M.F. Boone, G.J. Fisanick Yan, D.W. Johnson. J. Appl. Phys. 63, 2, 451 (1988).
- [2] А.А. Абрикосов, А.И. Буздин, М.Л. Кулич, Д.А. Купцов.
 ЖЭТФ 95, 1, 371 (1989). [А.А. Abrikosov, А.І. Buzdin, М.L. Kulic, D.A. Kuptsov. JETP 68, 1, 210 (1989)].
- [3] Х.Р. Ростами. Письма в ЖЭТФ 108, 11, 755 (2018). [Kh.R. Rostami. JETP Lett. 108, 11, 734 (2018)].
- [4] Chemistry of High-Temperature Superconductors / Eds. D.L. Nelson, M.S. Whittingham, T.F. George. Am. Chem. Soc., Washington, DC (1987).
- [5] Физические свойства высокотемпературных сверхпроводников / Ред. Д.М. Гинзберг. Мир, М. (1990). [Physical Properties of High-Temperature Superconductors / Ed. D.M. Ginsberg. World Sciientific, Singapore (1990)].
- [6] B. Kalisky, J.R. Kirtley, J.G. Analytis, J.-H. Chu, I.R. Fisher, K.A. Moler. Phys. Rev. B 83, 6, 064511 (2011).
- [7] Kh.R. Rostami. Int. J. Mod. Phys. B 32, 31, 1850346 (2018).
- [8] Д.М. Гохфельд. ФТТ **56**, *12*, 2298 (2014). [D.M. Gokhfeld. Phys. Solid State **56**, *12*, 2380 (2014)].
- [9] А.А. Елистратов, И.Л. Максимов. ФТТ 42, 2, 196 (2000).
 [А.А. Elistratov, I.L. Maksimov. Phys. Solid State 42, 2, 201 (2000)].
- [10] C.P. Bean. Rev. Mod. Phys. 36, 1, 31 (1964).
- [11] Х.Р. Ростами. ЖТФ **90**, *12*, 2066 (2020). [Tech. Phys. **65**, *12*, 1975 (2020)].
- [12] Х.Р. Ростами. ПТЭ, 2, 112 (2016).
- [13] М. Тинкхам. Введение в сверхпроводимость. Атомиздат, М. (1980). [М. Tinkham. Introduction to superconductivity. McGraw-Hill (1975)].
- [14] Э. Линтон. Сверхпроводимость. Мир, М. (1971).
 [E.A. Linton. Superconductivity. Methuen, London (1964)].
- [15] V.M. Svistunov, A.I. D'yachenko. Supercond. Sci. Technol. 5, 2, 98 (1992).
- [16] J. Hecher, T. Baumgartner, J.D. Weiss, C. Tarantini, A. Yamamoto, J. Jiang, E. Hellstrom, D. Larbalestier, M. Eisterer. Supercond. Sci. Technol. 29, 2, 025004 (2016).

Редактор Е.В. Толстякова