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Introduction

Spin caloritronics, which is currently being formed,

may create prerequisites for combining actively developing

spin caloritronics and straintronics into a new section of

thermodynamics. Experiments [1,2] have shown that the

application of deformation can change the direction of

the heat flow generated by magnetothermoelectric effects.

Currently, the spin dynamics of collectivized conduction

electrons in spintronics systems is modeled by Rashba and

Dresselhaus Hamiltonians describing the interaction of the

orbital moment of the conduction electron with its spin

moment.[3]. Estimates show that this interaction, as well

as the exchange interaction within the framework of the

RCCI model [4], can provide coherence of spin polarization

at microscopic distances (of the order of 0.1µm), but it

is not sufficient for effective macroscopic (of the order of

1mm) polarization spin currents in polycrystalline samples.

The possibility of efficient generation of spin polarization

in polycrystalline ferromagnetic samples using torsion dis-

tortion, the axis of which is perpendicular to the charge

current density vector, is shown in paper [5]. This approach
creates prerequisites for controlling significant heat fluxes

in massive samples, not just films, using the methods of

straintronics. It is necessary to construct and verify the

analytical functions of the response of spin current and heat

flow to electrical, mechanical and thermodynamic effects

and the reciprocity relations for them for the optimization

of the design and operating modes of spin thermal transport

systems. At the same time, high efficiency of the heat

pump is achieved with high densities of heat flows and

high intensities of mechanical and electrical influences.

Therefore, it is necessary to obtain analogs of the classical

Onsager relations in a substantially nonlinear mode in terms

of impacts.

The response functions of nonlinear systems to inho-

mogeneous alternating electrical and mechanical impacts

in the presence of unsteady spin currents and thermo-

dynamic flows are constructed using the Kubo method

and reciprocity relations for them are proved in work [6].
However, this conclusion is obtained based on the assump-

tion of additivity of the effects. The analysis conducted

in the work [5] showed that with mechanical control of

spin current generation, electric current and mechanical

distortion affect the system multiplicatively. This case,

as well as the mechanically induced generation of spin

currents in non-magnetic materials, and the spincaloric

effects accompanying it, requires separate consideration.

1. Spin Hamiltonian of a conduction
electron in a deformed metal

Consider a homogeneous and isotropic polycrystalline

metal. Let there be N nodes in the crystallite, each of

which contains the same ions with an effective charge +Ze.
Such a lattice creates an electric field

E(r) = − eZ
4πε0

N
∑

k=1

r− rk

|r− rk |3
.

The spin-orbital addition to the electron energy has the

form [7]:

V̂ =
~e

2m2c2
[E(r) × p̂]ŝ. (1)

Here m — the mass of an electron with charge −e. The

wave function of the collectivized conduction electron is

written down in the form of the Vanier function [8]:

ψ(r) =
1√
N

N
∑

n=1

9(r− Rn) exp(ikRn),
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where Rn is the translation vector, and construct the spin

Hamiltonian for the perturbation (1)

Ĥ = − ~
2e2Z

8πε0m2c2N
ŝα exp(ik(Rn − Rm))

×
〈

9(r + rk − Rm)
∣

∣

∣

l̂α
r3

∣

∣

∣
9(r + rk − Rn)

〉

. (2)

In the nearest neighbor approximation, the mean on the

right side (2) is different from zero only for Rn − rk = 0 or

aν and Rm − rk = 0 or aν , where aν is the vector drawn to

the nearest neighbor

Ĥ = − ~
2e2Z

4πε0m2c2
ŝα

{

cos(kaν)Re
〈

9+
ν

∣

∣

∣

l̂α
r3

∣

∣

∣
9

〉

+ sin(kaν)Im
〈

9−

ν

∣

∣

∣

l̂α
r3

∣

∣

∣
9

〉

}

.

Here 9+
ν (r) = 9(r + aν) ±9(r− aν), and implies sum-

mation by v over pairs of symmetrically located nearest

neighbors. Assuming k = p/~, where p — the quasi-pulse

of the conduction electrons, we obtain in the first order of

vanishing by p aν :

Ĥ = Jŝ, (3)

J = − ~e2Z
4πε0m2c2

(paν)Im
〈

9−

ν

∣

∣

∣

l̂

r3

∣

∣

∣
9

〉

. (4)

In undeformed crystallite J = 0. The wave function and

the moment operator in (4) are transformed according to

the law with inhomogeneous distortion r ′α = rα + uα(r)

l̂′α = −iεαβγ r ′β
∂

∂r ′γ
= l̂α − iεαβγ

(

uβ
∂

∂rγ
− rβ

∂uδ
∂rγ

∂

∂r δ

)

,

9(r′) = 9(r) +
∂9

∂rα

∂uα
∂rβ

rβ .

With torsion distortion in the sample along the axis n of

the form �(r) = n(rn)ω, where ω — linear torsion, limiting

the calculation to the first degrees of distortion the following

is obtained

l̂′α = l̂α + ωεαβγnβnδ(r δ l̂γ + rγ l̂δ),

9(r′) = 9(r) + iωnβnδr δ l̂β9(r).

Jα′ = − ~e2Zω
2πε0m2c2

εα′β′γ′nβ′nδ′ pσ ′aνσ ′Im
〈

9−

ν

∣

∣

∣

rγ′ l̂δ′

r3

∣

∣

∣
9

〉

.

(5)

Ratio (5) is written in the coordinate system associated

with the axes of the crystallite. Let us introduce a laboratory

coordinate system tied to the instruments that set the

conduction current and measure the spin components. The

components of vectors and tensors in the laboratory system

will be denoted by non-hatched indices, and the components

of vectors and tensors in the coordinate system associated

with the crystal axes will be denoted by hatched indices.

The quasi-pulse vectors and torsion axes are transformed

from the laboratory system to the system of crystal axes

pσ ′ = pσ ′σ pσ , and the vector J is transformed from the sys-

tem of crystal axes to the laboratory system Jα = p−1
αα′Jα′ ,

where pα′α is a unitary rotation matrix. This transformation

is inserted in the equation (5) and the vector J is averaged in

the macroscopic domain over random uniformly distributed

orientations of crystallites

J̄ = ωK
[

n× [p× n]
]

. (6)

Accordingly, the averaged spin Hamiltonian (3) takes the

form

Ĥ = ωK(pα − nαnβ pβ)ŝα, (7)

K =
~e2Z

12πε0m2c2
Im

〈

9−

ν

∣

∣

∣
aν

⌊r× l̂⌋
r3

∣

∣

∣

〉

. (8)

The value K depends only on the properties of the crystal,

it can be calculated in the axes of symmetry of the crystal.

2. Reciprocity relations for nonlinear
medium

The spin moment density operators ŝ(r, t) and the spin

Hamiltonian ĥ(r, t) are introduced so that in the interaction

representation

ŝ(t) =

∫

V

ŝ(r, t)d3r, Ĥ(t) =

∫

V

ĥ(r, t)d3r [9].

Following Kubo [10] the average components of the spin

moment density are written down

sα(r, t) = 〈ŝα(r, t)〉 = Sp(ŝα(r, t)ρ̂(t)). (9)

Here ρ̂(t) is the density operator. Dynamics of the

density operator and the observables in the interaction

representation, taking into account the relation (7) is

described by the Neumann equations

i~
∂ρ̂

∂t
=

∫

V

Kω(r′, t)
(

nα(r
′, t)nβ(r

′, t)pβ(r
′, t)

− pα(r
′, t)

)

[ŝα(r
′, t), ρ̂(t)]d3r + [Ĥr , ρ̂(t)],

i~
∂ ŝα(r, t)

∂t
= [ŝα(r, t), Ĥ0], (10)

Here Ĥr is the relaxation Hamiltonian, Ĥ0 =
∫

V
ĥ0(r, t)d3r is

the real stationary undisturbed Hamiltonian.

A locally quasi-equilibrium distribution with the density

operator [11] is set in the system when there are no external

mechanical impacts:

ρ̂q(t) = exp
{

−8(t) −
∫

V

θ(r, t)ĥ0(r, t)d3r
}

,

8(t) = ln Sp exp
{

−
∫

V

θ(r, t)ĥ0(r, t)d3r
}

. (11)
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Here 8(t) is the Massieu–Planck functional,

θ(r, t) = 1/(kT (r, t)), k is the Boltzmann constant,

T (r, t) is the local temperature.

Let us choose the eigenfunctions of the Hamiltonian Ĥ0

corresponding to the energy levels En as a basis. The

solution of the second von Neumann equation (10) takes

the form

ŝα(r, t) = exp(iĤ0t/~)ŝα(r, 0) exp(−iĤ0t/~t),

sαnm(r, t − t′) = exp(−iωnmt′)sαnm(r, t). (12)

Here ωnm = (En − Em)/~. Accordingly, taking into account

the hermiticity of the observables and the sign change of all

spin components during time inversion

ŝα(r,−t) = −ŝ∗α(r, t),

sαkm(r,−t) = −s∗αkm(t, r) = −sαmk(r, t). (13)

Denote f(r, t) = ω(r, t)
[

n(r, t)×[p(r, t)×n(r, t)]
]

— the

vector of impact on the system. Since p(−t) = −p(t),
n(−t) = −n(t), ω(−t) = ω(t), then f(r,−t) = −f(r, t).
The following is obtained from the first equations (10)
and (13)

ρ̂(−t, f(r,−t)) = ρ̂∗(t,−f(r, t)),

ρnm(−t, f(r,−t)) = ρ̂∗nm(t,−f(r, t)) = ρmn(t,−f(r, t)).
(14)

The first equation (10) in the Markov relaxation approxi-

mation in matrix form has the form

∂ρnm(t, f, T )

∂t
=
ρ

q
nm − ρnm(t, f, T )

τnm
− i

~

∫

V

f β(r, t)

×
(

ρnk(t, f, T )sβkm(r, t) − sβnk (r, t)ρkm(t, f, T )
)

d3r. (15)

Here τnm = τmn — real positive relaxation times, and it

is assumed that at time t0 the system was in a quasi-

equilibrium state with the density operator ρ̂0. Here and

further, the dependence of f and T on time and coordinates

is implied. We will look for a solution to equation (15)
in the form ρnm(t, f, T ) = ρ̃nm(f, T ) exp(iωnmt). Taking into

account the second equation (14), we obtain

ρ̃nm
(

f(r, t), T (r, t)
)

= ρ̃mn
(

−f(r, t), T (r, t)
)

(16)

with simultaneous replacement of all frequencies ωnm

with ωmn .

Equation (15) is equivalent to integral equation

ρnm(t) = (ρ0nm + ρq
nm(t)) exp

(

t0 − t
τnm

)

− ρq
nm(t)

+

t
∫

t0

exp

(

t′ − t
τnm

)

dρq
nm(t′)
dt′

dt′ +
i
~

∫

V

t
∫

t0

exp

(

t′ − t
τnm

)

× f β(r
′, t′)

(

sβnl(r
′, t′)ρlm(t′) − ρnl(t

′)sβlm(r′, t′)
)

dt′d3r ′.

(17)

Integration is performed in parts here in the integral

containing ρ
q
nm. In relation (16) and further, the argument

of functions of the form f(r, t) implies that the functions

depend on the values of the arguments at all times

preceding t, and in the entire domain V .

It is possible to introduce a flux density operator satis-

fying the continuity equation ĥ0(r, t)/∂t = −∂ q̂0α(r, t)/∂rα ,
α = 1, 2, 3 for a quasi-local density operator of an undis-

turbed Hamiltonian [9]. Then according to the equation (11)

dρ̂q(t)
dt

= −ρ̂q
∫

V

{

∂θ(r, t)
∂t

ĥ0(r, t) + q̂0α(r, t)
∂θ(r, t)
∂rα

}

d3r

+ ρ̂q(t)θk (t)Qk(t) − ρ̂q(t)
d8
dt
. (18)

Here Q̂k(t) =
∫

Sk

nkα(r)q̂0α(r, t)d2r —operators of energy

flows through k-th contact, θk(t) = θ(t, rk), rk — coordinate

of the center of k-th contact, nkα — α-projection of

the external normal to the surface of the k-th contact.

Along with spin observables ŝα(r) and their corresponding

mechanical impact f α(r, t), it is possible to introduce

thermodynamic observables — energy density ĥ0(r), projec-
tions of energy flux densities q̂0α(r, t), energy flows through

kth contact — Q̂k(t) and their corresponding thermody-

namic effects ∂θ/∂t, ∂θ/∂rα , θk(t). The thermodynamic

observables will be denoted as 2α, and the corresponding

thermodynamic effects as will be denoted as Tα .
Let moment of time t0 in the formula (17) tend to −∞,

then the first term in the right-hand part is zero. Let us

introduce a new variable τ = t − t′ . Taking into account

the formula (18), the equation (17) takes the form

ρnm(t) = −ρq
nm(t) −

∞
∫

0

exp

(−τ
τnm

)

ρq
nm(t − τ )

d8(t − τ )

dt
dτ

− 1

2

∫

V

∞
∫

0

exp

(−τ
τnm

)

(

2βnl(t − τ , r′)ρq
lm(t − τ )

+ ρ
q
nl(t − τ ) +2βlm(r′, t − τ )

)

Tβ(r
′, t − τ )dτ d3r ′

+
i
~

∫

V

∞
∫

0

exp

(−τ
τnm

)

(

sβnl(r
′, t − τ )ρlm(t − τ )

− ρnl(t − τ )sβlm(r′, t′)
)

f β(r
′, t − τ )dτ d3r ′.

(19)

For the reaction of the average value of spin observables

to mechanical action from the formula (19) we obtain

sα(r, t, f, T) = ρnm(t, f, T)sαmn(r, t, f, T) = sq
α(r, t)

+

∫

V

∞
∫

0

χαβr, r
′, τ , f, T) f β(r

′, t − τ )dτ d3r ′. (20)
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Here the thermodynamic impacts are combined into a

vector T(r, t), the first term in the right part (20) has the

form

sq
α(r, t) = −ρq

nm(t)s imn(r, t) −
∞
∫

0

exp

(−τ
τnm

)

ρq
nm(t − τ )

× s imn(r, t)
d8(t − τ )

dt
dτ (21)

and describes a quasi-equilibrium, i.e., in the absence of

mechanical and thermodynamic effects, the value of the

observed. The second term in (20) describes the response of
the system to mechanical influences. The response functions

of the system have the form of the Kubo formula [10]

χαβ(r, r
′, τ , f, T) =

iKρnm(f, T)

~ exp(τ /τnm)

×
{

ŝα(r, t)ŝβ(r
′, t − τ ) − ŝβ(r

′, t − τ )ŝα(r, t)
}

mn
.

We transform this formula taking into account the second

equation (12) for t′ = t − τ /2

χαβ(r, r
′, τ , f, T) =

iKρ̃nm(f, T)

~ exp(τ /τnm)
exp

(

iωnm
τ

2

)

×
{

sαml

(

r,
τ

2

)

sβln

(

r′,− τ

2

)

− sβml

(

r′,− τ

2

)

sαln

(

r,
τ

2

)

}

.

(22)
The following is obtained taking into account the rela-

tions (19) and (22) from the formula (23)

χβα(r, r
′, τ ,−f, T) =

iKρ̃mn(f, T)

~ exp(τ /τnm)
exp

( iωnmτ

2

)

×
{

sβml

(

r,
τ

2

)

sαln

(

r′,− τ

2

)

− sαml

(

r′,− τ

2

)

sβln

(

r,
τ

2

)

}

.

Let us replace the indices n ↔ m taking into account the

ratios (16) and the symmetry of the matrix τnm :

χβα(r, r
′, τ ,−f, T) =

iKρ̃nm(f, T)

~ exp(τ /τnm)
exp

( iωmnτ

2

)

×
{

sβln

(

r,− τ

2

)

sαml

(

r′,
τ

2

)

− sαln

(

r′,
τ

2

)

sβml

(

r,− τ

2

)

}

.

(23)
From comparing the formulas (22) with (23), we obtain

reciprocity relations for the spin polarization response

functions to the combined effect of torsion distortion and

charge current

χαβ
(

r, r′, τ , f(r, t), T(r, t)
)

= χβα
(

r′, r, τ ,−f(r, t), T(r, t)
)

.

(24)
The nonlinearity of the system is manifested in the

dependence of the response functions (22) and (23) on the

impact. It is due to the fact that the averaging is carried out

not according to the quasi-equilibrium density operator (11),
but according to the current (19), which deviates from the

quasi-equilibrium under intense influences. Such a deviation

can be neglected and averaged over a quasi-equilibrium

density operator for weak impacts. Then the right parts of

the formulas (22) and (23) do not depend on the effect of f,

i.e., the system will be linear. Assuming in (24)f = −f = 0,

we obtain the classical Onsager symmetry relation.

Considering mechanically induced spin currents only in

metals, we will use the approximation of an ideal fermi gas

for conduction electrons. The applicability of this model is

justified by the fact that the thermodynamics of a fermi

system is determined by its microscopic structure only

near the Fermi surface [12]. Experimental studies of the

temperature dependence of the electron heat capacity in

metals show that it corresponds well to the model of an

ideal fermi gas. At the same time, for most metals, the

effective mass of the conduction electron is close to the

mass of the free electron. Therefore, in the ratios (4)−(7)
and in determining the vector of mechanical action f, we can

put p = −mj/(ene), where j — the charge current density,

ne — concentration of conduction electrons.

The spin current density tensor is associated with spin

polarization

Sαβ(r, t) = −sα(r, t) jβ(r, t)/(ene). (25)

Let us consider the reaction of the spin current density

tensor only to the combined effect of torsion distortion and

charge current, and for simplicity we will assume that the

direction of the torsion axis is constant in time and space.

Then, taking into account the ratio (20), the formula (25)
can be written as

Sαβ(r, t, ωf, T) = Sq
αβ(r, t) +

∫

V

∞
∫

0

χαβγ(r, r
′, τ , ωj, T, t)

× ω(r′, t − τ )
(

jγ(r
′, t − τ ) − nγnδ jδ(r

′, t − τ )
)

dτ d3r ′.
(26)

Here Sq
αβ(r, t) is a quasi-equilibrium spin current density

tensor, and according to formulas (22) and (25):

χαβγ (r, r
′, τ , ωj, T, t) =

iK1ρ̃nm(ωj, T)

~ exp(τ /τnm)ene

× exp
(

iωmn
τ

2

)

jβ(r, t)

{

sαml

(

r,
τ

2

)

sγ ln

(

r′,− τ

2

)

− sγml

(

r′,− τ

2

)

sαln

(

r,
τ

2

)

}

— the response function of the spin current density tensor

to mechanical influences, K1 = −mK/(ene). If the charge

current distribution is homogeneous, then, by analogy with

the derivation of the formula (24), we obtain the symmetry

ratio for the response function of the spin current density

tensor to mechanical impacts:

χαβγ (r, r
′, τ , ωj, T, t) = −χγβα(r′, r, τ ,−ωj, T, t). (27)
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3. Reciprocity of spinstrain caloric
effects

The continuity equations for the density operators of the

spin Hamiltonian and the spin component have the form

ĥ(r, t)/∂t = −∂ q̂sβ(r, t)/∂rβ ,

ŝα(r, t)/∂t = −∂ Ŝαβ(r, t)/∂rβ . (28)

Here q̂sβ(r, t) is the spin energy flux density operator,

Ŝαβ(r, t) is the spin current tensor density operator. Assum-

ing in (25) the charge current density is a given function

of time and coordinates, and not a dynamic variable, we

assume

Ŝαβ(r, t) = ŝα(r, t) jβ(r, t)/(ene). (29)

Assuming taking into account the formula (5), ĥ(r, t) =
= ŝα(r, t) f α(r, t) and considering the mechanical action

f(r, t) as a slowly changing function of time and coordinates,

we obtain from the equations (28), (29) and (20):

q̂sγ(r, t) = K1Ŝαγ(r, t) f α(r, t)

= K1ŝα(r, t) f α(r, t) jγ (r, t)/(ene). (30)

The formula (30) describes the Peltier spin effect [13] —
mechanically induced spin current creates a heat flow by

analogy with the effect for a charge current. Accordingly

q̂sγ(r, t) =
f α(r, t) jγ (r, t)

ene

×
∫

V

∞
∫

0

χαβ(r, r
′, τ , f, T) f β(r

′, t − τ )dτ d3r ′.

The response function χαβ has the form (22) and satisfies

the reciprocity relations (24). We introduce the system

setting time τr and the relaxation distance r r , such that all

χαβ(|r − r′| > r r , τ > τr ) ≡ 0 Then, if the function f(r, t)
changes little at a distance of r r and during τr , it is possible

to enter a function of the response of the heat flux density

to mechanical impact

qs(r, t) = j(r, t) f α(r, t) f β(r, t)
(

Dαβ(r, f, T)

+ Dβα(r, f, T)
)

/2, (31)

and taking into account the ratio (24) to obtain reciprocity

ratios for it

Dαβ(r, f, T) =
K1

ene

∫

V

∞
∫

0

χαβ(r, r
′, τ , F, T)dτ d3r ′

= Dβα(r,−f, T). (32)

Let there be only one thermodynamic effect in the

system — temperature gradient. Then, for an isotropic

medium, the elements of the matrix (32) should have the

form

Dαβ(r, f, ∂T/∂r) = Dαβ(r, |f|, |∂T/∂r|, f, ∂T/∂r).

From the second equality (32) it follows that

Dαβ(r, f,−∂T/∂r) = Dαβ(r,−f,∂T/∂r) = Dβα(r, f, ∂T/∂r).

In turn, it follows from the relation (32) that the heat

flux created by the spin current against the temperature

gradient is equal to the flow created in the direction of the

temperature gradient.

Conclusion

The effect that creates mechanically induced spin currents

in the metal is understood as the coefficient before the spin

operator in the spin Hamiltonian (7). For a deformed metal,

this effect is expressed in terms of the charge current density

and torsion distortion. The maximum spin polarization

is achieved when the torsion axis is perpendicular to the

charge current density vector j. In this case, the average spin

is oriented parallel or antiparallel, depending on the sign K,

to the vector j. The vectors of charge current density and tor-

sion are multiplicatively included in the effect. This makes it

possible to consider the mechanical stress as parametric and

simulate the experimentally detected change in the direction

of the heat flow generated by thermoelectric effects under

the action of mechanical stresses [1,2]. The possibility of

controlling heat flows using a spin current, described by

equation (31), is experimentally confirmed in [14]. The

proposed method for analysis of quantum transport effects

resulting from polarization of the mechanically induced

spin current forms the basis for design and optimization

of parameters of efficient systems of heat transport.

Kinetic coefficients (22) were determined sensu

Kubo [10] formally, without specifying the physical mecha-

nism of this response and matrix elements. Such a definition

is not intended for calculation and estimation of response

functions, but for establishing their general properties, such

as symmetry relations. Kinetic coefficients are calculated

and estimated from the solution of kinetic equations.

With this calculation, the requirements of the principle of

symmetry of kinetic coefficients are satisfied automatically

regardless of the relaxation mechanism, i.e., the type of a

specific kinetic equation or matrix coefficients [15].
The classical Onsager symmetry relations of kinetic

coefficients for linear systems were obtained based on

the assumption that the average relaxation of spontaneous

fluctuations in the system occurs in accordance with

macroscopic laws. The Markov relaxation approximation

corresponds to this assumption in the Kubo scheme [10] if
the undisturbed Hamiltonian is stationary.

It is not yet possible to obtain reciprocity relations for

nonlinear systems based on such general assumptions. In

the proposed scheme, they should be supplemented with
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the condition that the undisturbed system is in a quasi-

equilibrium state (11), and the system remains stable under

the action of a perturbation, which can be represented

as the sum of products of a classical given function

by the operator of the corresponding external dynamic

variable and the Markov relaxation operator to a quasi-

equilibrium state. The applicability of the Markovian

relaxation and the locally quasi-equilibrium operator was

examined respectively in [16,17].
Since the charge current and torsion density vectors

enter multiplicatively in the spin perturbation (8), the

construction of response functions according to the Kubo

scheme describing spin-strain caloric effects in a form

that allows obtaining symmetry relations for them required

additional assumptions about the system. Such assumptions

are the representation of the wave function of a collectivized

conduction electron in the form of a Vanier function

and the approximation of the nearest neighbors in the

Hamiltonian (2), as well as the model of an ideal Fermi

gas for conduction electrons. The applicability of these

models for a specific task should be justified experimentally.

Reliable experimental data on the spin Hall effect in metals

are currently available. Therefore, the coefficients of the

spin Hall effect of non-magnetic metals of the 5th and 6th

periods [18] were calculated using the described approxima-

tions. The results of the calculations are consistent with the

experimental ones within the margin of error.

The proposed approach to the derivation of reciprocity

relations in nonlinear systems allows substantiating fairly

general conclusions, for example, about the independence

of the heat flux generated by the spin current from the

direction of the temperature gradient. This conclusion

allows for a experimental verification in a wide range of

impact intensities.
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