09,04

Эволюция спектральных и структурных характеристик боратов, образующихся при взаимодействии оксидов лантана и индия с расплавом тетрабората калия

© С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова

Институт физики твердого тела им. Ю.А. Осипьяна РАН, Черноголовка, Россия

E-mail: fursova@issp.ac.ru, zverkova@issp.ac.ru

Поступила в Редакцию 27 июня 2023 г. В окончательной редакции 27 июня 2023 г. Принята к публикации 28 июня 2023 г.

> Проведены исследования структуры, морфологии, ИК-спектров, спектров люминесценции и спектров возбуждения люминесценции легированных ионами европия ортоборатов, образующихся при взаимодействии оксидов лантана и индия с расплавом тетрабората калия при температуре 970°С. При увеличении концентрации In³⁺ в шихте наблюдается последовательная смена следующих структурных состояний: однофазный арагонит LaBO₃, арагонит LaBO₃ + кальцит InBO₃, однофазный кальцит InBO₃. Установлено соответствие между структурой и спектральными характеристиками этих соединений. Показано, что ортобораты индия и лантана не образуют совместных твердых растворов.

> Ключевые слова: ортобораты редкоземельных элементов, кристаллическая структура, рентгенофазовый анализ, ИК-спектроскопия, спектры люминесценции.

DOI: 10.21883/FTT.2023.08.56160.125

1. Введение

Большое внимание к исследованию боратов редкоземельных элементов $ReBO_3$ (Re = Lu, Eu, Tb, Gd, La) и $ReMe_3(BO_3)_4$ (Re = La, Eu, Sm) (Me = Al, Sc) связано с возможностью их использования в качестве эффективных люминофоров для цветных дисплеев, рентгенолюминофоров, светодиодных источников света, нелинейных кристаллов [1-7]. Для практического использования этих соединений крайне важно иметь возможность направленного изменения их спектральных характеристик. Одним из эффективных методов направленного изменения спектров излучения полиморфных люминофоров является изменение их структурного состояния [8-12]. Спектры люминесценции различных структурных модификаций боратов $Lu_{1-x}Re_xBO_3$: Eu (Re = Gd, Tb, Eu, Y) и Lu_{1-т}In_тBO₃: Еи исследованы в работах [10-15]. Эти соединения содержат LuBO₃, ReBO₃ и InBO₃. Ортоборат лютеция имеет две устойчивые структурные модификации: ватерит, который образуется при $T = 750 - 850^{\circ}$ С, и кальцит, образующийся при T = 970-1100°C. Ортобораты $ReBO_3$ (Re = Gd, Tb, Eu, Y) имеют структуру ватерита, а InBO₃ имеет структуру кальцита [16–21].

В ортоборате Lu_{0.98-x}In_xEu_{0.02}BO₃, синтезированном при $T = 780^{\circ}$ C (температуре существования низкотемпературного ватерита LuBO₃), при увеличении концентрации In наблюдается следующая последовательность структурных модификаций (ПСМ): ватерит — ватерит + кальцит — кальцит. Эти образцы кристаллизуются в структуре кальцита при концентрациях In ≥ 10 at.% [15]. В соединениях Lu_{0.99-x}Re_xEu_{0.01}BO₃ (Re = Eu, Gd, Tb, Y), синтезированных при $T = 970^{\circ}C$ (температуре существования кальцитной фазы LuBO₃), при увеличении концентрации Re наблюдается следующая ПСМ: кальцит → кальцит + ватерит → ватерит. Образцы Lu_{0.99-x}Re_xEu_{0.01}BO₃ кристаллизуются в структуре ватерита при концентрациях $Re \ge 10-25$ at.% для разных Re [11-14]. В спектрах люминесценции образцов Lu_{0.98-x}In_xEu_{0.02}BO₃ и Lu_{0.99-x}Re_xEu_{0.01}BO₃, имеющих структуру кальцита, наблюдаются две узкие полосы с $\lambda_{\text{max}} = 589.8$ и 595.7 nm (электронный переход ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) [8–15]. Спектр люминесценции ватеритной модификации этих соединений содержит три полосы: в области длин волн 588-596 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$), 608-613 и 624—632 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) [6–13]. Поэтому для ионов Eu³⁺, находящихся в соединениях, имеющих структуру кальцита и ватерита, характерно оранжевое и красное свечение, соответственно.

В спектре люминесценции ортобората лантана LaBO₃(Eu), имеющего структуру арагонита (пр. гр. *Pnam*), наибольшую интенсивность имеют полосы с $\lambda_{\text{max}} = 589.4, 591$ и 592.6 nm (⁵ $D_0 \rightarrow {}^7F_1$) [22–25].

В работах [26,27] впервые показано, что полоса с $\lambda_{ex} = 469 \text{ nm} ({}^7F_0 \rightarrow {}^5D_2)$ в спектрах возбуждения люминесценции (СВЛ) и полоса в области длин волн 577–582 nm (${}^5D_0 \rightarrow {}^7F_0$) в спектрах люминесценции соединений La_{0.99-x}Re_xEu_{0.01}BO₃ (Re = Tb, Y) могут служить индикаторами структурного состояния образца. Полоса с $\lambda_{ex} = 469 \text{ nm}$ наблюдается в СВЛ образцов, имеющих структуру ватерита, в то время как в образцах со структурой арагонита она отсутствует. Если в СЛ образца максимум полосы, соответствующей переходу ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$, находится при длинах волн меньших 580 nm, то образец имеет структуру арагонита, если при λ больших 580 nm, то образец имеет структуру ватерита.

работах [22,26-29] исследованы структурные спектральные характеристики синтезированных И при $T = 970^{\circ}$ С ортоборатов $La_{0.99-x}Re_{x}Eu_{0.01}BO_{3}$ (Re=Tb, Y), $La_{0.98-x}Lu_{x}Eu_{0.02}BO_{3}$, $Pr_{0.99-x}Lu_{x}Eu_{0.01}BO_{3}$ И $Lu_{0.99-x}Sm_{x}Eu_{0.01}BO_{3}$. Соелинения LaBO₃ и PrBO₃ имеют две структурных модификации. Низкотемпературной фазой этих соединений является орторомбическая фаза — арагонит (пр. гр. *Рпат*). При $T = 1488^{\circ}$ С LaBO₃ переходит в высокотемпературную моноклинную фазу (пр. гр. $P2_1/m$), а $PrBO_3$ при $T = 1500^{\circ}$ С — в триклинную фазу (пр. гр. P(-1)) [30–35]. фазой SmBO₃ Низкотемпературной является триклинная структура (пр. гр. P(-1)), а при температуре $T = 1065 - 1150^{\circ}$ С (по данным разных работ) SmBO₃ имеет структуру ватерита (*P*6₃/*mmc*) [17,36–38].

Следует отметить, что ионы La^{3+} в структуре арагонита окружены девятью ионами кислорода, а ионы бора имеют тригональную координацию по кислороду [32–35]. Ионы Lu^{3+} в структуре кальцита, например, в LuBO₃, окружены шестью ионами кислорода, а атомы бора имеют такую же, как в арагоните, тригональную координацию по кислороду — $(BO_3)^{3-}$ [39]. Ионы Sm³⁺ в триклинной структуре SmBO₃ окружены восьмью ионами кислорода, а ионы бора имеют тригональную координацию по кислороду [36]. В то же время, в структуре ватерита ионы Lu^{3+} окружены восемью ионами кислорода, а три атома бора с тетраэдрическим окружением по кислороду образуют группу $(B_3O_9)^{9-}$ в виде трехмерного кольца [39–41].

В соединениях $La_{0.99-x}Re_xEu_{0.01}BO_3$ (Re = Tb, Y), синтезированных при $T = 970^{\circ}C$ (температуре существования фаз арагонита LaBO₃ и ватерита $ReBO_3$), при увеличении концентрации Re наблюдается следующая последовательность структурных модификаций (ПСМ): арагонит \rightarrow арагонит + ватерит \rightarrow ватерит [26,27]. В то же время, в ортоборатах $La_{0.98-x}Lu_xEu_{0.02}BO_3$ и $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$, синтезированных при $T = 970^{\circ}C$ (температуре существования фаз арагонита LaBO₃ и PrBO₃, а также кальцита LuBO₃), при увеличении концентрации Lu^{3+} наблюдается неожиданная последовательность чередования структурных модификаций: арагонит \rightarrow арагонит + ватерит \rightarrow ватерит \rightarrow ватерит + кальцит [22,28].

В ортоборатах Lu_{0.99-x}Sm_xEu_{0.01}BO₃, синтезированных при $T = 970^{\circ}$ C (температуре существования кальцитной фазы LuBO₃ и триклинной фазы SmBO₃), при увеличении концентрации Sm³⁺ наблюдается последовательная смена также трех структурных состояний: кальцит — кальцит + ватерит — ватерит — ватерит + триклинная фаза — триклинная фаза [29].

Таким образом, при увеличении концентрации Lu в ортоборатах $Re_{1-x}Lu_xBO_3(Eu)$ (Re = La, Pr) и Sm в

Lu_{1-x}Sm_xBO₃(Eu) эти соединения из равновесных при температуре синтеза фаз арагонита и кальцита вначале образуют фазу ватерита и лишь затем переходят в равновесную при температуре синтеза структуру. Следует обратить внимание на то, что интервал концентраций Sm³⁺, в котором существует фаза ватерита в синтезированных при 970°C ортоборатах Lu_{0.99-x}Sm_xEu_{0.01}BO₃, очень широкий $0.3 \le x \le 0.95$, в то же время, триклинная фаза существует в очень узком интервале — $0.98 < x \le 1$ [29].

Важно отметить, что в синтезированных при 970°C ортоборатах $Lu_{1-x}Re_xBO_3$: Eu, (Re = Gd, Tb, Eu, Y) и $Lu_{1-x}In_xBO_3$ переход в конечную структурную модификацию происходит при концентрациях In ≥ 10 at.% и $Re \geq 10-25$ at.% (для разных Re) [11–15]. В то же время, в синтезированных при $T = 970^{\circ} \text{C}$ ортоборатах $La_{0.99-x}Re_xEu_{0.01}BO_3$ (Re = Tb, Y), $La_{0.98-x}Lu_{x}Eu_{0.02}BO_{3}$, $Pr_{0.99-x}Lu_{x}Eu_{0.01}BO_{3}$ и $Lu_{0.99-x}Sm_{x}Eu_{0.01}BO_{3}$, ЭТОТ процесс завершается при x > 0.8-0.98 (для разных Re) [22,26-29].

В работах [22,26–29] проводились исследования твердых растворов LaBO₃ и боратов редкоземельных ионов $ReBO_3$ (Re = Tb, Y, Sm, Lu). Представляло интерес исследование твердых растворов LaBO₃ и боратов, которые не являются лантаноидами. В работе [42] проведены исследования твердых растворов LaBO₃ и бората ScBO₃ с общей формулой La_{0.99-x}Sc_xEu_{0.01}BO₃ ($0 \le x \le 0.99$).

Как известно, при температуре 970°С ортоборат скандия (ScBO₃) имеет одну структурную модификацию кальцит [17,19,43].

В работе [42] показано, что в боратах $La_{0.99-x}Sc_xEu_{0.01}BO_3$ при увеличении концентрации ионов Sc^{3+} последовательно образуются три соединения — ортоборат лантана LaBO₃, лантан-скандиевый борат LaSc₃(BO₃)₄, ортоборат скандия ScBO₃.

— При $0 \le x \le 0.26$ образцы являются однофазными и имеют орторомбическую структуру LaBO₃, пр. гр. *Рпат* (арагонит). Измерены соответствующие фазе арагонита спектры люминесценции и ИК-спектры микрокристаллов этих образцов.

– При 0.26 < x < 0.75 образцы являются двухфазными — наряду со структурой арагонита наблюдается тригональная структура LaSc₃(BO₃)₄, пр. гр. *R32H* (хантит). При увеличении концентрации ионов Sc³⁺ относительное количество хантита растет, а арагонита уменьшается. В спектрах люминесценции и ИК-спектрах наблюдаются полосы, характерные для структур арагонита La_{0.99}Eu_{0.01}BO₃ и хантита La_{99-x}Sc₃Eu_{0.01}(BO₃)₄.

– При $0.75 \le x \le 0.85$ наблюдается лантан–скандиевый борат LaSc₃(BO₃)₄. Спектры люминесценции ионов Eu³⁺ в этих образцах содержат полосы с $\lambda_{\text{max}} = 589.8, 595.7 \text{ m} ({}^5D_0 \rightarrow {}^7F_1)$; 610.2, 613.8, 615.8 nm $({}^5D_0 \rightarrow {}^7F_2)$; 692.2, 697.4, 701.2 nm $({}^5D_0 \rightarrow {}^7F_4)$. Наибольшую интенсивность имеют полосы с $\lambda_{\text{max}} = 613.8$ и 615.8 nm. В ИК-спектрах хантита наблюдаются полосы поглощения 665, 717, 752, 775, 968, 1234, 1338 сm⁻¹. – В интервале $0.85 < x \le 0.97$ образцы являются двухфазными, состоящими из хантита LaSc₃(BO₃)₄ и кальцита ScBO₃, пр. гр. $R\bar{3}c$. При увеличении концентрации ионов Sc³⁺ относительное количество кальцита растет, а хантита уменьшается. В спектрах люминесценции и ИК-спектрах наблюдаются полосы, характерные для хантитной и кальцитной модификаций этих образцов.

– При 0.97 < $x \le 0.99$ образцы имеют структуру кальцита ScBO₃. Наибольшую интенсивность в спектре люминесценции образца Sc_{0.99}Eu_{0.01}BO₃ имеют полосы с $\lambda_{\text{max}} = 589.6$ и 596.2 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$). В ИК-спектрах наблюдаются полосы поглощения 644, 752, 775, 1236 и 1279 сm⁻¹.

Таким образом, в соединениях $La_{0.99-x}Sc_xEu_{0.01}BO_3$ при увеличении концентрации Sc^{3+} в шихте наблюдается последовательная смена структурных состояний: арагонит $LaBO_3$ ($0 \le x \le 0.26$) \rightarrow арагонит + хантит $LaSc_3(BO_4)_3$ (0.26 < x < 0.75) \rightarrow хантит ($0.75 \le x \le 0.85$) \rightarrow хантит + кальцит $ScBO_3$ ($0.85 < x \le 0.97$) \rightarrow кальцит ($0.97 < x \le 0.99$).

Соединения $La_{0.99-x}Sc_xEu_{0.01}BO_3$ имеют высокую интенсивность свечения и могут быть использованы в качестве эффективных красных люминофоров для светодиодных источников света.

В настоящей работе проведены исследования структуры, ИК-спектров, морфологии, спектров люминесценции и спектров возбуждения люминесценции в системе LaBO₃—InBO₃. Индий, в отличие от скандия, не является редкоземельным элементом, принадлежит к Ша группе элементов и его ион In^{3+} имеет больший радиус. В работе определены фазы, образующиеся в данной системе при увеличении концентрации индия в шихте. Установлено соответствие между структурой и спектральными характеристиками синтезированных соединений. Ионы Eu^{3+} , как и в предыдущих наших исследованиях, использовались в качестве оптически активных и структурно-чувствительных меток в количествах, не влияющих на структурные перестройки исследуемых соединений.

2. Методики эксперимента

2.1. Синтез образцов

Образцы поликристаллических порошков ортоборатов с брутто формулой $La_{0.99-x}In_xEu_{0.01}BO_3$ при $0 \le x \le 0.99$ были синтезированы взаимодействием оксидов лантана, индия и европия с расплавом тетрабората калия по реакции

$$(0.99 - x)La_2O_3 + xIn_2O_3 + 0.01Eu_2O_3 + K_2B_4O_7$$

= 2La_{0.99-x}In_xEu_{0.01}BO_3 + K_2B_2O_4.

Количество тетрабората калия, взятое в реакцию, обеспечивало двукратный избыток борсодержащего реагента относительно стехиометрического количества. Исходными реагентами для синтеза были гидрат тетрабората калия K₂B₄O₇ · 4H₂O, оксиды металлов и азотная кислота. Все использованные химические вещества соответствовали квалификации "ЧДА". Ионы металлов вводили в реакцию в виде водных растворов их нитратных солей, которые предварительно получали растворением исходных оксидов металлов в азотной кислоте. Синтез микрокристаллических порошков боратов проводили следующим образом. Взвешенное количество кристаллического тетрабората калия (гидрата) и соответствующие объемы калиброванных водных растворов нитратов редких земель помещали в керамическую чашку и тщательно перемешивали. Полученную водную суспензию нагревали на плитке и при осторожном кипении отгоняли воду. Полученный твердый продукт отжигали при температуре 550°С в течение 20 min для удаления остаточной влаги и разложения нитратных солей. Твердый продуктпрекурсор тщательно перетирали в агатовой ступке и полученный порошок переносили в керамический тигель для отжига при $T = 970^{\circ}$ С в течение 3 h. Полученные продукты обрабатывали водным раствором соляной кислоты с концентрацией 5 wt.% в течение 0.2 h. Выделение поликристаллов боратов проводили фильтрованием полученной водной суспензии с последующей промывкой водой, спиртом и сушкой продукта на фильтре. Полученные порошки поликристаллов окончательно сушились на воздухе при $T = 120^{\circ}$ С в течение 0.5 h.

2.2. Методы исследований

Рентгенодифракционные исследования проводили с использованием дифрактометра Rigaku SmartLab SE на CuK_{α} -излучении, $\lambda = 1.54178$ Å, 40 kV, 35 mA. Угловой интервал $2\theta = 10-140^{\circ}$. Фазовый анализ образцов и расчет параметров решетки проводили с использованием программ Match и PowderCell 2.4.

ИК-спектры поглощения образцов измерялись на Фурье-спектрометре VERTEX 80v в спектральном диапазоне 400-5000 cm⁻¹ с разрешением 2 cm⁻¹. Для измерений порошки поликристаллов перетирались в агатовой ступке, а затем тонким слоем наносились на кристаллическую шлифованную подложку KBr.

Морфология образцов изучалась с использованием рентгеновского микроанализатора Supra 50VP с приставкой для EDS INCA (Oxford).

Спектры фотолюминесценции и спектры возбуждения люминесценции изучались на установке, состоящей из источника света — лампы ДКСШ-150, двух монохроматоров МДР-4 и МДР-6 (спектральный диапазон 200–1000 nm, дисперсия 1.3 nm/mm). Регистрация свечения осуществлялась фотоумножителем ФЭУ-106 (область спектральной чувствительности 200–800 nm) и усилительной системой. Монохроматор МДР-4 использовался для изучения спектров возбуждения люминесценции образцов, монохроматор МДР-6 применялся для изучения спектров люминесценции. Спектральные и структурные характеристики, а также морфологию образцов, исследовали при комнатной температуре.

Прежде, чем перейти к изложению результатов структурных и спектральных исследований полученных образцов ортоборатов, важно отметить, что приведенные в тексте статьи брутто формулы вида $La_{0.99-x}In_xEu_{0.01}BO_3$ не являются характеристиками индивидуальных соединений, а отражают лишь соотношение атомных долей редкоземельных элементов и индия в исходной шихте.

3. Рентгеноструктурные исследования

Дифрактограммы порошков образцов La_{0.99-x}In_xEu_{0.01}BO₃ и их фазовый состав в зависимости от концентрации индия в шихте приведены на рис. 1 и 2. При $0 \le x \le 0.20$ образцы являются однофазными и имеют структуру арагонита LaBO₃, пр. гр. *Рпат* (62) (PDF 12-0762), Z = 4. В интервале

Рис. 1. Дифрактограммы образцов $La_{0.99-x}In_xEu_{0.01}BO_3$ ($0 \le x \le 0.99$). * — In_2O_3 .

Рис. 2. Фазовый состав боратов $La_{0.99-x}In_xEu_{0.01}BO_3$ в зависимости от концентрации индия в шихте при $0 \le x \le 0.99$: треугольник — арагонит; круг — кальцит.

Рис. 3. Объемы элементарных ячеек арагонита и кальцита в зависимости от концентрации индия в шихте при $0 \le x \le 0.99$, приведенные к формульной единице (La,In)BO₃: треугольник — арагонит, круг — кальцит.

0.20 < x < 0.94 образцы являются двухфазными — наряду со структурой арагонита наблюдается кальцит InBO₃, пр. гр. $R\bar{3}c$ (167), PDF 82-1188, Z = 6. При $0.94 \le x \le 0.99$ образцы являются однофазными со структурой кальцита InBO₃.

На рис. 3 показаны объемы элементарных ячеек фаз, которые наблюдаются в боратах $La_{0.99-x}In_xEu_{0.01}BO_3$, приведенные к формульной единице (La,In)BO₃. Во всем интервале существования фазы арагонита объем элементарной ячейки (V_A) не изменяется (таблица, рис. 3).

Ионный радиус In^{3+} (0.84285 Å) существенно меньше ионного радиуса La^{3+} (1.11482 Å) [44]. Отсутствие изменения объема элементарной ячейки арагонита в

In, at.%	Кальцит, %	Арагонит, %	Объем ячейки		Содержание	Фактическое количество	
в шихте, х			кальцита (: 6)	арагонита (: 4)	In_2O_3 %	La, at %	In, at %
0*	0	100	_	61.79	_	100	0
5	0	100	_	61.80	_	99.5	0.5
10	0	100	_	61.81	_	100	0
20	< 1	> 99	—	61.79	_	99	1
25	3	96	_	61.79	1	96	4
37	15	85	52.33	61.81	2	85	15
50	44	55	52.12	61.77	1	51	49
75	75	23	52.15	61.77	2	24	76
90	93.5	1.5	52.27	—	5	5	95
94	100	_	52.00	_	_	2	98
98*	100	—	52.04	—	—	0	100

Содержание фаз, приведенный объем элементарной ячейки кальцита и арагонита и фактическое содержание элементов в зависимости от содержания индия в шихте La_{0.99-x}In_xEu_{0.01}BO₃

Примечание. * — образец состава $La_{0.98-x}In_xEu_{0.02}BO_3$.

однофазной области $0 \le x \le 0.20$ свидетельствует о том, что ионы индия не входят в структуру арагонита. Фактическое содержание лантана и индия в образцах, определенное по данным элементного анализа, приведено в таблице. Видно, что в интервале $0 \le x \le 0.20$ образцы практически не содержат индия. Это значит, что в данном способе синтеза введенный в шихту индий вымывается при обработке образцов кислотой и не входит в структуру арагонита в интервале $0 \le x \le 0.20$. В интервале 0.20 < x < 0.94 добавленный индий идет на образование фазы кальцита, количество которой увеличивается и достигает 100% при $0.94 \le x \le 0.99$. Поскольку объем элементарной ячейки арагонита не меняется во всем интервале наблюдения этой фазы, это свидетельствует о том, что индий не входит в решетку арагонита при 0 ≤ x < 0.94. Объем элементарной ячейки кальцита также практически постоянен в данном интервале, т.е. мы не наблюдаем легирования кальцита InBO3 лантаном. В узком интервале концентраций индия 0.94 < x < 0.99, в котором наблюдается однофазный кальцит InBO3, объем элементарной ячейки с увеличением концентрации индия в шихте также практически не меняется (рис. 3, таблица). Другими словами, при добавлении к кальциту InBO3 лантана с большим ионным радиусом, чем радиус иона индия, объем элементарной ячейки кальцита практически не меняется. Таким образом, мы не наблюдаем вхождение ионов лантана в кристаллическую решетку кальцита.

Из таблицы видно, что фактическое содержание лантана в образце практически совпадает с концентрацией фазы арагонита, а фактическое содержание индия коррелирует с количеством фазы кальцита. Это еще раз подтверждает предположение, что арагонит содержит LaBO₃ без вхождения индия в кристаллическую решетку, а добавленный при синтезе индий расходуется на образование кальцита InBO₃. На основании рентгеноструктурных исследований соединений $La_{0.99-x}In_xEu_{0.01}BO_3$ можно сделать вывод о том, что при увеличении концентрации In^{3+} в шихте наблюдается последовательная смена следующих структурных состояний: однофазный арагонит ($0 \le x \le 0.20$), арагонит + кальцит (0.20 < x < 0.94), однофазный кальцит ($0.94 \le x \le 0.98$).

4. Морфология образцов

 $T = 970^{\circ} C$ Полученные при микрокристаллы La_{0.98}Eu_{0.02}BO₃ со структурой арагонита (таблица) имеют размеры $\sim 1-6\,\mu m$ (рис. 4, *a*), хорошо огранены и имеют близкое к единице отношение максимального размера к минимальному. Образцы $La_{0.99-x}In_{x}Eu_{0.01}BO_{3}$ (0 < x < 0.2)также имеют структуру арагонита и подобную морфологию, например, образец La_{0.89}In_{0.10}Eu_{0.01}BO₃ (рис. 4, *b*). Образец La_{0.62}In_{0.37}Eu_{0.01}BO₃ (85%) арагонита (A), 13% кальцита (C) и 2% In₂O₃, таблица) содержит, наряду с указанными выше многогранными микрокристаллами, также и малые (в основном $< 1 \, \mu m$) частицы без определенной формы (рис. 4, *c*). индия в содержании При большем образце состава La_{0.49}In_{0.50}Eu_{0.01}BO₃ (65% А, 44% С и 1% In₂O₃) наблюдается заметно больше мелких частиц с размерами $< 1 \, \mu m$, а также встречаются отдельные микрокристаллы ромбоэдрической формы размерами $\sim 1-2\,\mu m$ (рис. 4, d). При дальнейшем увеличении концентрации индия количество мелких частиц становится еще больше, например, образец La_{0.24}In_{0.75}Eu_{0.01}BO₃ (23% А, 75% С и 1% In₂O₃) (рис. 4, *e*). Образец In_{0.98}Eu_{0.02}BO₃, который имеет структуру кальцита (таблица), состоит в основном из микрокристаллов размером $\sim 1 \,\mu m$ и менее (рис. 4, *f*).

На основании исследования морфологии боратов $La_{0.98-x}In_xEu_{0.02}BO_3$ (x = 0 и x = 0.98) и

Рис. 4. Морфология боратов $La_{0.99-x}In_xEu_{0.01}BO_3$ $a = La_{0.98}Eu_{0.02}BO_3$; $b = La_{0.89}In_{0.10}Eu_{0.01}BO_3$; $c = La_{0.62}In_{0.37}Eu_{0.01}BO_3$; $d = La_{0.49}In_{0.50}Eu_{0.01}BO_3$; $e = La_{0.24}In_{0.75}Eu_{0.01}BO_3$; $f = In_{0.98}Eu_{0.02}BO_3$.

La_{0.99-x}In_xEu_{0.01}BO₃ ($0 \le x \le 0.99$) можно сделать вывод о том, что основным отличием ортоборатов La_{0.98}Eu_{0.02}BO₃, имеющих структуру арагонита, от ортоборатов In_{0.98}Eu_{0.02}BO₃, имеющих структуру кальцита, является дисперсность образцов, а именно: размеры микрокристаллов $1-6\,\mu$ m для арагонита (рис. 4, *a*) и размеры микрокристаллов $\sim 1\,\mu$ m и менее для кальцита (рис. 4, *f*). Двухфазные образцы содержат обе различные по дисперсности фракции частиц с коррелирующими с соотношением лантана и индия количествами.

5. Результаты ИК-спектроскопии

На рис. 5 приведены ИК-спектры соединений $La_{0.98-x}In_xEu_{0.02}BO_3$, где x = 0, 0.98 (спектры 1 и 8 соответственно) и $La_{0.99-x}In_xEu_{0.01}BO_3$, где x = 0.10, 0.25, 0.37, 0.50, 0.75 и 0.94 (спектры 2-7) в диапазоне частот 500-1500 сm⁻¹, характерных для внутренних колебаний иона $(BO_3)^{3-}$. Согласно данным рентгенофазового анализа образец состава $La_{0.98}Eu_{0.02}BO_3$ является однофазным и имеет структуру арагонита (таблица). В этой структуре бор с тремя атомами кислорода образуют ион

Рис. 5. ИК-спектры боратов $La_{0.99-x}In_xEu_{0.01}BO_3$ $I - La_{0.98}Eu_{0.02}BO_3$; $2 - La_{0.89}In_{0.1}Eu_{0.01}BO_3$; $3 - La_{0.74}In_{0.25}Eu_{0.01}BO_3$; $4 - La_{0.62}In_{0.37}Eu_{0.01}BO_3$; $5 - La_{0.49}In_{0.5}Eu_{0.01}BO_3$; $6 - La_{0.24}In_{0.75}Eu_{0.01}BO_3$; $7 - La_{0.05}In_{0.94}Eu_{0.01}BO_3$; $8 - In_{0.98}Eu_{0.02}BO_3$; Для спектров I-8нулевые значения осей ординат показаны пунктирной линией.

 $(BO_3)^{3-}$ с позиционной симметрией C_s . В ИК-спектре поглощения La_{0.98}Eu_{0.02}BO₃ (рис. 5, спектр *1*) наблюдаются интенсивные полосы поглощения 592, 612, 721, 789, 939 и 1302 сm⁻¹. В соответствии с анализом внутренних колебаний этого иона в структуре арагонита [39], полосы ИК поглощения 592 и 613 сm⁻¹ можно отнести к деформационному плоскостному колебанию v_4 , дублет 723, 789 — к деформационному внеплоскостному колебанию v_2 , а полосы поглощения 940 и 1306 сm⁻¹ —

к валентным симметричному v_1 и антисимметричному v_3 колебаниям соответственно (рис. 5, спектр *1*). Аналогичные спектры наблюдались в работах [25,34,45]. ИК-спектр состава La_{0.89}In_{0.1}Eu_{0.01}BO₃ имеет тот же набор полос поглощения, обозначенных "а", и по результатам рентгенофазового анализа является однофазным со структурой арагонита (таблица).

В спектрах образцов $La_{0.99-x}In_xEu_{0.01}BO_3$, содержащих 25, 37, 50 и 75 at.% In³⁺, наряду с полосами "а", появляются новые полосы, обозначенные "с" (рис. 5, спектры 3-6). Эти образцы являются двухфазными наряду с фазой арагонита LaBO3 они содержат фазу кальцита InBO₃ (таблица). На рисунке отчетливо прослеживается трансформация спектров поглощения образцов при увеличении концентрации индия: интенсивность полос поглощения фазы арагонита падает, а полос поглощения "с" растет. По результатам рентгенофазового анализа соотношение фаз кальцит/ватерит в образцах La_{0.74}In_{0.25}Eu_{0.01}BO₃, La_{0.62}In_{0.37}Eu_{0.01}BO₃, La_{0.49}In_{0.50}Eu_{0.01}BO₃ и La_{0.24}In_{0.75}Eu_{0.01}BO₃ составляет 3/96, 15/85, 44/55 и 75/23 соответственно. В спектрах образцов La_{0.05}In_{0.94}Eu_{0.01}BO₃ и In_{0.98}Eu_{0.02}BO₃ (рис. 5, спектры 7, 8) наблюдаются только полосы поглощения "с". По результатам рентгенофазового анализа они являются однофазными со структурой кальцита. В спектрах этих образцов наблюдаются полосы поглощения 674, 750, 770 и 1290 ст⁻¹, обусловленные колебаниями связей В-О планарного тригонального иона $(BO_3)^{3-}$ с позиционной симметрией D_3 (рис. 5, спектр 8). Подобный спектр для InBO₃ наблюдался ранее в [39,45]. Полосу 674 и дублет 750 и 770 cm⁻¹ относят к деформационным плоскостным и внеплоскостным колебаниям связей В-О — v₄ и v₂ соответственно, а широкую полосу 1290 — к валентным асимметричным колебаниям этих связей.

Таким образом, методом ИК-спектроскопии показано, что спектры ИК-поглощения образцов La0,98Eu0.02BO3, $La_{0.05}In_{0.94}Eu_{0.01}BO_3$, $La_{0.89}In_{0.1}Eu_{0.01}BO_3$ И In_{0.98}Eu_{0.02}BO₃ соответствуют спектрам однофазных образцов со структурами арагонита и кальцита, соответственно, в которых присутствуют плоские тригональные группы ВО3. Отличие спектров в частотной области колебаний связей В-О обусловлено разной позиционной симметрией иона $(BO_3)^{3-}$: C_s — в структуре арагонита и D_3 — в структуре кальцита. составов $La_{0.99-x}In_xEu_{0.01}BO_3$ Образцы брутто (0.20 < x < 0.94) являются двухфазными: их ИКспектры включают полосы поглощения как фазы арагонита, так и кальцита.

6. Спектральные характеристики боратов La_{0.99-x} In_x Eu_{0.01}BO₃

Согласно данным рентгенофазового анализа (разд. 3) образцы $La_{0.99-x}In_xEu_{0.01}BO_3$ при увеличении концентрации индия в шихте имеют структуру арагонита

Рис. 6. Спектры люминесценции боратов La_{0.99-x} In_xEu_{0.01}BO₃ при возбуждении длиной волны $\lambda_{ex} = 394$ nm. 1 - x = 0.05; 2 - x = 0.1; 3 - x = 0.2, 4 - x = 0.25; 5 - x = 0.37; 6 - x = 0.5; 7 - x = 0.75; 8 - x = 0.94; $9 - In_{0.98}Eu_{0.02}BO_3$.

 $(0 \le x \le 0.20)$ и являются однофазными. Затем, наряду с фазой арагонита, появляется фаза кальцита (0.20 < x < 0.94), а при $0.94 \le x \le 0.98$ однофазные образцы In_{0.94}La_{0.05}Eu_{0.01}BO₃ и In_{0.98}Eu_{0.02}BO₃ имеют структуру кальцита. Спектры люминесценции (СЛ) этих соединений представлены на рис. 6. В СЛ однофазных образцов La_{0.94}In_{0.05}Eu_{0.01}BO₃, La_{0.89}In_{0.1}Eu_{0.01}BO₃ и La_{0.79}In_{0.2}Eu_{0.01}BO₃, имеющих структуру арагонита, наблюдаются полосы с λ_{max} : 578.8 nm (2.142 eV) (электронный переход ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$); 589.5, 591.2, 592.8 nm (2.103, 2.097, 2.091 eV) (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$); 611.6, 614.5, 617.4, 620, 623.2 nm (2.027, 2.017, 2.008, 1.999, 1.989 eV) (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) (рис. 6, спектры I-3). Наибольшую интенсивность в приведенном диапазоне длин волн имеет полоса с $\lambda_{max} = 614.5$. Подобные спектры наблюдались в работах [22–25].

На рис. 6 (спектры 8, 9) приведены СЛ однофазных образцов In_{0.94}La_{0.05}Eu_{0.01}BO₃ и In_{0.98}Eu_{0.02}BO₃ со структурой кальцита. В спектрах наблюдаются полосы с $\lambda_{\text{max}} = 589.4$ и 596.5 nm (2.103 и 2.078 eV) (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$), положение которых близко к положению полос в кальцитной модификации LuBO₃(Eu) [10–12].

Спектры возбуждения люминесценции (СВЛ) наиболее интенсивных полос свечения боратов La $_{0.94}$ In $_{0.05}$ Eu $_{0.01}$ BO $_3$ и In $_{0.98}$ Eu $_{0.02}$ BO $_3$, имеющих структуру арагонита и кальцита, соответственно, приведены на рис. 7.

В СВЛ La_{0.94}In_{0.05}Eu_{0.01}BO₃ (LBO) в ультрафиолетовой области спектра наблюдается широкая полоса $(\lambda = 200-330 \text{ nm})$ (полоса переноса заряда — ППЗ) с максимумом при ~ 280 nm (рис.7, спектр 1). СВЛ этого образца содержит также ряд узких полос в диапазоне длин волн 330-500 nm, соответствующих резонансному возбуждению ионов Eu³⁺. Наиболее интенсивными в длинноволновой области спектра для LBO являются полосы с максимумами при $\lambda_{\rm ex} = 394 \, {\rm nm} \, (^7F_0 \rightarrow {}^5L_6)$ и 465.5 nm (${}^{7}F_{0} \rightarrow {}^{5}D_{2}$). Спектр возбуждения люминесценции наиболее интенсивной полосы свечения ортобората $In_{0.98}Eu_{0.02}BO_3$ ($\lambda_{max} = 589.4 \text{ nm}$), имеющего структуру кальцита (таблица), представлен на рис. 7, спектр 2. Он содержит широкую полосу 200-280 nm (ППЗ) с максимумом при $\lambda_{ex} \sim 242 \text{ nm}$, а в диапазоне 280-500 nmполосу $\lambda_{ex} = 394 \, nm$ слабой интенсивности (рис. 7, спектр 2, вставка).

Интенсивность полос люминесценции кальцитной фазы в двухфазных образцах (рис. 6, спектры 4-7) невелика по сравнению с полосами арагонитной фазы, несмотря на то, что согласно данным рентгенофазового анализа (таблица), количество фазы кальцита в двухфазных образцах достигает 75%. Малая интенсивность полос люминесценции кальцита обусловлена очень малой интенсивностью полосы возбуждения с $\lambda_{ex} = 394$ nm в СВЛ (рис. 7, спектр 2, вставка). Интенсивность резонансной полосы возбуждения люминесценции $\lambda_{ex} = 394$ nm в

Рис. 7. Спектры возбуждения люминесценции образцов: $1 - La_{0.94}In_{0.05}Eu_{0.01}BO_3$, $2 - In_{0.98}Eu_{0.02}BO_3$, полученные при λ_{max} : 1 - 614.5 nm, 2 - 589.5 nm. На вставке показан участок спектра 2 в диапазоне длин волн 380–420 nm.

кальците примерно на порядок меньше, чем в арагоните (рис. 7, спектр I).

Таким образом, сопоставление результатов рентгенофазового анализа и спектров люминесценции свидетельствует о том, что наблюдается соответствие между структурой и спектральными характеристиками ортоборатов La_{0.99-x} In_x Eu_{0.01}BO₃ при $0 \le x \le 0.99$.

7. Заключение

В настоящей работе проведены исследования структуры, морфологии, ИК-спектров, а также спектров возбуждения люминесценции и спектров люминесценции синтезированных при 970° С ортоборатов лантана и индия с общей формулой по шихте La_{0.99-x}In_xEu_{0.01}BO₃. Установлено однозначное соответствие между структурной модификацией ортоборатов, их ИК-спектрами и спектрами фотолюминесценции.

Показано, что в исследованной системе не образуются твердые растворы ортоборатов лантана и индия, о чем свидетельствует постоянство объема элементарной ячейки при увеличении концентрации ионов In^{3+} в шихте. При этом наблюдается последовательная смена следующих структурных состояний: однофазный арагонит LaBO₃ ($0 \le x \le 0.20$), арагонит + кальцит InBO₃ (0.20 < x < 0.94), однофазный кальцит ($0.94 \le x \le 0.98$).

— При $0 \le x \le 0.20$ образцы являются однофазными и имеют структуру арагонита LaBO₃ (пр. гр. *Pnam*).

— При 0.20 < x < 0.94 образцы являются двухфазными, содержат арагонит и кальцит. При увеличении концентрации ионов In ³⁺ в шихте относительное количество кальцита растет, а арагонита уменьшается. Фактическое содержание лантана в образце практически совпадает с концентрацией фазы арагонита, а фактическое содержание индия коррелирует с количеством фазы кальцита. Т.е. добавленный индий идет на образование фазы кальцита и не входит в решетку арагонита во всем исследованном интервале. Объем элементарной ячейки кальцита также не меняется. В спектрах люминесценции и ИК-спектрах наблюдаются полосы, характерные для структур арагонита и кальцита.

— При $0.94 \le x \le 0.98$ образцы являются однофазными со структурой кальцита InBO₃ (пр. гр. $R\bar{3}c$). Объем элементарной ячейки кальцита практически постоянен, следовательно, не наблюдается вхождение лантана в решетку кальцита.

На основании исследования морфологии ортоборатов лантана и индия можно сделать вывод, что фазы арагонита $La_{0.98}Eu_{0.02}BO_3$ и кальцита $In_{0.98}Eu_{0.02}BO_3$ содержат микрокристаллы размером $1-6\,\mu$ m и ~ $1\,\mu$ m и менее, соответственно. Двухфазные образцы содержат обе различные по дисперсности фракции частиц с коррелирующими с соотношением лантана и индия количествами.

Показано, что ортобораты индия и лантана не образуют совместных твердых растворов.

Благодарности

Авторы выражают благодарность ЦКП ИФТТ РАН за исследование морфологии образцов, а также их характеризацию методами ИК-спектроскопии и рентгенофазового анализа.

Финансирование работы

Работа выполнена в рамках госзадания ИФТТ РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] E.F. Shubert, J.K. Kim. Science 308, 1274 (2005).
- [2] X. Zhang, X. Fu, J. Song, M.-L. Gong. Mater. Res. Bull. 80, 177 (2016).
- [3] C. Mansuy, J.M. Nedelec, C. Dujardin, R. Mahiou. Opt. Mater. 29, 6, 697 (2007).
- [4] J.-P. Meyu, T. Jensen, G. Huber. IEEE J. Quantum Electron 30:913 (1994).
- [5] D. Lu, Z. Pan, H. Zwang, J. Wang. Opt. Mater Exp. 5, 8, 1822 (2015).
- [6] A.B. Kuznetsov, K.A. Kokh, N.G. Kononova, V.S. Shevchenko, S.V. Rashchenko, D.M. Ezhov, A.Y. Jamous, A. Bolatov, B. Uralbekov, V.A. Svetlichnyi, A.E. Kokh. J. Alloys Comp. 851, 156825 (2021).
- [7] V.V. Mikhailin, D.A. Spassky, V.N. Kolobanov, A.A. Meotishvili, D.G. Permenov, B.I. Zadneprovski. Rad. Measurem. 45, 307 (2010).
- [8] J. Yang, G. Zhang, L. Wang, Z. You, S. Huang, H. Lian, J. Lin. J. Solid State Chem. 181, 2672 (2008).
- [9] G. Blasse, Grabmaier B.C. Luminescent Materials. Springer-Verlag, Berlin-Heiderberg (1994). 233 p.
- [10] Jun Yang, Chunxia Li, Xiaoming Zhang, Zewei Quan, Cuimiao Zhang, Huaiyong Li, Jun Lin. Chem. Eur. J. 14, 14, 4336 (2008).
- [11] С.З. Шмурак, В.В. Кедров, А.П. Киселев, И.М. Шмытько. ФТТ **57**, *1*, 19 (2015).
- [12] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.М. Шмытько. ФТТ 57, 8, 1558 (2015).
- [13] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, Е.Ю. Постнова. ФТТ63, 7, 933 (2021).
- [14] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, Е.Ю. Постнова. ФТТ 63, 10, 1615 (2021).
- [15] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова. ФТТ 62, 12, 2110 (2020).
- [16] J. Hö Isä. Inorg. Chim. Acta 139, 1–2, 257 (1987).
- [17] E.M. Levin, R.S. Roth, J.B. Martin. Am. Miner. 46, 9–10, 1030 (1961).
- [18] G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, C. Cousseins. J. Solid State Chem. 128, 261 (1997).

- [19] .D. Santamaría-Pérez, O. Gomis, J. Angel Sans, H.M. Ortiz, A. Vegas, D. Errandonea, J. Ruiz-Fuertes, D. Martinez-Garcia, B. Garcia-Domene, André L.J. Pereira, F. Javier Manjón, P. Rodríguez-Hernández, A. Muñoz, F. Piccinelli, M. Bettinelli, C. Popescu. J. Phys. Chem. C 118, 4354 (2014).
- [20] Wen Ding, Pan Liang, Zhi-Hong Liu. Mater. Res. Bull. 94, 31 (2017).
- [21] Wen Ding, Pan Liang, Zhi-Hong Liu. Solid State Sci. 67, 76 (2017).
- [22] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, С.С. Хасанов. ФТТ 63, 12, 2142 (2021).
- [23] Н.И. Стеблевская, М.И. Белобелецкая, М.А. Медков. Журн. неорган. химии 66, 4, 440 (2021).
- [24] J. Guang, C. Zhang, C. Wang, L. Liu, C. Huang, S. Ding. Cryst. Eng. Commun. 14, 579 (2012).
- [25] J. Zhang, M. Yang, H Jin, X. Wang, X. Zhao, X. Liu, L. Peng. Mater. Res. Bull. 47, 247 (2012).
- [26] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова. ФТТ 64, 8, 955 (2022).
- [27] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова. ФТТ 64, 12, 2000 (2022).
- [28] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова. ФТТ 64, 4, 474 (2022).
- [29] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова. ФТТ 65, 2, 312 (2023).
- [30] Heng-Wei Wei, Li-Ming Shao, Huan Jiao, Xi-Ping Jing. Opt. Mater. 75, 442 (2018).
- [31] R. Nayar, S. Tamboli, A.K. Sahu, V. Nayar, S.J. Dhoble. J. Fluoresc. 27, 251 (2017).
- [32] S.K. Omanwar, N.S. Savala. Appl. Phys. A 123, 673 (2017).
- [33] A. Haberer, R. Kaindl, H. Huppertz. Z. Naturforsch. B 65, 1206 (2010).
- [34] R. Velchuri, B.V. Kumar, V.R. Devi, G. Prasad, D.J. Prakash, M. Vital. Mater. Res. Bull. 46, 8, 1219 (2011).
- [35] Jin Teng-Teng, Zhang Zhi-Jun, Zhang Hui, Zhao Jing-Tai. J. Inorganic Mater. 28, 10, 1153 (2013).
- [36] К.К. Палкина, В.Г. Кузнецов, Л.А. Бутман, Б.Ф. Джуринский. Координационная химия 2, 2, 286 (1976).
- [37] S. Lemanceau, G. Bertrand-Chadeyron, R. Mahiou, M. El-Ghozzi, J.C. Cousseins, P. Conflant, R.N. Vannier. J. Solid State Chem. 148, 229 (1999).
- [38] N. Akçamlı, D. Ağaoğulları, Ö. Balcı, M. Lütfi Öveçoğlu, İ. Duman. Ceram. Int. 42, 10045 (2016).
- [39] C.E. Weir, E.R. Lippincott. J. Res. Natl. Bur. Std. A 65, 3, 173 (1961).
- [40] A. Szczeszak, T. Grzyb, St. Lis, R.J. Wiglusz. Dalton Transact.
 41, 5824 (2012).
- [41] Ling Li, Shihong Zhou, Siyuan Zhang. Solid State Sci. 10, 1173 (2008).
- [42] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова. ФТТ 65, 5, 822 (2023).
- [43] D.A. Keszler, H. Sun. Acta Crystallogr. C 44, 1505 (1988).
- [44] А.Г. Рябухин. Изв. Челябинского науч. центра, **4**, 33 (2000).
- [45] W.C. Steele, J.C. Decius. J. Chem. Phys. 25, 6, 1184 (1956).

Редактор Т.Н. Василевская

1398