### 05.1;06.5;10

# Влияние эффекта медленной динамики на упругие релаксационные свойства поликристаллических металлических стержней

## © А.Л. Глазов, К.Л. Муратиков

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: glazov.holo@mail.ioffe.ru

Поступило в Редакцию 13 июня 2023 г. В окончательной редакции 13 июля 2023 г. Принято к публикации 14 июля 2023 г.

> Предложена теоретическая модель формирования упругих деформаций в металлических микрокристаллических стержнях с учетом метастабильного поведения их дефектных состояний в режиме свободной релаксации. Выполнен анализ влияния метастабильных состояний дефектной структуры образцов на характер изменения их резонансных акустических частот. Объяснены увеличение модуля Юнга и динамика изменения резонансных колебаний стержней из алюминиевого сплава Д16Т в условиях свободной релаксации. На основании полученных результатов оценена концентрация метастабильных дефектов.

> Ключевые слова: нелинейная акустика, нелинейная упругость, дефектная структура, механические напряжения, эффекты быстрой и медленной динамики.

## DOI: 10.21883/PJTF.2023.18.56170.19651

В настоящее время серьезное внимание уделяется изучению нестационарных деформационных процессов в материалах со сложной реологической структурой. К таким материалам относятся металлы и их сплавы с микрокристаллической структурой, горные породы, керамики. Присутствие мезомасштабных неоднородностей структуры в таких материалах приводит к существенному влиянию на их упругие свойства [1,2]. В результате в подобных материалах наблюдаются акустические и упругие эффекты, которые не могут быть объяснены в рамках обычной теории упругости. Для их описания необходимо учитывать присутствие в них релаксационных процессов различной природы [3-5]. Нами было показано, что их учет позволяет корректно объяснить экспериментальные данные, полученные при возбуждении акустических колебаний в алюминиевых мембранах, нестационарным лазерным излучением [6,7]. Такой подход также позволил объяснить особенности поведения лазерных ультразвуковых сигналов в напряженных образцах из сплава Д16Т [8,9] и эффекты быстрой динамики при колебаниях предварительно пластически деформированных стержней из этого сплава [10].

В работе [11] при ультразвуковых экспериментах с пластически деформированными алюминиевыми стержнями из сплава Д16Т обнаружены эффекты быстрой и медленной динамики. Эффекты быстрой динамики наблюдались в ходе изменения резонансной частоты стержней при подаче на один из концов акустических вибраций заданной амплитуды и частоты (см. рисунок), а эффекты медленной динамики — после их окончания в определенный момент и перехода стержней в режим свободной релаксации. В режиме быстрой динамики наблюдалось уменьшение их резонансной частоты с выходом на определенное стационарное значение, зависящее от амплитуды подаваемых вибраций. В режиме медленной динамики в [11] регистрировалось некоторое увеличение резонансной частоты стержней. Эффекты быстрой динамики в стержнях Д16Т наблюдались в диапазоне акустических частот 9–10 kHz, в то время как эффекты медленной динамики происходили в существенно более низкочастотном диапазоне и характеризовались временем релаксации 534 s [11]. В работе [10] нами теоретически был проанализирован только случай быстрой динамики, поэтому представляется целесообразным в рамках предложенной модели проанализировать и случай медленной динамики.

В [10] для объяснения эффектов быстрой динамики нами был использован подход, основанный на теории акустопластического эффекта в твердых телах [12–14]. В теории акустопластического эффекта для описания динамики изменения напряжений в образце во времени обычно используется уравнение

$$\frac{1}{E}\frac{\partial\sigma}{\partial t} = \dot{\varepsilon} - \dot{\varepsilon}_p,\tag{1}$$

где E — модуль Юнга материала,  $\dot{\varepsilon}$  — скорость изменения деформации объекта, обычно задаваемая некоторым внешним воздействием,  $\dot{\varepsilon}_p$  — скорость изменения пластической деформации материала. При этом  $\dot{\varepsilon}_p$  определяется соотношением

$$\dot{arepsilon}_p = \dot{arepsilon}_0 \expigg(-rac{U-\Omega(\sigma-\sigma_p)}{k_bT}-rac{t}{ au}igg),$$

где U — активационная энергия метастабильных дефектов,  $\tau$  — время свободной релаксации напряжений,  $\sigma_p$  — внутреннее напряжение в образце, обусловленное присутствием в нем дефектов,  $\dot{\epsilon}_0$  — предэкспоненциальный фактор,  $\Omega$  — активационный объем дефекта,  $k_b$  постоянная Больцмана, T — температура образца.

Относительно уравнения (1) следует заметить, что обычно параметр  $\dot{\varepsilon}_0$  предполагается постоянным. Вместе с тем он может зависеть от характера внешнего воздействия на образец. Так, в условиях экспериментов быстрой динамики в [11] изначально пластически деформированные образцы подвергались достаточно сильному вибрационному воздействию, способствовавшему постепенному снижению концентрации дефектов с их последующей релаксацией к некоторому новому квазиравновесному состоянию с соответствующим снижением напряжения в образцах. Поэтому в таких экспериментах скорость изменения деформации  $\dot{\varepsilon}_0 > 0$ . В экспериментах с медленной релаксацией вибрационное воздействие на образцы осуществлялось в течение определенного времени, после чего оно прекращалось и исследовались резонансные свойства образцов в режиме свободной релаксации. В этом случае в образцах после окончания вибрационного воздействия происходило определенное восстановление дефектной структуры и  $\dot{\varepsilon}_0 < 0$ .

В режиме свободной релаксации в стержнях отсутствуют деформации, обусловленные внешним воздействием. Однако из-за релаксации дефектной подсистемы и напряжений в них может присутствовать некоторая деформация, поэтому будем считать, что в уравнении (1)  $\dot{\varepsilon} = \dot{\varepsilon}_r(t)$ . Тогда, если считать, что вибрационное воздействие на стержень кончилось в момент t = 0 и он перешел в режим свободной релаксации, то напряжение в нем в соответствии с равенством (1) можно представить в виде

$$\sigma(t) = E(\varepsilon_r(t) - \varepsilon_r(0)) + \sigma_p^{(0)} + \Delta \sigma_p(t), \qquad (2)$$

где

$$\begin{split} \Delta \sigma_p(t) &= -\frac{k_b T}{\Omega} \ln \left[ 1 - \frac{\Omega E}{k_b T} \dot{\varepsilon}' \right] \\ &\times \int_0^t \exp \left( -\frac{t'}{\tau} - \frac{\Omega \left( \sigma_p(t') - \sigma_p(0) \right)}{k_b T} \right] \\ &- \frac{\Omega E \left( \varepsilon_r(t') - \varepsilon_r(0) \right)}{k_b T} dt' \end{bmatrix}, \\ &\dot{\varepsilon}' &= \dot{\varepsilon}_0 \exp \left( -\frac{U}{k_b T} \right). \end{split}$$

В работе [15] показано, что наряду с упругими деформациями присутствие дефектов в образце влияет на величину действующих в нем напряжений. В простейшем случае одномерной деформации эта связь определяется соотношением

$$\sigma = E\varepsilon_e + \Omega En, \tag{3}$$

где  $\varepsilon_e$  — упругая деформация, n — концентрация дефектов в образце.

С учетом изменения концентрации дефектов соотношение (3) в одномерной модели для продольных колебаний стержня приводит к уравнению движения

$$\rho \frac{\partial^2 \varepsilon_e}{\partial t^2} = E \frac{\partial^2 \varepsilon_e}{\partial x^2} + E \Omega \frac{\partial^2 \Delta n}{\partial x^2}, \tag{4}$$

Письма в ЖТФ, 2023, том 49, вып. 18



Схема возбуждения и регистрации упругих колебаний стержня [7]. 1 — образец, 2 — возбуждающий пьезокерамический преобразователь, 3 — пьезокерамический датчик регистрации колебаний, 4 — массивное основание.

где  $\rho$  — плотность материала стержня,  $\Delta n$  — изменение концентрации дефектов при возбуждении упругих колебаний, x — координата вдоль оси.

В общем случае уравнение (4) является нелинейным из-за возможной зависимости концентрации дефектов от напряжений. Для дальнейшего преобразования уравнения (4) необходимо знать зависимость концентрации  $\Delta n$  от напряжений. Если считать, что диффузия дефектов не играет заметной роли при комнатной температуре, то концентрацию дефектов, участвующих в процессе, можно определить исходя из уравнения

$$\frac{\partial \Delta n}{\partial t} + \frac{\Delta n}{\tau} = J,\tag{5}$$

где *J* — объемный источник дефектов в образце, определяемый законом Аррениуса

$$J = \frac{N}{\tau} \left[ \exp\left(-\frac{U - \Omega(\sigma_p^{(0)} + \Delta \sigma_p + \sigma_e)}{k_b T}\right) - \exp\left(-\frac{U - \Omega(\sigma_p^{(0)} + \sigma_e)}{k_b T}\right) \right],$$

N — величина порядка концентрации атомов в материале образца,  $\sigma_p^{(0)}$  — внутреннее напряжение в образце

в момент начала свободной релаксации,  $\Delta \sigma_p(t)$  — изменение напряжения в образце в процессе релаксации дефектов.

По аналогии с работами [6–10] будем считать, что изменение концентрации дефектов в образце в режиме свободной релаксации происходит квазиравновесным образом. Тогда изменение концентрации дефектных центров, принимающих участие в процессе релаксации стержня, можно оценить с помощью соотношения

$$\Delta n \cong N \left[ \exp\left( -\frac{U - \Omega(\sigma_p^{(0)} + \Delta \sigma_p + \sigma_e)}{k_b T} \right) - \exp\left( -\frac{U - \Omega(\sigma_p^{(0)} + \sigma_e)}{k_b T} \right) \right].$$
(6)

Активационный объем дефекта обычно соизмерим с объемом кристаллической решетки материала [16]. Поэтому будем считать его для алюминиевого сплава порядка  $10^{-28}$  m<sup>3</sup>. Тогда при напряжениях порядка 10 МРа и деформациях меньше  $10^{-3}$  последние две экспоненты под знаком интеграла в выражении (2) близки к единице, и их можно не учитывать. При выполнении указанных условий также можно считать, что  $\Omega E \dot{\varepsilon}' \tau < k_b T$ . Тогда с помощью соотношения (2) закон релаксации для напряжения  $\Delta \sigma_p(t)$  получим в виде

$$\Delta \sigma_p(t) \cong E \dot{\varepsilon}' \tau \left( 1 - e^{-\frac{t}{\tau}} \right), \tag{7}$$

а для концентрации возбужденных дефектов получим соотношение

$$\Delta n \cong N' \frac{\Omega E}{k_b T} \dot{\varepsilon}' \tau \left[ 1 - \exp\left(-\frac{t}{\tau}\right) \right] \exp\left(\frac{\Omega \sigma_e}{k_b T}\right), \qquad (8)$$

где  $N' = N \exp \left(-(U - \Omega \sigma_p^{(0)})/k_b T\right)$  .

В работе [11] исследовался характер изменения резонансной частоты стержня при зондировании слабым акустическим сигналом. Если считать в соотношении (8)  $\Omega \sigma_e \leq k_b T$ , то уравнение движения (4) можно преобразовать к виду

$$\rho \frac{\partial^2 \varepsilon_e}{\partial t^2} = E_{eff}(t) \frac{\partial^2 \varepsilon_e}{\partial x^2},\tag{9}$$

где

$$E_{eff}(t) \cong E\left[1 + \Omega N' \dot{\varepsilon}' \tau \left(\frac{\Omega E}{k_b T}\right)^2 \left(1 - \exp\left(-\frac{t}{\tau}\right)\right)\right].$$

В работе [11] возбуждение образцов осуществлялось в режиме четвертьволнового упругого резонатора. Его первая резонансная частота определяется равенством  $f_0 = \sqrt{E/\rho}/(4L)$ , где  $\rho$  — плотность, а L — длина образца. Если считать, что в процессе экспериментов плотность и длина образцов не изменялись, то влияние эффектов быстрой динамики на резонансную частоту колебаний образцов можно оценить с помощью этого равенства при  $E = E_{eff}(t)$ . В соответствии с результатами [11] относительное изменение модуля упругости стержня из-за присутствия в нем дефектов имеет малое значение. Поэтому характер изменения его резонансной частоты в процессе свободной релаксации происходит по закону

$$f_0(t) \cong \frac{1}{4L} \sqrt{\frac{E}{\rho}} \bigg[ 1 + \frac{\Omega N' \dot{\varepsilon}' \tau}{2} \bigg( \frac{\Omega E}{k_b T} \bigg)^2 \bigg( 1 - \exp\bigg( -\frac{t}{\tau} \bigg) \bigg) \bigg].$$
(10)

Таким образом, в режиме свободной релаксации деформированного стержня после окончания воздействия нагрузки происходит определенное увеличение резонансной частоты из-за частичного восстановления дефектной подсистемы. Если ее представить в виде, использованном в работе [11]:

$$f_0(t) = f_0(t \to \infty) - C \exp\left(-\frac{t}{\tau}\right),$$
 (11)

то в соответствии с (10) коэффициент

$$C = rac{1}{8L} \sqrt{rac{E}{
ho}} \Omega N' \dot{arepsilon}' au \left(rac{\Omega E}{k_b T}
ight)^2$$

Полученный теоретический результат подтверждает вывод работы [11] о характере изменения со временем резонансной частоты стержней из сплава алюминия с остаточными деформациями в режиме свободной релаксации. Для стержня из сплава алюминия Д16Т в [11] было показано, что наилучшее согласие с экспериментальными данными при использовании выражения (11) достигается при значении C = 96.4 Hz. Знание значения C позволяет оценить концентрацию дефектов, принимавших участие в релаксационном процессе.

Для сплава алюминия Д16Т  $\rho = 2700 \text{ kg/m}^3$ , E = 71 GPa. Длина стержней, исследованных в [11], составляла 0.14 m. При активационном объеме дефекта, соизмеримом с объемом кристаллической решетки материала, будем считать  $\Omega \approx 10^{-28} \text{ m}^3$ , а  $\dot{\varepsilon}' \tau \approx 10^{-5}$ . Тогда при известном значении коэффициента *C* можно оценить концентрацию дефектов, принимавших участие в релаксационном процессе. В соответствии с приведенными данными для *N'* получим *N'*  $\cong 10^{25} \text{ m}^{-3}$ . Данная оценка примерно совпадает с концентрацией дефектов в напряженных образцах из сплава Д16, полученной нами в экспериментах по лазерной генерации ультразвука [8–10].

Предложенная теоретическая модель позволяет объяснить эффекты медленной динамики в металлических стержнях с дефектами. Она связывает динамику изменения модуля Юнга материала во времени с такими характеристиками его дефектной подсистемы, как концентрация дефектов, их время релаксации и активационный объем.

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

## Список литературы

- J.Y. Yoritomo, R.L. Weaver, Phys. Rev. E, **102**, 012901 (2020). DOI: 10.1103/PhysRevE.102.012901
- [2] J. Kober, A. Kruisova, M. Scalerandi, Appl. Sci., 11, 8631 (2021). DOI: 10.3390/app11188631
- [3] P. Johnson, A. Sutin, J. Acoust. Soc. Am., 117, 124 (2005).
   DOI: 10.1121/1.1823351
- [4] C.K.C. Lieou, E.G. Daub, R.A. Guyer, P.A. Johnson, J. Geophys. Res. Solid Earth, **122**, 6998 (2017). DOI: 10.1002/2017JB014498
- [5] J.Y. Yoritomo, R.L. Weaver, Phys. Rev. E, **101**, 012901 (2020).
   DOI: 10.1103/PhysRevE.101.012901
- [6] А.Л. Глазов, К.Л. Муратиков, Письма в ЖТФ, 46 (10), 18 (2020). DOI: 10.21883/PJTF.2020.10.49425.18247
   [A.L. Glazov, K.L. Muratikov, Tech. Phys. Lett., 46 (5), 477 (2020). DOI: 10.1134/S1063785020050223].
- [7] A.L. Glazov, K.L. Muratikov, J. Appl. Phys., 128, 095106 (2020). DOI: 10.1063/5.0013308
- [8] A.L. Glazov, K.L. Muratikov, Phys. Rev. B, 105, 214104 (2022). DOI: 10.1103/PhysRevB.105.214104
- [9] A.L. Glazov, K.L. Muratikov, J. Appl. Phys., 131, 245104 (2022). DOI: 10.1063/5.0088327
- [10] А.Л. Глазов, К.Л. Муратиков, Письма в ЖТФ, 48 (21), 27 (2022). DOI: 10.21883/PJTF.2022.21.53709.19329
   [A.L. Glazov, K.L. Muratikov, Tech. Phys. Lett., 48 (11), 23 (2022). DOI: 10.21883/TPL.2022.11.54883.19329].
- [11] А.И. Коробов, Н.И. Одина, Д.М. Мехедов, Акуст. журн., **59** (4), 438 (2013). DOI: 10.7868/S0320791913040096
  [A.I. Korobov, N.I. Odina, D.M. Mekhedov, Acoust. Phys., **59** (4), 387 (2013). DOI: 10.1134/S106377101304009X].
- [12] A.V. Kozlov, S.I. Selitsen, Mater. Sci. Eng. A, 102, 143 (1988).
   DOI: 10.1016/0025-5416(88)90568-X
- [13] Г.А. Малыгин, ФТТ, **42** (1), 69 (2000). [G.A. Malygin, Phys. Solid State, **42** (1), 72 (2000). DOI: 10.1134/1.1131170].
- [14] A.V. Kozlov, S.I. Selitsen, Mater. Sci. Eng. A, 131, 17 (1991).
   DOI: 10.1016/0921-5093(91)90340-S
- [15] А.М. Косевич, Физическая механика реальных кристаллов (Наук. думка, Киев, 1981).
- [16] Ф.Х. Мирзоев, В.Я. Панченко, Л.А. Шелепин, УФН, 166 (1), 3 (1996). DOI: 10.3367/UFNr.0166.199601a.0003
  [F.Kh. Mirzoev, V.Ya. Panchenko, L.A. Shelepin, Phys. Usp., 39 (1), 1 (1996).

DOI: 10.1070/PU1996v039n01ABEH000125].