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Radiation-resistant graded-index multimode optical fibers based on

fluorosilicate glass
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Using the MCVD-technology, radiation-resistant multimode optical fibers based on fluorosilicate glass with a

gradient refractive index profile were developed. Radiation-induced attenuation (RIA) of light in the fibers was

compared with the literature data on analogous fibers manufactured by the PCVD-technology. It was found out that

RIA in the MCVD-fibers at the wavelength λ = 1310 nm under γ-irradiation at the doses of up to 10 kGy is 1−2

dB/km (19−29%) lower than RIA in the Super RadHard fiber produced by the PCVD-technology and previously

supposed to have a record-high radiation resistance.
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Multimode optical fibers (MOF) with a gradient refrac-

tive index profile are an important type of optical fibers

for local optical-communication systems [1], communication

systems with mode multiplexing [2], and optical-fiber

sensors [3]. In many applications, MOF is located or may

be located in the field of ionizing radiation (in outer space,

nuclear facilities, military equipment) that induces in the

quartz-glass network radiation color centers (RCC) which

absorb the light signal and thus initiate radiation-induced

attenuation (RIA) [4]. Standard MOFs with germanium-

doped cores exhibit high RIAs due to formation of a large

number of germanium-related RCCs [5]. Therefore, an

issue of developing a technique for manufacturing radiation-

resistant MOFs has arisen.

Company
”
j-fiber“ (Germany) succeeded in develop-

ing radiation-resistant germanium-silicate MOFs OptiGrade

50/125 R.H. [6]. It is possible to assume that, for the

purpose of reducing RIA in synthesizing the germanium-

silicate preform, a great excess of oxygen was created in the

vapor-gas mixture, which could initiate a certain suppression

of the germanium RCC precursors [7]. However, RIA in

such radiation-resistant MOFs is, apparently, reduced only

slightly as compared with RIA in typical germanium-silicate

MOFs.

To provide a radical increase in the MOF radiation re-

sistance, it was necessary to eliminate germanium from the

chemical composition. The most suitable solution seemed

to be the use of fluorosilicate glass [8–10]; therewith,

desirable is to introduce into the quartz glass a significant

amount of fluorine (in the fluorosilicate MOF cladding;

to ensure numerical aperture NA = 0.2 and difference in

the core and cladding refractive indices 1n = 0.015, it is

necessary to have at least 4.1wt.% of fluorine [11]). This

appeared to be possible only in the framework of the

method of plasma-chemical vapor deposition (PCVD) [12]
which is just that is used to produce radiation-resistant

fluorosilicate MOFs Super RadHard (Company
”
Draka“

(USA) [9] and MOFs Radiation Resistant Multi-mode

Fibre (RRF) (Company
”
YOFC“ China) [10]. The Super

RadHard MOFs are believed to exhibit record-low RIA at

wavelengths λ = 850 and 1300 nm which are important for

MOF applications [9,13].

In Russia, the PCVD technique is not commercially

developed, and preforms are being fabricated both under

Preform radius

F : SiO2

cladding

F : SiO2

cladding

F : SiO2

core

D
n

Real profile
a-profile

Figure 1. Profile of the preform GIMMSC(50/125) refractive

index (solid line) and the model α-profile [1] included in the

program of layer-by-layer deposition of glass in the MCVD-process

(dashed line).
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laboratory and industrial conditions by using the
”
non-

plasma“ technique of modified chemical glass vapor depo-

sition inside the heated support tube (modified chemical

vapor deposition, MCVD) [8,14]. Both the MCVD and

PCVD techniques imply layer-by-layer deposition, inside the

support tube, of fluorosilicate glass of the MOF preform

cladding and core from the vapor-gas mixture of oxygen,

silicon tetrachloride and silicon tetrafluoride. Creation of the

gradient refractive index profile (the so-called α-profile [1])
is ensured by gradually varying the vapor-gas mixture

composition from layer to layer (from the maximal silicon

tetrafluoride content at the core edge to the minimal one

in the middle of the core). Due to a larger thickness of

deposited layers of glass, deviation of the real refractive

index profile from the model α-profile in MOCVD-preforms

is typically more significant than that in the PCVD-

preforms. Despite this, PJSC
”
PNPPK“ has developed

MOFs GIMMSC(50/125) [15] which are fabricated from

fluorosilicate glass with using the MOCVD method for

producing preforms exhibiting a good compliance of the

obtained refractive index profile with the calculated α-profile

(Fig. 1). Optical parameters of GIMMSC(50/125) are

consistent with standard OM2 [16].

Due to a restriction on the limiting fluorine concentration

in the MCVD-preform quartz glass, the GIMMSC(50/125)
numerical aperture appeared to be NA ∼ 0.16 in case the

transmittance band width is no less than 600MHz · km,

while that of world analogues MOFs Super RadHard,

RRF and OptiGrade 50/125 R.H. obtained by PCVD is

NA = 0.2 [6,9,10]. Power of light introduced into MOF is

proportional to NA2, i. e. is about 1.56 times (by ∼ 1.9 dB)
lower for GIMMSC(50/125) than for PCVD MOFs.

However, not only the introduced light power is important

for a MOF in the radiation field, but also the rate of its

decrease in the process of the signal propagation through a

MOF due to the RIA effect. Thus, the goal of this paper

was estimation of the radiation resistance of the developed

MOF GIMMSC(50/125) and its comparison with data on

world analogues.

Gamma-irradiation of MOFs was performed using the
60Co source at the dose rate of 1.2Gy/s to the dose of

10 kGy. During irradiation, a MOF transmittance spectrum

was measured in the near-IR range (950 to 1750 nm); RIAs
were calculated based on the transmittance value.

Fig. 2 presents the RIA dependence on the radia-

tion dose at wavelength λ = 1310 nm of one of the

GIMMSC(50/125) MOFs, which proved to be approxi-

mately in the middle of the spread of a batch of 14

nominally identical MOFs (the spread limiting values are

indicated with the error bars). Fig. 2 also shows RIAs in

MOFs produced by
”
Draka“,

”
j-fiber“ and

”
YOFC“. For

the MOFs of two last companies, RIA values are known

from literature ([6] and [10]) only for two fixed doses of 1

and 250 kGy, respectively, while for MOF Super RadHard

produced by
”
Draka“ the dose dependence of RIA is

known [13].
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Figure 2. MOFś RIA versus the radiation dose at wavelength

λ = 1310 nm at room temperature. 1 — GIMMSC(50/125) at

the γ radiation dose rate of 1.2 Gy/s and introduced light power

of 0.5 µW; 2 and 2′ — Super RadHard produced by
”
Draka“ at

the introduced light power of 7 µW and γ-radiation dose rate of

1 and 0.5Gy/s, respectively [13]; 3 — OptiGrade 50/125 R.H.

produced by
”
j-fiber“ at the introduced light power of 1µW [6];

4 — RRF produced by
”
YOFC“ at the dose rate of 1Gy/s [10].

The inset presents RIAs of GIMMSC(50/125) (1.2Gy/s) (1) and

Super RadHard (1Gy/s) (2) and their difference (dashed line).

In the fluorosilicate-glass MOFs, RIAs in the near-IR

range at wavelengths λ close to 850, 1300 and 1550 nm are

defined by absorption in radiation-induced self-trapped hole

states (STH) in the quartz glass network [17]. The STH

distinguishing feature is that their concentration increases

extremely strongly with increasing dose rate [18] and

probing light intensity [17].

One can see that the dose dependences of the Super

RadHard and GIMMSC(50/125) RIAs are quite similar

in shape; in our experiment, the GIMMSC(50/125) RIAs

are 1−2 dB/km lower at an order-of-magnitude lower

probing light intensity as compared with the conditions

for Super RadHard (0.5 and 7µW, respectively) and at a

somewhat higher dose rate in our case (1.2 and 1Gy/s,

respectively) [13]. Hence, being measured under identical

conditions, RIAs of these MOFs will differ even stronger.

However, even comparison of RIAs obtained under different

measurement conditions shows that, when the MOF length

exceeds 2 km, the GIMMSC(50/125) light power will be

higher than that of Super RadHard due to lower RIA

regardless that the introduced light power is ∼ 1.9 dB

lower due to a smaller numerical aperture (see the Fig. 2

inset). In arbitrary units, the Super RadHard RIA in the

dose range of 102−104 Gy is 19−29% higher than that of

GIMMSC(50/125).

Notice that, at the dose of 250 kGy, RIA of RRF

produced by
”
YOFC“ agree well with RIA of Super
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Figure 3. RIA spectra at the dose of 1 kGy at room temperature

and their decompositions for radiation-resistant MOFs. 1 —
GIMMSC(50/125) produced by PJSC

”
PNPPK“ at the dose

rate of 1.2 Gy/s (Gaussian components for GIMMSC(50/125) are

represented below curves 1 and 2 with solid lines); 2 — Super

RadHard produced by
”
Draka“ at the dose rate of 0.5 Gy/s [13]

(Gaussian components for Super RadHard a represented below

curves 1 and 2 with dashed lines). Solid lines 1 and 2 represent

the experimental curves, dashed lines are the sums of Gaussian

components.

RadHard, while RIA of germanium-silicate MOF OptiGrade

50/125R.H. is, as expected, ∼ 3 times higher (Fig. 2).

To clarify the physical nature of the Super RadHard RIA

exceedance over the GIMMSC(50/125) RIA, we have com-

pared RIA spectra of these MOFs in the wavelength range

of 950−1700 nm (Fig. 3). The RIA spectra decomposition

into Gaussian components, for which STH absorption bands

known from literature were used [4,18], points to the STH

band with the center at 1.2 eV (∼ 1µm) [18] as to the

source of exceedance of RIAs at wavelength λ = 1310 nm

in Super RadHard over those in GIMMSC(50/125) (Fig. 3).

Thus, fluorosilicate MOFs GIMMSC(50/125) developed

by PJSC
”
PNPPK“exhibit a higher radiation resistance than

similar MOFs produced by glqq Draka“ and
”
YOFC“:

at wavelength λ = 1310 nm, RIA of GIMMSC(50/125) is

1−2 dB/km lower, which allows compensating the intro-

duced light power deficiency due to a smaller aperture. In

arbitrary units, RIA of Super RadHard in the dose range

of 102−104 Gy is 19−29% higher than that in the case of

GIMMSC(50/125).

The question to be answered is whether the superiority of

the GIMMSC(50/125) radiation resistance is a property of

MCVD fluorosilicate MOFs themselves (a lower fluorine

concentration, a higher support tube temperature during

the glass deposition than those in PCVD) or a result of

the production process optimization carried out at PJSC

”
PNPPK“.

When the paper was already being prepared for publica-

tion, there appeared an interesting result of activities devoted

to achieving high radiation resistance of germanium-silicate

MOFs with a high germanium oxide content (20mol.%

GeO2) [19], which, possibly, opens new promises for

developing the radiation-resistant MOF technology.
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