УДК 621.315.592

Плазмохимическое осаждение гидрогенизованных пленок DLC с различным содержанием водорода и *sp*³-гибридного углерода

© А.И. Охапкин¹, М.Н. Дроздов¹, П.А. Юнин¹, С.А. Краев¹, Д.Б. Радищев²

¹ Институт физики микроструктур Российской академии наук, 607680 Нижний Новгород, Россия ² Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук, 603950 Нижний Новгород, Россия E-mail: poa89@ipmras.ru *Поступила в Редакцию 5 мая 2023 г.*

В окончательной редакцию 5 мая 2023 г. Принята к публикации 6 июля 2023 г.

Исследовано влияние параметров плазмы метана на скорость осаждения и содержание водорода и sp^3 -гибридной фракции углерода в гидрогенизованных пленках алмазоподобного углерода, diamond-like carbon. Показано, что содержание sp^3 -фракции углерода главным образом зависит от индуктивной мощности и добавки аргона в состав плазмы; последнее также способствует уменьшению доли водорода в пленках.

Ключевые слова: алмазоподобный углерод, плазмохимическое осаждение, *sp*²-, *sp*³-гибридизация, рамановская спектроскопия, вторично-ионная масс-спектрометрия.

DOI: 10.21883/FTP.2023.05.56195.09k

1. Введение

Алмазоподобный углерод, diamond-like carbon (DLC) — материал, состоящий из атомов углерода с sp^3 и sp²-гибридными орбиталями, широко применяемый в качестве защитных покрытий [1], при создании микрооптомеханических систем [2,3], элементов мемристивной памяти [4]. Свойства DLC сильно зависят от содержания в них "алмазной" и "графитовой" фракций. В зависимости от состава DLC могут обладать как высокой твердостью и являться диэлектриками, так и иметь низкий коэффициент трения в сочетании с проводимостью. Степенью гибридизации углерода в пленках можно управлять, меняя условия осаждения. В частности, в работе [5] показано, что увеличение доли Ne в составе распыляющего газа при импульсном магнетронном напылении композитных пленок DLC приводит к увеличению доли *sp*³-фракции углерода, наряду с увеличением твердости и износостойкости полученных покрытий. В работе [6] при получении негидрированного алмазоподобного углерода варьировалось напряжение смещения в процессе напыления. Оказалось, что более высокое значение напряжения смещения способствует лучшему распылению графитовой мишени и улучшению эффекта травления, и, как следствие, увеличению "алмазных" связей в DLC. В результате существенно меняются адгезионные и трибологические свойства покрытий.

В данной работе для управления составом пленок DLC задействован метод низкотемпературного осаждения в индуктивно-связанной плазме метана. Будет показано, что, изменяя параметры процесса (в том числе тип газового разряда), можно получать пленки с различным содержанием *sp*³-фракции углерода. Для анализа

осажденных покрытий используется уникальная разработанная методика идентификации фаз углерода по соотношению интенсивностей вторичных кластерных ионов CsC_8/CsC_4 [7]. Данная методика позволяет однозначно идентифицировать полученные образцы как DLC, а также дает информацию о распределении "графитовых" связей по толщине пленок.

2. Методика эксперимента

Использовалось оборудование ЦКП ИФМ РАН "Физика и технология микро- и наноструктур". Пленки DLC получены плазмохимическим осаждением на установке Oxford Plasmalab 80. Плазма зажигалась от генератора с частотой 13.56 МГц. В качестве подложек использовали кремний марки КДБ (0.001-0.005 Ом) с ориентацией (100), предварительно очищенный от слоя оксида промывкой в НГ. Толщину осажденных покрытий определяли методом малоугловой рентгеновской рефлектометрии (рентгеновский дифрактометр "D8 Discover"). Элементный состав пленок (рис. 1) установлен методом вторично-ионной масс-спектрометрии, (масс-спектрометр "TOF.SIMS-5/100"). Содержание водорода и *sp*³-фракции углерода определяли методом рамановской спектроскопии (конфокальный рамановский микроскоп Renishaw inVia). Для расчета доли водорода в пленках (X_H) использовали методику, основанную на соотношении наклона базовой линии спектра L (рис. 2) к интенсивности G-пика [8]. Содержание sp³-гибридного углерода (X_{sp3}) рассчитывали исходя из положения G-пика [9]. Варьировались поток метана (f), давление (p), емкостная (RF_p) и индуктивная (ICP_p) мощности, а также состав плазмы (добавка аргона). Данные

Рис. 1. Профиль распределения вторичных ионов химических элементов по глубине пленки DLC (образец 7), построенный в полулогарифмической шкале.

Рис. 2. Спектр комбинационного рассеяния света в пленке DLC (образец 2), полученный на длине волны лазера 515 нм: красная кривая — сглаженная по 5 точкам линия спектра, зеленые линии — его аппроксимация функциями Гаусса, построенная в диапазоне от 950 до 2000 см⁻¹, и базовая линия. (Цветной вариант рисунка представлен в электронной версии статьи).

занесены в таблицу. В качестве сравнительного эталона выбран образец 1, выращенный при $f = 10 \text{ см}^3/\text{мин}$, p = 10 мТорр, $RF_p = 75 \text{ Вт}$, $ICP_p = 0 \text{ Вт}$.

3. Результаты и обсуждение

Полученные пленки были однородными, гладкими (рис. 3) и обладали хорошей адгезией к кремнию.

Оказалось, что они содержали в своем составе большое количество водорода, что характерно для плазмохимического метода осаждения DLC [10]. Также в образцах присутствовали следы кислорода и азота, попавшие туда со стенок реактора. Всплеск интенсивностей вторичных ионов CN и кислорода на границе с подложкой обусловлен кратковременным поджигом плазмы большой мощности в начальный момент роста. По соотношению $CsC_8/CsC_4 > 1$ пленки DLC можно однозначно отличить от графита, причем их осаждение происходило равномерно по всей толщине с сохранением равной доли sp^2 -фракции углерода.

Наличием водорода в пленках объясняется наклон рамановских спектров DLC за счет явления фотолюминесценции С-Н-связей [8]. В спектрах присутствовали

Скорость осаждения (v) и характеристики полученных пленок алмазоподобного углерода

№ образца	Изменяемый параметр	<i>v</i> , нм/мин	Толщина, нм	X _{sp3} , %	Хн, %
1	Эталон	9	133	47	24
2	$ICP_p = 250 \mathrm{Bt}$	5	75	32	29
3	$ICP_{p} = 150 \mathrm{Bt}$	6	85	40	30
4	$RF_p = 250 \mathrm{Bt}$	10	146	43	26
5	p = 50 мТорр	14	212	47	24
6	$f = 100 \mathrm{сm}^3$ /мин,	12	182	47	29
7	p = 50 мТорр $f = 100 \text{ см}^3/\text{мин},$ p = 50 мТорр,	7	106	51	30
8	$RF_p = 40 \mathrm{BT}$ Добавка аргона, 25 см ³ /мин	5	78	46	17

Рис. 3. Фотография осажденной пленки DLC на кремнии (образец 1).

характерные для алмазоподобных пленок пики — *D* и *G*. *D*-пик наблюдался вблизи 1315–1380 см⁻¹ и был обусловлен наличием отдельных графитовых доменов, имеющих различные размеры. *G*-пик связан непосредственно с колебанием двойных связей углерода внутри графитовых колец. Он наблюдался при 1520–1560 см⁻¹.

Исходя из полученных данных, можно сделать вывод о том, что наибольшее влияние на содержание *sp*³-фракции углерода оказывает индуктивная мощность. Включение генератора индуктивно-связанной плазмы привело к уменьшению X_{sp3} на 15% при $ICP_p = 250 \text{ Br}$ (при 150 Вт эффект был менее выраженным). Это сопровождалось снижением скорости осаждения в 1.8 раза. В то же время незначительно увеличилось содержание водорода в пленках. Индуктивно-связанная плазма характеризуется большой плотностью заряженных частиц по сравнению с плазмой емкостного разряда. Это приводит к увеличению скорости травления пленки и, как следствие, снижению скорости осаждения DLC. Также происходит зарядка поверхности образца. Локальное электрическое поле удерживает углеродные слои в плоскости [11], что способствует формированию графитовых кластеров и уменьшению соотношения sp^3/sp^2 -углерода.

Влияние емкостной мощности на X_{sp3} также присутствовало, хотя и было менее выраженным, чем влияние индуктивной мощности. Доля "графитовой" фракции уменьшилась на 4% при использовании мощности емкостного разряда 250 Вт (по сравнению с $RF_p = 75$ Вт). С увеличением RF_p эффект травления пленки становится заметнее за счет возрастания энергии реакционных частиц. Межмолекулярные слои в графите связаны между собой слабым ван-дер-ваальсовым взаимодействием, поэтому они подвергаются более интенсивному травлению, чем ковалентные "алмазные связи". Следует отметить, что варьирование давления и потока метана не сказывалось на степени гибридизации углерода в DLC. Между тем скорость процесса возрастала существенно (с 9 до 12 нм/мин). Это связано с увеличением концентрации ионов и радикалов в плазме по мере роста рабочего давления и расхода метана.

Добавка аргона в состав плазмы привела к уменьшению $X_{\rm H}$, что при сохранении $X_{\rm sp3}$ на уровне эталона свидетельствовало об увеличении "не водородной" доли sp^3 -фракции углерода в пленке. Такое действие аргона объясняется непосредственным разрушением графитовых колец частицами аргоновой плазмы.

4. Заключение

Таким образом, в работе продемонстрирована возможность управления химическим составом пленок DLC посредством варьирования параметров осаждения в реакторе индуктивно-связанной плазмы. Переход от емкостного разряда к индуктивно-связанному сопровождается снижением содержания *sp*³-гибридизованного углерода в полученных пленках за счет эффекта зарядки поверхности и удержания углеродных слоев в плоскости локальным электрическим полем. Добавка аргона в процессе роста способствует уменьшению доли водорода в DLC и снижению скорости осаждения в результате травления пленок.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 22-79-00021, https://rscf.ru/project/22-79-00021/.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D.K. Rajak, A. Kumar, A. Behera, P.L. Menezes. Appl. Sci., 11, 444 (2021).
- [2] J.K. Luo, Y.Q. Fu, H.R. Le, J.A. Williams, S.M. Spearing, W.I. Milne. J. Micromech. Microeng., 17, 147 (2007).
- [3] S. Smallwood, K. Eapen, S. Patton, J. Zabinski. Wear, 260, 1179 (2006).
- [4] Y. Chen, K. Chang, T. Chang, H. Chen, T. Young, T. Tsai, R. Zhang, T. Chu, J. Ciou, J. Lou, K. Chen, J. Chen, J. Zheng, S. Sze. IEEE Electron Dev. Lett., 35 (10), 1016 (2014).
- [5] Xu Li, W. Dai, Q. Wang, Y. Liang, Z. Wu. Diamond Relate Mater., 106, 107818 (2020).
- [6] C. Li, L. Huang, J. Yuan. Materials, 13, 1911 (2020).
- [7] М.Н. Дроздов, Ю.Н. Дроздов, А.И. Охапкин, С.А. Краев, М.А. Лобаев. Письма ЖТФ, 45 (2), 50 (2019).
- [8] C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambol, J. Robertson. Diamond Relate Mater., **14**, 1098 (2005).
- [9] A. Singha, A. Ghosh, N.R. Ray, A. Roy. J. Appl. Phys., 100 (4), 044910 (2006).

- [10] W. Oleszkiewicz, W. Kijaszek, J. Gryglewicz, A. Zakrzewski, K. Gajewski, D. Kopiec, P. Kamyczek, E. Popko, M. Tlaczala. Proc. SPIE, 8902, 89022H (2013).
- [11] M. Zhu, J. Wang, B.C. Holloway, R.A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, D.M. Manos. Carbon, 45, 2229 (2007).

Редактор Г.А. Оганесян

Plasma chemical deposition of hydrogenated DLC films with different hydrogen and sp^3 -hybrid carbon content

A.I. Okhapkin¹, M.N. Drozdov¹, P.A. Yunin¹, S.A. Kraev¹, D.B. Radishev²

 ¹ Institute for Physics of Microstructures of the Russian Academy of Sciences, 607680 Nizhny Novgorod, Russia
² Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia

Abstract The influence of methane plasma parameters on the deposition rate and on the content of the hydrogen and the sp^3 -carbon fraction in hydrogenated diamond-like carbon films (DLC) was investigated. It was shown that the proportion of the sp^3 -carbon fraction mainly depends on the inductive power and the argon addition to the plasma; the latter also contributes to a decrease of hydrogen in the films.