12

Комбинированный твердотельный замыкающий ключ для коммутации сильноточного импульса

© А.П. Орлов, П.И. Голяков, Ю.В. Власов, П.Б. Репин

Российский Федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, 607190 Саров, Россия e-mail: orlov@ntc.vniief.ru

Поступило в Редакцию 25 мая 2023 г. В окончательной редакции 29 июня 2023 г. Принято к публикации 2 июля 2023 г.

Представлены результаты исследований твердотельного замыкающего ключа для коммутации сильноточного импульса. Эксперименты проведены на лабораторной установке с емкостным накопителем энергии, запитывающим импульсом тока с амплитудой ~ 450 kA разрядный контур с электровзрывным размыкателем тока. Разрядный контур состоит из двух участков, разделенных ветвью с замыкающим ключом, в межэлектродном зазоре которого может располагаться металлическая фольга. При срабатывании происходит пробой изоляции замыкающего ключа, что приводит к эффективному шунтированию участка разрядного контура, содержащего электровзрывной размыкатель тока. Разработанный комбинированный твердотельный замыкающий ключ в перспективе способен обеспечить многоканальную коммутацию сильноточного импульса в нагрузку синхронно с работой электровзрывного размыкателя тока.

Ключевые слова: коммутация тока, электровзрывной размыкатель тока, твердотельный замыкающий ключ, время срабатывания ключа, сопротивление ключа.

DOI: 10.21883/JTF.2023.09.56225.136-23

Введение

Явление, известное в физике как электрический взрыв проводника, представляет собой резкое изменение его физического состояния под действием импульсного электрического тока большой плотности, приводящее к исчезновению металлической электропроводности и сопровождающееся характерными для электровзрыва эффектами — излучением и образованием ударных волн [1]. Принцип электрического взрыва проводника заложен в основу работы электровзрывных размыкателей тока (ЭВРТ). По сравнению с другими типами размыкателей ЭВРТ отличается простотой конструкции и низкой собственной индуктивностью. Его рабочим телом является фольга или проволочки, расположенные в диэлектрической (дугогасящей) среде. ЭВРТ нашли применение при создании мощных источников энергии на основе взрывомагнитных генераторов для запитки лайнерных пондеромоторных узлов [2], а также для формирования высоковольтных импульсов в высокоимпедансных нагрузках [3,4]. В определенных условиях за счет быстрого роста сопротивления и низкой индуктивности ЭВРТ могут использоваться в качестве второго каскада обострения и формировать мегаамперные импульсы тока с фронтом $\sim 0.1 \,\mu s$ [5]. Подключение нагрузки в таких устройствах обычно производится с помощью твердотельного или газонаполненного замыкающего ключа (ЗК) [6]. Одна из возможных конструкций многоканального твердотельного разрядника для наносекундной коммутации мегаамперных токов предложена в работе [7].

К преимуществам твердотельных ЗК можно отнести их компактность, технологичность и способность удерживать высокие напряжения в течение длительного времени. Но есть и недостатки, к которым можно отнести относительно большое время срабатывания и высокие конечные значения сопротивления и индуктивности, приводящие к тому, что в контуре нагрузки формируется импульс тока с более длительным фронтом и значительно меньшей амплитудой, чем требуется. Высокие конечные значения сопротивления и индуктивности ЗК обусловлены формированием ограниченного количества каналов пробоя в объеме изолятора ЗК. Так, из экспериментов [6] известно, что в подобных устройствах при подаче на диэлектрик импульса напряжения с темпом нарастания $dU/dt < 10^{11}$ V/s образуется, как правило, только один канал. Для одновременного (в течение $\sim 10^{-9}\,\mathrm{s}$) образования множества каналов пробоя на диэлектрик необходимо подавать импульсы с крутизной фронта $dU/dt \ge 10^{12}$ V/s. Однако данное требование к скорости нарастания напряжения труднодостижимо в большинстве случаев, представляющих практический интерес. Обеспечить многоканальный режим работы ЗК можно при использовании внешнего управляющего высоковольтного импульса, но в этом случае, с учетом возможных отклонений амплитудновременных параметров работы индуктивного накопителя и ЭВРТ от заданных значений, момент подключения нагрузки, определяемый заранее заданным моментом подачи управляющего сигнала, может заметно отличаться от оптимального с точки зрения работы ЭВРТ. Также к недостаткам твердотельного ЗК следует отнести нестабильность момента его срабатывания, обусловленную разбросом значений пробивного напряжения диэлектрика, что, в свою очередь, может приводить к вариации от опыта к опыту времени нарастания и амплитуды импульса тока в нагрузке. Например, при пробое различных промышленных образцов лавсанового изолятора имеет место 30% разброс значений пробивного напряжения [8], связанный с наличием в нем микродефектов, неоднородностей и посторонних микровключений, влияющих на его электропрочность.

В настоящей работе представлены результаты исследований по разработке конструкции твердотельного ЗК, способного в перспективе обеспечить как многоканальную коммутацию сильноточного импульса в нагрузку в условиях, когда $dU/dt < 10^{12}$ V/s, так и синхронизацию момента подключения нагрузки с работой ЭВРТ. Выполнение последнего условия необходимо в случае отклонений работы индуктивного накопителя и ЭВРТ от расчетного режима, что особенно важно в дорогостоящих экспериментах с взрывомагнитными генераторами.

Исследования проведены на лабораторной электрофизической установке при токе амплитудой $\sim 450 \, \text{kA}$, нарастающем за время $\sim 1 \, \mu \text{s}$.

1. Описание установки и особенности ее работы

Эквивалентная электрическая схема экспериментальной установки для исследования работы замыкающего ключа представлена на рис. 1, *a*). В состав установки входят: конденсаторная батарея *1* емкостью 7.2 μ F с напряжением зарядки 83 kV; индуктивность *2* (70 nH), сопротивление *3* (20 mΩ) и емкость *4* (10 nF) кабельных линий, по которым подводится электрическая энергия от конденсаторной батареи к разрядному контуру; индуктивности *5* (20 nH) и *6* (24 nH) в разрядном контуре; ЭВРТ *7* с переменным сопротивлением.

В процессе работы устройства ток от источника 1 через индуктивности 5 и 6 подводится к ЭВРТ, состоящему из алюминиевой фольги, часть которой может располагаться в зазоре ЗК между потенциальным электродом и пленочным изолятором (комбинированный вариант ЗК, рис. 1, *b*). В результате протекания тока фольга сначала нагревается, затем плавится и начинает испаряться, что обусловливает резкий рост сопротивления ЭВРТ и повышение напряжения на ЗК. При срабатывании ЗК происходит шунтирование участка разрядного контура, состоящего из индуктивности 6 и ЭВРТ 7.

В отличие от варианта ЗК, в котором фольга в его зазоре отсутствует, в комбинированном ЗК наряду с повышением напряжения на нем вследствие электровзрыва фольги возникают сопутствующие факторы — ударная

Рис. 1. a — эквивалентная электрическая цепь установки для исследования ЗК. 1 — конденсаторная батарея, 2-4 — индуктивность, сопротивление и емкость подводящих линий, 5, 6 — индуктивность участков разрядного контура, 7 — сопротивление ЭВРТ, 8 — замыкающий ключ; b — схема комбинированного замыкающего ключа, состоящего из электродов (a), участка фольги ЭВРТ (b) и пленочных изоляторов (c). I_1 — ток через ЭВРТ, I_2 — ток через замыкающий ключ.

волна и электромагнитное излучение [1], обусловливающие многоканальный и азимутально однородный пробой ЗК [9].

Толщина фольги ЭВРТ подбирается расчетно-экспериментальным образом, так, чтобы ее электровзрыв происходил вблизи момента максимума тока в разрядном контуре. При этом толщина изолятора 3К должна обеспечивать его необходимую электропрочность и не допускать преждевременного срабатывания. В настоящей работе представлены результаты для варианта конструкции с оптимальным рабочим телом ЭВРТ в виде одного слоя алюминиевой фольги толщиной 9 μ m, шириной 116 mm, длиной 60 mm и изоляторов 3К, суммарной толщиной 160 μ m.

Расчетная модель ЭВРТ и замыкающего ключа

Для расчета изменения во времени сопротивления R_f фольги ЭВРТ вследствие ее джоулева нагрева при протекании тока I_1 используется дифференциальное уравнение

$$de/dt = I_1(t)^2 R_f(e)/m,$$

$$m = \rho_0 Sl, \quad R_f(e) = R_0 \eta(e), \quad R_0 = l/(\sigma_0 S),$$

где e(t) — тепловая составляющая внутренней энергии единицы массы фольги, отсчитываемая от начального значения при нормальных условиях (e(0) = 0); $S = \pi D\delta$ — площадь поперечного сечения фольги; R_0 , $\sigma_0, m, \rho_0, l, \delta, D$ — начальные сопротивление, коэффициент электропроводности, полная масса, плотность, длина, толщина и диаметр расположения фольги. Зависимость $\eta(e) = R_f/R_0$ в диапазоне $0 < e < e_{\text{burst}}$, где eurst — значение удельной тепловой энергии фольги при ее полном испарении (электровзрыве), является табличной и может быть взята, например, из работ [1,10,11]. В соответствии с данными, приведенными в работах [11,12], в расчетной модели полагается, что в диапазоне энергий $e_{\text{burst}} < e(t) < 2e_{\text{burst}}$ сопротивление ЭВРТ максимально и равно $R_f(e_{\text{burst}})$. Если на конечной стадии коммутации происходит дальнейший нагрев продуктов электровзрыва фольги протекающим током, то это приводит к переходу испаренного вещества в плазменное состояние, сопровождающееся падением результирующего электрического сопротивления от тепловой энергии. В расчетной модели данный процесс описывается спитцеровской электропроводностью ($\sigma \propto T^{3/2}$), характерной для плазменного состояния вещества, при этом полагается, что в случае $e(t) > 2e_{\text{burst}}$ сопротивление ЭВРТ падает в соответствии с $R_f(e) = R_0 \eta(e_{\text{burst}}) / (e/(2e_{\text{burst}}))^{3/2}$

Согласно существующим теоретическим представлениям, электрический пробой твердотельного изолятора ЗК имеет две последовательные стадии — потеря диэлектриком электрической прочности и его разрушение [13]. Если первая стадия пробоя начинается при достижении в его объеме пробойной напряженности электрического поля E_{br}, то в течение второй стадии происходит уменьшение эффективного омического сопротивления ЗК с большого начального значения до некоторого конечного, зависящего в том числе от количества образованных на первой стадии каналов пробоя. С учетом описанных явлений в используемой расчетной модели, двухстадийная работа исследуемого твердотельного ЗК с многослойной лавсановой изоляцией ($E_{\rm br} = 140 - 180 \, {\rm kV/mm}$ [8]) общей толщиной $\Delta = 0.16\,\mathrm{mm}$ численно моделировалась переменным от времени сопротивлением в виде $R_{cs}(t) = 1 \,\mathrm{M}\Omega$ при $t < t_{\rm br}$ и

$$R_{cs}(t) = R_{close} + (R_{cs}(t_{br}) - R_{close}) \exp\left[-(t - t_{br})/t_{close}\right]$$

при $t \ge t_{\rm br}$, где момент времени $t_{\rm br}$ соответствует моменту достижения пробойного значения напряжения $U_{\rm br} = E_{\rm br}\Delta \approx 22-29 \,\rm kV$ на ЗК. Два свободных параметра (характерная длительность процесса разрушения изоляции ЗК t_{close} и его конечное омическое сопротивление R_{close}) в расчетной модели варьируются для наилучшего согласования с результатами эксперимента.

3. Экспериментальные результаты и их обсуждение

На рис. 2 представлены экспериментальные осциллограммы и расчетные зависимости токов в отсутствие

Рис. 2. Осциллограммы (жирные линии) и расчетные (тонкие линии) зависимости токов при отсутствии фольги между электродами ЗК. 1 — ток через ЭВРТ, 2 — ток через замыкающий ключ.

Рис. 3. Осциллограммы (жирные линии) и расчетные (тонкие линии) зависимости токов при наличии фольги между электродами ЗК. 1 — ток через ЭВРТ, 2 — ток через замыкающий ключ.

фольги в зазоре ЗК. Данная экспериментальная конфигурация позволила исключить воздействие на работу ЗК механического действия ударной волны, а также других факторов, сопровождающих электровзрыв. Пробой изолятора ЗК в этом случае обеспечивается только развиваемым при работе ЭВРТ перенапряжением, когда на изоляторе ЗК реализуется напряжение $U > U_{br}$. Расчетное моделирование хорошо воспроизводит экспериментальные результаты при следующих параметрах ЗК: $t_{close} = 0.003 \,\mu$ s, $R_{close} = 0.01 \,\Omega$. На рис. 3 представлены экспериментальные результаты в случае размещения фольги в зазоре ЗК и результаты расчетного моделирования при следующих параметрах ЗК: $t_{close} = 0.003 \,\mu$ s, $R_{close} = 0.002 \,\Omega$.

Рис. 4. Фотографии поверхности электрода. *а* — эксперимент без фольги ЭВРТ в зазоре ЗК, *b* — эксперимент с фольгой ЭВРТ в зазоре ЗК.

Из сравнения экспериментальных токов на рис. 2 и 3 видно, что при отсутствии фольги ЭВРТ в зазоре ЗК момент начала коммутации практически не изменился, но произошло заметное (в 1.8 раза) снижение амплитуды и затягивание фронта импульса тока через ЗК, что свидетельствует об ухудшении параметров коммутации. Расчетное моделирование результатов экспериментов показывает, что длительность t_{close} работы ЗК не меняется, а его конечное сопротивление R_{close} без фольги в зазоре возрастает в 5 раз по сравнению со случаем наличия в зазоре ЗК участка фольги ЭВРТ. Данный результат обусловлен азимутально-равномерным распределением тока по всей цилиндрической поверхности ЗК при изначальном наличии фольги ЭВРТ в зазоре, в отличие от варианта, когда она отсутствует — в этом случае, как правило, реализуется одноканальный режим пробоя. В качестве иллюстрации вышесказанного на рис. 4 приведены фотографии электродов после проведения соответствующих экспериментов.

4. Заключение

 Проведенные эксперименты в двух конфигурациях аксиально симметричного 3К с лавсановой изоляцией продемонстрировали различные коммутационные свойства: в случае наличия фольги ЭВРТ в зазоре 3К через него пропущен импульс тока с амплитудой 410 kA и временем нарастания 400 ns против, соответственно, 240 kA и 550 ns в случае отсутствия фольги в зазоре 3К. 2) Расчетное моделирование показало, что улучшение коммутационных свойств обусловлено реализацией более низкого значения конечного сопротивления ЗК (примерно в 5 раз) в случае комбинированного с ЭВРТ варианта его исполнения. Фотографии электродов после проведения экспериментов также подтверждают азимутально-равномерное распределение тока по всей цилиндрической поверхности ЗК при наличии в зазоре фольги в отличие от варианта, когда фольга в зазоре отсутствует.

Таким образом, экспериментальные результаты свидетельствуют о том, что факторы, сопровождающие электрический взрыв фольги ЭВРТ (ударная волна и электромагнитное излучение), активно участвуют в пробое изоляции ЗК наряду с перенапряжением, развивающимся при срабатывании ЭВРТ. Указанные факторы обеспечивают эффективное разрушение изолятора во всем кольцевом зазоре ЗК, что приводит к его более низкому омическому сопротивлению в замкнутом состоянии. Полученные экспериментальные результаты и расчетная модель могут быть использованы при разработке новых редакций экспериментов по коммутации мегаамперных импульсов тока с помощью твердотельного комбинированного ЗК при запитке от более мощных, в том числе взрывомагнитных, генераторов тока. В частности, на электрофизической установке при максимальном уровне тока 800 kA разработанный комбинированный ЗК позволил пропустить сформированный с помощью ЭВРТ импульс тока амплитудой ~ 670 kA с временем нарастания 300 ns.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- В.А. Бурцев, Н.В. Калинин, А.В. Лучинский. Электрический взрыв проводников и его применение в электрофизических установках (Энергоатомиздат, М., 1990)
- [2] A.M. Buyko, V.A. Vasyukov, Yu.N. Gorbachev, B.T. Yegorychev, V.A. Ivanov, V.B. Kudelkin, A.I. Kuzyaev, A.A. Kulagin, B.I. Leukhin, I.V. Morozov, V.N. Mokhov, V.V. Pavliy, S.V. Pak, A.A. Petrukhin, N.M. Sabayev, A.N. Skobelev, V.V. Chernyshev, V.K. Chernyshev, V.B. Yakubov, B.G. Anderson, W.L. Atchison, D.A. Clark, R.J. Faehl, I.R. Lindemuth, R.E. Reinovsky, G. Rodriguez, J.L. Stokes, L.J. Tabaka. In: *Megagauss-9*, ed. by V.D. Selemir, L.N. Plyashkevich (VNIIEF, Sarov, 2004), p. 752.
- [3] V.A. Demidov, A.S. Boriskin, N.V. Stepanov, I.V. Konovalov, S.A. Kazakov, K.V. Shibalko, Yu.V. Vlasov, V.A. Yanenko, I.V. Rozhnov, S.N. Golosov, E.V. Shapovalov, A.S. Shuvalov. In: *Megagauss X*, ed. by M. von Ortenberg (Humboldt University, Berlin, 2005), p. 94.

- [4] А.С. Кравченко, А.С. Борискин, Ю.В. Вилков, В.Д. Селемир, Е.М. Димант, А.С. Юрыжев, Д.И. Зенков, А.А. Ткачук, Е.Н. Киршанова, М.Б. Козлов. ПТЭ, 2, 70 (2000). [A.S. Kravchenko, A.S. Boriskin, Yu.V. Vilkov, V.D. Selemir, E.M. Dimant, A.S. Yuryzhev, D.I. Zenkov, A.A. Tkachuk, E.N. Kirshanova, M.B. Kozlov. Instruments and Experimental Techniques, 43],(2), 213 (2000).]
- [5] А.А. Базанов, Е.И. Бочков, С.Г. Гаранин, П.В. Дудай, А.А. Зименков, А.В. Ивановский, К.Н. Климушкин, В.М. Комаров, А.И. Краев, В.Б. Куделькин, В.И. Мамышев, С.М. Полюшко, З.С. Цибиков, Е.В. Шаповалов. ДАН, **489** (4), 355 (2019). DOI: 10.31857/S0869-56524894355-357 [A.A. Bazanov, E.I. Bochkov, S.G. Garanin, P.V. Duday, A.A. Zimenkov, A.V. Ivanovskiy, K.N. Klimushkin, V.M. Komarov, A.I. Krayev, V.B. Kudel'kin, V.I. Mamyshev, S.M. Polyushko, Z.S. Tsibikov, E.V. Shapovalov. Dokl. Phys., **64** (12), 443 (2019).]
- [6] Г.А. Месяц. Импульсная энергетика и электроника (Наука, М., 2004)
- [7] Е.А. Галанова, Ю.Н. Долин, А.В. Ивановский, А.Е. Калинычев, Г.В. Карпов, С.С. Ломтев, А.Г. Мерзлов, В.Н. Нудиков, Д.С. Прохоров, Е.А. Салатов, А.Н. Туров, А.А. Шаталин. Доклады РАН. Физика, технические науки, **506** (2), 34 (2022). DOI: 10.31857/S2686740022070045
- [8] И.С. Григорьев, Е.З. Мейлихов (ред.). Физические величины: Справочник (Энергоатомиздат, М., 1991)
- [9] П.И. Голяков, П.Б. Репин, А.Г. Репьев, А.П. Орлов. Патент RU 2766434, H01H 39/00, (2022)
- [10] T.J. Tucker, R.P. Toth. Sandia National Laboratory Report. SAND-75-0041 (USA, SNL, 1975)
- [11] Г. Кнопфель. Сверхсильные импульсные магнитные поля (Мир, М., 1972) [Пер. с англ.: Н. Knoepfel. Pulsed High Magnetic Fields (North-Holland, Amsterdam-London, 1970)]
- [12] Ю.В. Власов, В.А. Демидов, В.И. Скоков. В сб.: Мегагауссная и мегаамперная импульсная технология и применения, под ред. В.К. Чернышева, В.Д. Селемира, Л.Н. Пляшкевича (Саров, ВНИИЭФ, 1997), с. 372.
- [13] Г.А. Воробьев, Ю.П. Похолков, Ю.Д. Королев, В.И. Меркулов. Физика диэлектриков (область сильных полей) (Томск, ТПУ, 2003)