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The influence of a large single-ion anisotropy of the
”
easy plane“ type on the phase states and spectra of

elementary excitations of a ferrimagnet with sublattices S= 1 and σ = 1/2 and non-Heisenberg exchange interaction

for a sublattice with S= 1 is studied. It is shown that for different ratios of the material parameters of the

system, only one phase state is possible, characterized by both vector and tensor order parameters (quadrupole-
ferrimagnetic). The condition for sublattice spin compensation is determined, as well as the behavior of the spectra

of elementary excitations near the spin compensation line. In the vicinity of the spin compensation line, the magnon

spectra are
”
antiferromagnetically similar“.
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1. Introduction

Modern electronics is no longer pure electronics, but

becomes spintronics, i.e. is based on the fact that energy

or information in solid body may be transferred by
”
spin“

current, rather than electronic current [1–4]. Compensated

magnets, i.e. antiferromagnets, are the main materials

used in modern spintronic devices [5–7]. Such choice

is based on the exchange enhancement effect inherent in

antiferromagnets that considerably increases the resonance

frequency up to terahertz range and enhances other dy-

namic characteristics of the system such as speed limits of

domain walls [8] and magnetic vortices [9,10]. It should be

emphasized that spin current has a significant influence on

the properties of compensated magnets [11–18], and this is

what makes them so attractive for spintronics applications.

However, with all benefits of antiferromagnets, they have

one significant disadvantage — their magnetic properties

are very sensitive to any crystal structure defects. This

fact severely impedes their use. But this problem may

be bypassed. The matter is that there is another class

of magnetic-ordered systems that may be considered as

compensated magnets (in appropriate conditions) having the
exchange enhancement effect — these are ferrimagnetics

in the vicinity of the compensation point of magnetic

sublattices [19–21]. In addition, ferrimagnets are not so

sensitive to the quality of crystal lattice and their behavior

in the vicinity of the compensation point is
”
antiferro-like“.

Therefore, ferrimagnets in the vicinity of the compensation

point of sublattices may be used for spintronics devices.

Thus, dynamical properties of domain walls of ferrimagnets

and high-frequency ferrimagnetic vortices were studied

in [22–25], and a subterahertz nanogenerator setup based on

ferrimagnets with spin current pumping was offered in [26].
In addition, ferrimagnets have another essential effect: an

ultrafast (about few picoseconds) sublattice magnetization

flip when exposed to laser pulse with a duration of at least

100 femtoseconds was detected for a rare-earth and transi-

tion metal alloy - GdFeCo [27,28]. And according to [29,30],
variation of magnetic moment modules of sublattices plays

a significant role here. Thus, for superfast remagnetization,

longitudinal evolution of sublattice magnetic moments plays

a significant role [31,32].

longitudinal behavior of magnons is directly associated

with quantum spin reduction effect [33]. This effect is

observed in magnets with
”
easy plane“ single-ion anisotropy

as well as in so called non-Heisenberg magnets that

take into account high spin invariants in the exchange

Hamiltonian [33–49]. Description of longitudinal behavior

of anisotropic and non-Heisenberg magnets is out of the

scope of the Landau–Lifshitz equation and requires to take

into account the dynamics of tensor variables, which are

quantum average values of bilinear operators in terms of

spin components [34–40].

Generally, the energy associated with high spin invariant

and single-ion anisotropy energy is considerably lower than

the Heisenberg (bilinear) exchange interaction. However,

there is a set of magnetic-ordered systems whose properties

cannot be described within standard models. These are

primarily rare-earth magnets [38,42]. Thus, for example,

EuSe at temperatures about 3K is ferrimagnetically ordered

with biquadratic exchange interaction (non-Heisenberg in-

teraction) much higher than bilinear (Heisenberg) inter-

action, which significantly influences static and dynamic

propertiesof the system [50,51]. Thus, the properties of non-
Heisenberg ferrimagnets taking into account the influence of
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high
”
easy plane“ type single-ion anisotropy (comparable or

exceeding the exchange interaction constant) is of not only

of academic interest, but also of great practical importance.

2. Model

Two-sublattice ferrimagnet will be studied herein. Mag-

netic moment spin of the first sublattice is S= 1 and

of the second sublattice is σ = 1/2. Moreover, in the

first sublattice, both bilinear and biquadratic exchange

interactions are taken into account, as well as high
”
easy

plane“ type single-ion anisotropy.
”
High“ anisotropy means

that the single-ion anisotropy constant is comparable or even

exceeds the exchange interaction constants. Hamiltonian of

such system may be written as

H = − 1

2

∑

n,n′

[

J(2)(n − n′)(SnSn′) + K(n − n′)(SnSn′)
2
]

− 1

2

∑

m,m′

J(1)(m − m′)(σmσm′)

− 1

2

∑

n,m′

A(n − m)(σmSn) +
β

2

∑

n

(Sx
n)

2, (1)

where J(1) > 0 is the exchange interaction constant for a

sublattice with spin σ = 1/2; J(2) > 0, K > 0 are bilinear

and biquadratic exchange interaction constants for sublattice

in S= 1; A < 0 is the intersublattice interaction constant;

β > 0 is the
”
easy plane“ type single-ion anisotropy constant

(basal plane ZOY). Hereinafter, β > J, K is assumed.

For further consideration, the case of low temperatures

(T ≪ TN , TN — Neel temperature) will be used.

The model described by Hamiltonian (1) was studied in

detail in [52]. But for this model, unlike [52], high single-

ion anisotropy was addressed (β ≫ J,K). Moreover, the

properties of highly anisotropic ferrimagnet, but without

biquadratic exchange interaction, were studied in [34]. We

are interested both in static and dynamic properties of highly

anisotropic non-Heisenberg ferrimagnet (β > J,K) in the

vicinity of the compensation point of sublattice spins.

The model described by Hamiltonian (1) will be reviewed

by mean field approximation using the Hubbard operator

technique [53].
Using the findings of [52], we can omit the description

of some mathematical operations and proceed directly to

energy states of magnetic ion

E1 = −B0
2 +

β

4
− H̄s cos 2α − B2

2 sin 2α + 1,

E0 = −2B0
2 +

β

2
+ 1,

E−1 = −B0
2 +

β

4
+ H̄s cos 2α + B2

2 sin 2α + 1,

ε1/2,−1/2 = ∓H̄σ 〈σ z 〉, (2)

The following notations are introduced here:

H̄s

(

J(2)
0 − K0/2

)

〈Sz 〉 − 1

2
A0〈σ z 〉,

H̄σ = J(1)
0 〈σ z 〉 − 1

2
A0〈Sz 〉, B0

2 =
K0

6
q0
2,

B2
2 =

K0

2
q2
2 −

β

4
,

1 =
1

2
J(1)
0 〈σ z 〉2 +

1

2

(

J(2)
0 − K0

2

)

〈Sz 〉2

+
K0

4

(

(q0
2)

2

3
+ (q2

2)
2

)

− 1

2
A0〈Sz 〉〈σ z 〉. (3)

In (3, qi
j = 1

2
〈Si S j + S j Si〉 — quadrupole moment ten-

sor components. In this case, as it follows from

the problem symmetry, q0
2 = 3〈(Sz )2〉 − S(S + 1) and

q2
2 = 1

2
〈(Sx )2 − (Sy )2〉 = 〈(S+)2〉 + 〈(S−)2〉 are nonzero

tensor components qi
j . Sublattice wave functions written

as

ψ(1) = cosα|1〉 + sinα|−1〉;

ψ(0) = |0〉 and ψ(−1) = − sinα|1〉 + cosα|−1〉;

8

(

1

2

)

=

∣

∣

∣

∣

1

2

〉

and 8

(

−1

2

)

=

∣

∣

∣

∣

−1

2

〉

. (4)

Using wave functions (4), construct the Hubbard oper-

ators for each of the sublattices XM′M = |ψ(M ′)〉〈ψ(M)|,
Y m′m = |8(m′)〉〈8(m)|, which are associated with the op-

erators as follows [53]:

Sz
n = cos 2α(X11

N − X−1−1
n ) − sin 2α(X1−1

n + X−11
n );

S+
n =

√
2
[

sinα(X01
n − X−10

n ) + cosα(X0−1
n + X10

n )
]

,

S−
n = (S+

n )+,

σ z =
1

2

(

Y
1
2

1
2 − Y− 1

2
− 1

2

)

, σ+ = Y
1
2
− 1

2 , σ− = (σ+)+.

Here, α is unitary transformation u−v parameter deter-

mined by

H̄s sin 2α = B2
2 cos 2α.

Correlation between spin operators and Hubbard operators

allows to determine order parameters as function of α [54]:

〈Sz 〉 = cos 2α, q2
2 = sin 2α, q0

2 = 1.

Since the second sublattice is isotropic and Heisenberg, then

it is described only by vector (dippole) order parameter

〈σ z 〉 and plays a role of a
”
bias“ field.
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3. Free energy density of highly
anisotropic non-Heisenberg
ferrimagnet

Since, a ferrimagnet in low-temperature limit (T → 0K)
is addressed herein, then the free energy density with high

accuracy coincides with the ground state energy of the

magnetic ion. According to relations (7), the lowest energy

levels of the first and second sublattices are E1 and ε1/2,

respectively. Consequently, the free energy density of the

ferrimagnetic in question can be written as F = E1 + ε1/2.

Taking into account relations (4) and (7), the following

expression is obtained for free energy density

F = − 1

12
K0 −

1

4
β − 1

2
J(1)
0 〈σ z 〉2

− 1

2

[

J(2)
0 − K0

]

〈Sz 〉2 + +
1

2
A0〈σ z 〉〈Sz 〉 +

β

4
sin 2α.

At low temperatures 〈σ z 〉 = 1/2, and 〈Sz 〉 = cos 2α. Then,

for free energy density:

F = − 1

4

[

β +
4

3
K0 +

1

2
J(1)
0

]

− 1

4
|A0| cos 2α

+
β

4
sin 2α − 1

2

[

J(2)
0 − K0

]

cos2 2α. (5)

Intersublattice interaction constant A < 0 is taken into

account here. By minimizing relation (5), we derive the

equation that allows to define phase states of the ferrimagnet

at various relations of material parameters

|A0|
2

sin 2α +
β

2
cos 2α

+ 2
(

J(2)
0 − K0

)

cos 2α sin 2α = 0. (6)

Formally, equation (6) allows to define parameter u−v of

transformation α, but as it follows from the expressions

for vector and tensor order parameters (〈Sz 〉 = cos 2α;

q2
2 = sin 2α), then this equation actually defines phase states

for system with various relations of material parameters.

According to equation (6), the magnetization of sublattice

with S= 1 depends to a large extent on the ratio of

material parameters, and the magnetization of sublattice

with spin 1/2 remains constant and plays the role of a
”
bias“

field. It should be noted that condition 〈σ z 〉 = 1/2 occurs

naturally from relation of thez -th operator component σ

with Habbard operators Y m′m and is accurate in case of

T = 0.

It should be also noted that equation (6) describes astroid
in space (|A0|, β). As shown in [55], this closed curve

(astroid) divides the plane (|A0|, β) into two parts, in one of

which metastable state is possible, and in the second one —
metastable state is impossible. Consider the solutions of

equation (6) at various relations of material parameters and

low temperatures, i.e. in what conditions stable state is

achieved in the system.

4. Phase states and excitation spectra
of non-Heisenberg highly
anisotropic ferrimagnet

Consider equation (10) with following relations of ma-

terial parameters, i.e. withβ > J > K, or with β > K > J,
assuming that the temperature is close to 0K.

First, consider the situation when the Heisenbergex-

change interaction constant exceeds the biquadratic ex-

change interaction (J(2)
0 > K0) taking into account that

β > J > K. In this case, solution of equation (6) may be

written as

cos 2α =
|A0|

β − 4
(

J(2)
0 − K0

)

.

As mentioned before, with T → 0 cos 2α defines the

average spin 〈Sz 〉 of the sublattice with S= 1. Thus, in

this case (at β > J > K), magnetization of the first lattice

becomes lower than the maximum possible value. This is

associated with the quantum spin reduction effect of the

first sublattice [38] caused by the influence of high single-

ion anisotropy and biquadratic exchange interaction.

If the biquadratic exchange interaction is higher than

bilinear exchange interaction (K0 > J(2)
0 ), with prevailing

single-ion anisotropy, the average magnetization (per lattice
point) is equal to

〈Sz 〉 = cos 2α =
|A0|

β + 4
(

K0 − J(2)
0

)

,

i.e. the average magnetization also remains lower than the

maximum possible value. Both in the first and second cases,

the average magnetic moment is nonzero (〈Sz 〉 6= 0), which

is attributable to the influence of the
”
bias“ field of sublattice

σ = 1/2.

Therefore, both with β ≫ K0 > J(2)
0 and with

β ≫ J(2)
0 > K0, a state with magnetization of the first

sublattice much lower than the maximum possible is

achieved in the system, while the second sublattice

maintains the saturated magnetization (|〈σ z 〉| = 1/2).
Vector and quadrupole order parameters of the first

sublattice, in this case, are written as

〈Sz 〉 < 1, q2
2 = sin 2α < 1, q0

2 = 1.

According to the expressions for 〈Sz 〉, the average mag-

netic moment (per point) decreases with growth of the

biquadratic exchange interaction constant.

Thus, the system achieves the phase in which both the

vector order parameter of the first sublattice (〈Sz 〉) and

the quadrupole moment tensor components (q2
2) of the

first sublattice take intermediate values in the range from

zero to one, and the second sublattice plays a role of

a constant
”
bias field“. Thus, at considerable single-ion

anisotropy, the quantum spin reduction effect appears in

the first sublattice [34,35,46]. Such the state will be referred

to as a quadrupole-ferrimagnetic state (QFiM).
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Sublattice spin compensation line z = 4.

Since in this model, the intersublattice exchange in-

teraction a < 0, magnetic moment vectors of the first

and second sublattices are anticollinear and, therefore,

sublattice spin compensation is possible in this state taking

into account the quantum spin reduction of first sublat-

tice [33,35,46]. From 〈Sz 〉 = −〈σ z 〉, and taking into account

that |〈σ z 〉| = 1/2, the following equation describing the

sublattice spin compensation surface in space (A, J(2), K, β)
is derived:

|A0| = 2
(

J(2)
0 − K0

)

− β/2. (7)

Equation (7) is more convenient to rewrite in rela-

tive variables y = |A|/K, x = J/K, z = β/K. In these

variables, the compensation surface equation is written

as

y = 2(x − 1) − z/2. (8)

Thus, equation (7) (or (8)) describes the surface in

variables (J, K, A, β) on which the total average sublattice

spin is equal to zero (〈Sz + σ z 〉 = 0). It should be

emphasized that the sublattice spin compensation, rather

that sublattice magnetic moment compensation is addressed

herein. Since the magnetic moment is associated with

the spin moment of sublattices by relation M = −gµBS,
where g is the Lande factor (g-factor), and in the model

in question, sublattices are nonequivalent, then it should

be taken into account that g-factors of sublattices are

not equal and, therefore, sublattice magnetic moments

on the compensation plane are not equal [20]. Thus,

although the spin moments compensate each other with

certain relations of material parameters, but the integral

magnetic moment in this case may be nonzero and may

reach a sufficiently high value. Moreover, this resulting

magnetic moment is parallel to the antiferromagnetism

vector, and the ferrimagnet behavior in the compensa-

tion point can be considered as
”
antiferromagnetic“ [20].

It should be noted that equation (7) or (8) exactly

corresponds to the compensation surface equation for

weakly anisotropic (β ≪ J < K) non-Heisenberg ferrimag-

net [34,52], but taking into account that, in the ferri-

magnet with low anisotropy, the quantum spin reduction

effect is associated with the presence of biquadratic ex-

change interaction. In case addressed herein, this effect

is attributable to the influence of biquadratic exchange

interaction as well as to high
”
easy plane“ single-ion

anisotropy.

These findings allow to build a compensation surface of

the studied system (see equation (7) or (8)), and it is

more convenient to represent it in the given variables in

plane (x , y) with fixed value z , i.e. with fixed single-ion

constant values β This diagram is shown in the Figure.

Behavior of the elementary system excitation spectra in

the vicinity of the sublattice spin compensation surface will

be investigated below. Elementary excitation spectra are

known to be defined by the Green’s function poles [56]
which will be defined as follows within the Hubbard

operator technique [53,56–58]:

Gλλ′(n, τ ; n′, τ ′) = −〈T̂ X̃λ
n (τ )X̃λ′

n′ (τ
′)〉,

where X̃λ
n (τ ) = exp(Hτ )Xλ

n exp(−Hτ ) is the Hubbard ope-

rator in Heisenberg’s representation, T̂ is the Wick operator,

λ are root vectors defined by the algebra of Hubbard

operators [48,50,51]. Derivation of the dispersion equation

is described in detail in [53,57,59]. Dispersion equation that

defines the magnon spectra is true with arbitrary relation of

material constants. In this case, T → 0.

The system in question has three elementary excitation

branches: two
”
transverse“ excitation branches associated

with precession of sublattice magnetic moments and one

”
longitudinal“ branch associated with magnetic moment

module variation of sublattice with S= 1. The longitudinal

excitation branch attract the most interest. It is defined by

quadrupole order parameters and quantum spin reduction.

Spectrum of this branch generally is written as

ε21(k) = (E1−1 + Kk)
(

E1−1 + Kk + 2
(

J(2)
k − Kk

)

sin2 2α
)

,

(9)
where

E1−1 = E1 − E−1

= −K0−2
(

J(2)
0 −K0

)

cos2 2α+
A0

2
cos 2α+

β

2
sin 2α.

Taking into account that in the vicinity of the compensation

line the average magnetic moment of sublattice with S= 1

〈Sz 〉 = cos 2α =
|A0|

β + 4
(

K0 − J(2)
0

)

=
1

2
,
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”
longitudinal“ excitation spectrum will be

ε21(k) =

(

−1

2
(J(2)

0 − K0) −
|A0|
4

−
√
3β

4
− (K0 − Kk)

)

×
(

−|A0|
4

−
√
3β

4
− (K0 − Kk) + (J(2)

k − Kk)

)

.

Using equation (9), longitudinal excitation spectrum ε1 may

be written as

ε21(k) ≈
(

(K0 − Kk)+
β

4
(
√
3− 1)

)( |A0|
2

+
β

4

(√
3 +

1

2

)

)

.

(10)
According to (10), the energy gap in the longitudinal exci-

tation spectrum is proportional to the single-ion anisotropy

constant, but enhanced by the intersublattice exchange

interaction. Such behavior of the activation energy is

specific to antiferromagnets. Therefore, in the vicinity of

the compensation line (surface), the non-Heisenberg highly

anisotropic ferrimagnet behaves as antiferrimagnet [20,52].
In addition to the longitudinal excitation branch described

above, the system also contains two
”
transverse“ elementary

excitation branches. These excitations are associated with

precession spin motion of sublattices with S= 1 and

σ = 1/2, respectively. Energies of these excitations are

defined by solutions of biquadratic equation

ε4(k) + b(k)ε2(k) + c(k) = 0, (11)

where

b(k) =

[(

Ak

2

)2

cos 2α −
(

E 1
2
− 1

2
+

J(1)
k

2

)2

− (E10 + J(2)
k )2 + (J(2)

k − Kk)
2 sin2 2α

]

,

c(k) =

(

E 1
2
− 1

2
+

J(1)
k

2

)2
[

(E10 + J(2)
k )2

− (J(2)
k − Kk)

2 sin2 2α
]

+

(

Ak

2

)2[
1

4

(

Ak

2

)2

cos2 2α

−
(

E 1
2
− 1

2
+

J(1)
k

2

)

(

E10 + J(2)
k − (J(2)

k − Kk) sin
2 2α

)

]

,

E10 = − K0 − (J(2)
0 − K0) cos

2 2α +
A0

4
cos 2α

− β

4
(1− sin 2α); E 1

2
− 1

2
= −J(1)

0

2
+

A0

2
cos 2α.

Solutions of equation (11) may be written as

ε22,3(k) =
|b(k)|
2

±
√

(b(k)

2

)2

− c(k). (12)

Solutions of equation (11) are rather cumbersome and

analysis of these solutions is difficult, therefore they will be

not addressed here, but spectra ε2 and ε3 may be analyzed

from the following considerations.

Taking into account that in the vicinity of sublattice

spin compensation surface cos 2α = 1/2, sin 2α = −
√
3/2,

it can be shown that coefficients c(k) and b(k) of equa-

tion (11) in the long-wavelength limit (at k → 0) are written

as

c(0) ≈
(

1 +
√
3/2

16
|A0|β

)2

, b(0) = −1 +
√
3/2

4
|A0|β.

By isolating in solutions (12) the obvious dependence on

the wave vector (in the long-wavelength limit at k → 0), we
obtain

ε22,3(k) =
|b(0)|
2

± |b(0)|
2

√

1− αk2

≈ |b(0)|
2

± |b(0)|
2

(

1− αk2

2

)

.

Thus, one of the
”
transverse“ excitation branches is zero-

gap and is proportional to k (ε2(k) ∼ k), and in the second

branch, energy gap appears b(0) (ε3(0) ∼ |b(0)|), which

is proportional to the single-ion constant enhanced by the

intersublattice exchange interaction.

5. Discussion of findings

In [34,50–52] it was shown that in an anisotropic non-

Heisenberg ferrimagnet (with weak single-ion anisotropy

β ≪ J,K) as well as in an isotropic ferrimagnet, depending

on the relations of exchange integrals, both a phase

characterized by a dipole order parameter (FiM-phase)
and a phase characterized by vector and tensor order

parameters (QFiM-phase) may be achieved. Moreover, in a

weakly anisotropic ferrimagnet, unlike the isotropic case, the

QFiM phase existence region increases which id associated

with the influence of the single-ion anisotropy, which

like biquadratic exchange interaction, tends to establish

quadrupole (or nematic) order. In addition, the impact of

even low (compared with exchange interactions) single-ion

anisotropy results in the variation of the phase transition

type between FiM- and QFiM-phases.

As shown herein, the impact of high
”
easy plane“ single-

ion anisotropy (β ≫ J, K) makes the implementation of the

truly ferrimagnetic state characterized by the vector order

parameters of sublattices (〈Sz 〉, 〈σ z 〉) disadvantageous and

the system achieves only quadrupole-ferrimagnetic ordering.

This state is stable at any relations of exchange integrals, i.e.

it exists both at J > K and in the opposite case. This phase

state is characterized by vector and tensor order parameters

such as

〈Sz 〉 = cos 2α < 1, 〈σ z 〉 = 1/2, q0
2 = 1, q2

2 = sin 2α < 1.

The presence of sublattice σ = 1/2 and exchange interac-

tion between sublattices prevent occurrence of nematic state

in sublattice S= 1, i.e. 〈Sz 〉 6= 0, q2
2 6= 1.
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It should be also noted that consideration of high
”
easy

plane“ type single-ion anisotropy and biquadratic exchange

interaction in sublattice S= 1 results in the situation when

a sublattice spin compensationline (surface) occurs in the

system with an appropriate relation of material parameters.

Moreover, equation of this line(see (7), (8)) exactly coin-

cides with the identical equation of the compensation line

of a weakly anisotropic non-Heisenberg ferrimagnet [52].
Therefore, the biquadratic exchange interaction is the main

sublattice spin compensation mechanism.

In addition, we have studied the ferrimagnet excitation

spectra behavior in the vicinity of the spin compensation

line. These investigations have shown that the elementary

excitation spectra in the vicinity of this line have
”
antiferro-

like“ behavior.
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