
Physics of the Solid State, 2023, Vol. 65, No. 6

05,12

Topological bands in metals with helical magnetic order
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The effect of a helicoidal magnetic field on the dispersion of conduction electrons in one- and two-dimensional

systems is investigated. In a helicoidal periodic magnetic field, there is a special symmetry with respect to the

reversal of time, which leads to the peculiarities of the band structure. Using an example of a one-dimensional

model system, the topological properties of the band structure in an effective magnetic field corresponding to the

120◦-ordering are investigated. In PdCrO2, the 120◦ magnetic ordering of the dielectric layers of CrO2 creates an

unusual spin structure of the Fermi surface in conducting palladium layers. In this case, the umklapp scattering

of mobile charge carriers is strongly suppressed, which leads to abnormally high conductivity at low temperatures

observed experimentally.
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1. Introduction

Delafossites — are compounds with the general formula

ABO2, having a layered structure with alternating hexagonal

ion layers A and BO2. These 3d-metal-based compounds

(B = Cr, Fe, Co) exhibit a variety of magnetic and transport

properties that have attracted the attention of theorists

and experimentalists. Thus, the geometric frustration in

CuFeO2 leads to several types of magnetic ordering which

alternate in the magnetic field [1], and partial substitution

of ions Fe3+ by Al3+ leads to multiferroic behavior [2].
The compounds PdCoO2, PtCoO2, PdCrO2 etc. form the

metallic delaphossite group. The electrical conductivity of

these substances is a record for metallic oxides and appears

to be comparable to values typical of elemental metals such

as copper and silver [3]. The CoO2 and CrO2 layers are

dielectric, and the conductivity is only provided by platinum

or palladium [4,5] layers, resulting in anomalous free path

lengths. For example, in PdCoO2 at room temperature,

it is 700 Å and at low temperatures, it reaches 20µm [3].
This suggests an unusual mechanism of electron transport

in metallic delaphossites; in particular, a transition to a

hydrodynamic mode of motion of conduction electrons [6]
was observed in them. The mechanism responsible for the

anomalous transport properties of these compounds [7] has
recently been actively sought.

Among metallic delaphossites with anomalous conduc-

tivity, PdCrO2 — the only compound in which a long-

range magnetic order (TN = 38K) [8] occurs. The magnetic

structure turns out to be extremely complex: chromium

ions in CrO2 dielectric interlayers form an 120◦-ordering

with alternating chirality in neighboring interlayers. In

total, the magnetic structure consists of 18 sublattices [9].
The transition to a magnetically-ordered state leads to a

sharp drop in resistance. It should be noted, that PdCrO2

is an extremely rare example of a compound exhibiting

an unconventional anomalous Hall effect at zero total

chirality [10]. Magnetothermode studies have shown that

the near magnetic order in PdCrO2 is conserved up to room

temperature and above [11].
The motion of a particle of spin 1/2 in a helicoidal mag-

netic field has been studied for quite a long time [12–17].
Particularly, the exact solution of the one-dimensional

problem for a homogeneous helicoidal field [12] is known.

Nowadays, interest in helimagnetics has been revived by

the discovery of electron transport [15] and the possibility

of current control of magnetic structure [16] therein. An

overview of the current state of theoretical and experimental

studies of uniaxial helimagnetics is presented in [17]. In the

present paper, we study the electronic structure in a

helicoidal magnetic field from symmetric and topological

points of view.

2. Theoretical background

Consider a crystal lattice described by symmetry opera-

tions {αR|t}: αR — rotate around axis R by angle α and

translate to vector t. Suppose that there is also a helicoidal

ordering of spins in the crystal. Let us assume that the

spins lie in the same plane, and in the absence of spin-

orbit coupling, the spin plane choice is arbitrary, i.e., it does

not affect the dispersion curves of the electrons. Let us

also assume that when translating to vector t, the spins
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are rotated by angle αS(t), and the magnetic structure is

commensurable, that is, the translation vector of magnetic

structure Tm is a multiple of vector t. The symmetry

of such a helicoidal structure can be described by a spin

space group with elements {αS |αR|t} [18,19]. Thus, along

the helicoid direction, we have two multiple periods of

translation. For translation Tm, Bloch’s theorem holds, and

for the combined {αR|t} operation, the generalized Bloch’s

theorem [19] holds. As we shall see below, this leads

to non-trivial consequences for the topological structure of

conduction bands. Note, that in [12], we found a kind

of operator similar to the momentum operator commuting

to the Hamiltonian and determining the quantum numbers

of the spectrum branches in the helicoidal field. Note,

however, that this approach is only possible for a homoge-

neous helicoid where a continuous symmetry transformation

(translation with rotation) exists. The spin space group

approach seems more suitable for the study of real systems.

Topological properties of the [20] zone structure have

been extensively studied in the last decades. The appearance

of topological properties of the band structure of crystalline

substances is related to the presence of periodic boundary

conditions at the borders of the Brillouin zone. Thus, for

a one-dimensional system, the points with wave vectors

k = π and k = −π are equivalent, i.e. the dispersion

curves correspond to closed lines on the cylinder. For two-

dimensional systems, periodic boundary conditions similarly

lead to dispersion surfaces on a torus [21]. The main focus

is on studies of topological insulators and on edge states in

these systems [20].

3. Time reversal symmetry and zone
structure topology in helicoidal
magnetic field

The equation of motion of free electrons in a helicoidal

magnetic field has unusual properties with respect to the

time reversal operation. Let us write the Hamiltonian for a

particle (electron) of spin 1/2 moving in a scalar periodic

potential V and a periodic magnetic field h(r) in the form

H =
1

2m
(p̂− eA)2 + V (r) − h(r)σ̂ , (1)

where p̂ — momentum operator, σ̂ — Pauli matrices, h

and A — magnetic field induction and vector potential

(h = rotAv). The magnetic field period is amm, i.e.

h(r + am) = h(r), (2)

and the potential V (r) is translationally invariant with

respect to the period shift am/2. An example of a periodic

magnetic field is a helicoid oriented along the axis z . The

distribution of the magnetic field can be represented as

hx = h0 cos(Kz ), hy = h0 cos(Kz ), (3)

where h0 and K = 2π/am — constants. For a periodic

magnetic field h(r), it is always possible to select the vector

potential also as a periodic function.

The general approach to the study of symmetry with

respect to the time reversal operation in the magnetic field

is to combine the time reversal operators θ̂ and some oper-

ation reversing the magnetic field direction [22]. In a homo-

geneous magnetic field oriented along axis z , the system is

symmetric with respect to a combination of θ̂ reflection in a

plane transmitting z axis or rotation on 180◦ around an axis

perpendicular to zaxis [3]. For a periodic helicoidal field (2)
and (3), the only operation leading to h → −h, apart from

rotation about the axis z , is the translation along the axis z
by half a helix period (T̂1/2). Thus, the combined operator

θ̂T̂1/2θ̂ is a symmetry transformation. This, in turn, should

lead to the condition [23]:

εk,〈σ 〉 = ε−k,−〈σ 〉, (4)

where εk,〈σ 〉 — energy of a particle with wave vector k

and mean value of spin 〈σ 〉. It should be noted that in a

noncollinear structure, spin is generally not a good quantum

number, so the state is characterized by its average value.

4. Tight binding approximation
for one-dimensional chain

The simplest example of a helicoidal magnetic structure

is a one-dimensional chain of identical atoms, in which the

magnetic field, acting on the particle, is rotated by 120◦

in some plane in translation by one period of the chain.

When there is no spin-orbit interaction, the plane, where

the magnetic field lies, can be chosen arbitrarily, and in

further we assume that this — plane xy . Such a chain has

3 sublattices and in the strong coupling approximation, can

be described by the following Hamiltonian:

H = −
∑

i,σ

(a+
i biσ + b+

iσ c iσ + c+
iσa i+1σ + H.c.)

+
∑

i

(ĥia + ĥib + ĥic), (5)

where a+
iσ , b+

iσ , c+
iσ — electron spin birth operators σ on

sublattices a, b and c , ĥa(b,c) — operators of the form

ĥhia =
∑

haa+
iασαβa iβ . Here, ha(b,c) — magnetic field on

sublattices, σαβ — Pauli matrices, α, β — spin indices,

H.c. — Hermitian conjugation.

The Hamiltonian (5) can be diagonalized exactly. The

resulting dispersion curves are shown in Fig. 1 for the case

|ha(b,c)| = 0.2. It can be seen that within the Brillouin

magnetic zone (from −π to π), they are not individually

periodic. The dispersion curve is chosen so that the state

changes continuously within the Brillouin zone. However, in

general, the structure of 3 zones appears to be periodic, i.e.

Bloch’s theorem holds, but the zone numbers are rearranged

when the zone structure is shifted by the inverse lattice

vector.

According to the generalized Bloch’s theorem [19], the
smallest reduced translation is determined by the vector t
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Figure 1. Dispersion curves for model (1) in the magnetic

(from −π to π) and extended Brillouin zones. Blue and red

show predominantly spin up and spin down states (〈S〉 ≈ ±1/2),
respectively. Grey shows areas where there is strong mixing of spin

states (〈S〉 ≈ ±1/4). The dots show the dispersion curve within

the extended Brillouin zone.
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Figure 2. Schematic representation: a — dispersion curve for

a one-dimensional model on a cylinder, b — an example of a

dispersion surface on a torus (2D model) with self-intersection.

(with rotation of the spin system by the angle αS). Then,

we can construct a reduced magnetic lattice cell (as opposed
to the usual magnetic cell corresponding to translation

Tm) and the corresponding extended Brillouin zone [5],
which in this case coincides with the crystallochemical one.

Within the extended magnetic Brillouin zone, the dispersion

curves are periodic (marked by dots in Fig. 1). Thus,

we get two periods for the zone structure. The result is

illustrated in Fig. 2, a. If the magnetic Brillouin zone is

represented on a cylindrical surface, the dispersion curve

makes three revolutions, which corresponds to the period of

the extended Brillouin zone.

In the energy area in Fig. 1 from −1.4 to −0.6, the

branches symmetric with respect to the G-point have the

opposite value of mean spin. In the approximation of

almost free electrons in the one-dimensional case, similar

solutions [23] are obtained.

5. 2D model of metallic hexagonal layer
in PdCrO2

In PdCrO2, conductivity is determined by two-

dimensional hexagonal palladium layers and 120◦-th mag-

netic ordering in CrO2 interlayers creates an effective field

with a helicoidal structure. Set the model 2D distribution of

the effective magnetic field as follows:

hx (r) = h0

[

cos(K1r) + sin(K2r) + cos(K3r)
]

,

hv(r) = h0

[

sin(K1r) + cos(K2r) + sin(K3r)
]

, (6)

where Ki — inverse lattice vector, r — forward lattice

radius vector. The distribution (6) is shown in Fig. 3.

You can clearly see that it has an 120◦-th structure. It

can be shown that the calculation results in the nearly free

electron approximation do not depend qualitatively on the

particular form of the potential, but are determined by its

symmetry [23]. The system of equations describing the band

structure in the nearly free electron approximation can be

represented as [24]:

[E − (k−Ki)
2]ck−Ki ,α =

m
∑

j=1

ÛK j−Ki ,αβck−Ki ,β , (7)

where ck−Ki ,β — the coefficient in the expansion of the

Bloch’s function. Unlike the expression in [24], the spin

indices α, β are additionally introduced here, and the

Fourier components of the potential ÛKi ,αβ contain non-

diagonal spin components. The minimal 2D model to

describe the hexagonal layer must contain two summation
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Figure 3. Model effective magnetic field distribution (6)
corresponding to 120◦-ordering.
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terms (7), since the hexagonal Brillouin zone corners have

to account for the terms for the two Bragg planes.

In paper [23], it is shown that in the case of a helicoidal

magnetic field, the operators

ÛK =
1

v

∫

Bz

exp(−iKr)ĥ(r)dr (8)

are not normal, i. e. ÛKÛ+
K 6= Û+

K ÛK or ÛKÛ−K 6= Û−KÛK.

Here, the integration is performed over the Brillouin zone.

This leads to a dispersion relation of the form (4).
The results of calculating the band structure of the hexag-

onal layer in the approximation of almost free electrons with

effective field (6) at h0 = 2 are shown in Fig. 4. If the Fermi

level falls in the area of energies between 1 and 2 lines, a

large γ- orbit and
”
pockets“ in the K-point area form, as

observed in PdCrO2 below Curie temperature [25]. In the

case where it falls in the area between the 1 and 2 lines, only

a large γ- orbit is formed (see Fig. 5). It alternates between
areas with predominantly opposite spinal directions.

The electronic structure of the 2D model has similar

features to the one-dimensional model discussed above.

Within a Brillouin magnetic zone, it is not the dispersion

surfaces alone that are periodic, but the zone structure

as a whole. The dispersion curves are periodic in the

extended magnetic Brillouin zone. When the dispersion

surfaces are depicted on a torus (periodic conditions for a

2D lattice), they appear to be self-intersecting. While for

the one-dimensional chain, the intersections were at points

(Fig. 2, a), for the 2D system, the intersections generally

occur along lines. An example of a self-intersecting surface

on a torus is shown in Fig. 2, b.

6. Properties of transport properties
in PdCrO2

In paper [23], the transport properties of one and two-

dimensional systems in a helicoidal magnetic field have been

qualitatively discussed. For the chain in Fig. 1, one can see

that when the Fermi level falls in the energy range from

−1.4 to −0.6, the transport properties are unusual. Here,

only two branches with opposite spins cross the Fermi level.

Therefore, an undamped spin current can occur. In order

to describe this phenomenon correctly, the boundaries of

the sample must be taken into account. Secondly, scattering

backwards without a back flip is forbidden. This is much like

the properties of edge states in topological insulators [20].
It should be noted that these properties are rather general,

since they do not depend on the model used: in [21] the

1D approximation of almost free electrons was used, while

in the present paper — the strong bond approximation.

Fig. 5 shows the Fermi surface calculated with the same

parameters as for Fig. 4, for the case of the Fermi level

lying between the lines 1 and 2 in Fig. 4. In this case, there

is only an γ- Fermi surface orbit. At low temperatures, the

phonon component of the electrical resistance is determined
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Figure 4. Calculated zone structure of the 2D model along the

path shown in color in the insert.

M
Γ
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Figure 5. The Fermi surface for the case where the Fermi level

falls between the levels 1 and 2 in Fig. 4. The color shows spin

states with predominantly opposite directions. The grey line shows

where there is strong mixing of spin states (〈S〉 < 1/4).

by overshooting processes [26]. However, overshooting by

phonon scattering of electrons on adjacent arcs, as shown

by the arrow in Fig. 5, is forbidden, as the initial and

final states have opposite spins. This prohibition is not

complete, since near the corners (point K), there is mixing

of spin states (marked in grey), and in these areas the

overshuffling processes are allowed. However, as shown

in [23], the phonon resistance can decrease by about an

order of magnitude for PdCrO2. Scattering on non-magnetic

impurities must also be partly suppressed by a partial

backward scattering ban, again due to opposite electron

initial and final state spins.

7. Conclusion

It is shown, that the zones in the helicoidal system are

topologically nontrivial. An example of a two-dimensional

Physics of the Solid State, 2023, Vol. 65, No. 6



902 27th International Symposium
”
Nanophysics and Nanoelectronics“

system with almost free electrons is the palladium planes in

PdCrO2, which are subject to 120◦-effective field created by

the chromium ions in the CrO2 interlayers. The remaining

metallic delafossites (PdCoO2, PtCoO2), although lacking

long-range magnetic order, show signs of a strong short-

range magnetic order over a wide temperature range [27].
The proposed mechanism of high conductivity can therefore

be extended to these compounds as well.

Funding

This paper was supported by the National Centre for

Physics and Mathematics (Direction No. 7
”
Research in

Strong and Superstrong Magnetic Fields“).

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] T.T.A. Lummen, C. Strohm, H. Rakoto, P.H.M. Loosdrecht.

Phys. Rev. B 81, 22, 224420 (2010).
[2] T. Arima. J. Phys. Soc. Jpn. 76, 7, 073702 (2007).
[3] A.P. Mackenzie. Rep. Prog. Phys. 80, 3, 032501 (2017).
[4] V. Eyert, R. Fresard, A. Maignan. Chem. Mater. 20, 6, 2370

(2008).
[5] F. Lechermann. Phys. Rev. Mater. 2, 8, 085004 (2018).
[6] T. Scaffidi, N. Nandi, B. Schmidt, A.P. Mackenzie, J.E. Moore.

Phys. Rev. Lett. 118, 22, 226601 (2017).
[7] H. Usui, M. Ochi, S. Kitamura, T. Oka, D. Ogura, H. Rosner,

M.W. Haverkort, V. Sunko, P.D.C. King, A.P. Mackenzie,

K. Kuroki. Phys. Rev. Mater. 3, 4, 045002 (2019).
[8] K.P. Ong, J. Zhang, J.S. Tse, P. Wu. Phys. Rev. B 81, 11,

115120 (2010).
[9] H. Takatsu, G. Nenert, H. Kadowaki, H. Yoshizawa, M. En-

derle, S. Yonezawa, Y. Maeno, J. Kim, N. Tsuji, M. Takata,

Y. Zhao, M. Green, C. Broholm. Phys. Rev. B 89, 10, 104408

(2014).
[10] H. Takatsu, S. Yonezawa, S. Fujimoto, Y. Maeno. Phys. Rev.

Lett. 105, 13, 137201 (2010).
[11] S. Arsenijevic, J.M. Ok, P. Robinson, S. Ghannadzadeh,

M.I. Katsnelson, J.S. Kim, N.E. Hussey. Phys. Rev. Lett. 116,

8, 087202 (2016).
[12] M. Calvo. Phys. Rev. B 18, 9, 5073 (1978).
[13] M. Calvo. Phys. Rev. B 19, 11, 5507 (1979).
[14] E.L. Nagaev. Fizika magnitnykh poluprovodnikov. Nauka, M.,

(1979). (in Russian).
[15] H. Watanabe, K. Hoshi, J. Ohe. Phys. Rev. B 94, 12, 125143

(2016).
[16] N. Jiang, Y. Nii, H. Arisawa, E. Saitoh, Y. Onose. Nature

Commun. 11, 1601 (2020).
[17] J. Kishine, A.S. Ovchinnikov. Theory of Monoaxial Chiral

Helimagnet. In: Solid State Physics. Book ser. (2015). V. 66.
P. 1.

[18] W. Brinkman, R.J. Elliott. Proc. Roy. Soc. A 294, 1438, 343

(1966).
[19] L.M. Sandratskii. Phys. Status Solidi B 135, 1, 167 (1986).
[20] M.Z. Hasan, C.L. Kane. Rev. Mod. Phys. 82, 4, 3045 (2010).
[21] J. Cayssol, J.N. Fuchs. J. Phys. Mater. 4, 3, 034007 (2021).

[22] E. P. Wigner, Group Theory and its Application to the

Quantum Mechanics of Atomic Spectra, (Academic Press

Inc., New York, 1959) IL, M. (1961). (in Russian).
[23] Yu.B. Kudasov, JETP Lett. 113, 3, 155 (2021).
[24] N.W. Ashcroft, N.D. Mermin. Solid State Physics. Cengage

Learning (1976).
[25] C.W. Hicks, A.S. Gibbs, A.P. Mackenzie, H. Takatsu,

Y. Maeno, E.A. Yelland. Phys. Rev. Lett. 109, 11, 116401

(2012).
[26] J.M. Ziman. Electrons and Phonons. Clarendon Press (1960).
[27] T. Harada, K. Sugawara, K. Fujiwara, M. Kitamura, S. Ito,

T. Nojima, K. Horiba, H. Kumigashira, T. Takahashi, T. Sato,

A. Tsukazaki. Phys. Rev. Res. 2, 1, 013282 (2020).

Translated by Ego Translating

Physics of the Solid State, 2023, Vol. 65, No. 6


