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Approximation of the solution of an internal problem of electrodynamics

by the method of eigenfunctions
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The problem of constructing approximation models of radiating and reradiating structures based on the

eigenfunction method is considered. The ambiguity of the solution of this problem is noticed. Techniques are

proposed which can be used in developing approximation models. An expression is presented for estimating the

error introduced by the approximation model. As an example, one of the possible options for constructing an

approximation model for a tubular antenna is given. The results of numerical simulation are presented.
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Nowadays, the problems of radiation and diffraction of

electromagnetic waves are often solved by using computer-

aided design systems. One of the most efficient meth-

ods used in creating those systems is the finite-element

method [1]. Therewith, using the method of moments [2] it

is possible to reduce the internal problem of electrodynam-

ics to a set of linear algebraic equations (SLAE) whose

direct solution complexity may be assessed, depending

on its dimension N, as O(N3). Dimension N is directly

associated with the choice of the projection function system

(PFS). PFS may be regarded as optimal if it converts the

SLAE matrix to the diagonal form. In paper [3] it was

proposed to solve this problem by using the eigenfunction

method (EFM). As an alternative to EFM, the characteristic-

mode method may be regarded [4]. In addition, paper [3]

considered advantages and disadvantages of the mentioned

methods; for example, solution by EFM of the problem of

diffraction on a helical particle was presented. There was

made a conclusion that EFM may become a good basis for

creating approximation models (AM) for solving the internal

problem of electrodynamics. This paper proposes some

techniques to be used in creating AMs. As an example, one

of the options for constructing AM for a tubular antenna is

considered.

Typically, the problem of source identification (the inter-

nal problem of electrodynamics) gets reduced to an integral

equation (IE) that may be presented in the operator form:

A(M)u = v. (1)

Here A is the integral operator, M is the kernel, v is the IE

right-hand part. EFM implies representation of the equation

(1) solution as a sum of the approximated solution u′ and

residue r :

u = u′ + r, u′ =

N∑

j=1

u′

jφ j ,

u′

j ∈ U′ = Ŵ′V, Ŵ′ = (ĴX̂−1ĴT )′. (2)

Here Û′ is the approximation of the SLAE solution M̂Û = V̂

obtained by the method of moments; V̂ is its right part; Ĵ

and X̂ are the matrices of eigen vectors (EV) and eigen

numbers (EN) which are the solution of spectral problem

M̂Ĵ = X̂Ĵ; φ j are the moment-method projection functions.

Matrix X̂ is diagonal; therewith, ξ j, j ≡ ξ j ∈ X are the M̂

eigen numbers. Columns J j of matrix Ĵ represent EVs

corresponding to ENs ξ j . The prime is used to denote

truncation of initial matrices ( j = 1 . . . P , P < N). The

prime after brackets means its application to all the objects

in the brackets. Truncation increases r in (2) by an in-

advance known value.

Let it be that p = {x , γ1, γ2 . . . } is the point belonging

to the approximation region A, x = h/λ, h is the basic geo-

metric parameter of the system under study, γ1, γ2 . . . are

its remaining parameters, λ is the wavelength. Physically,

elements Ĵ and X̂ are smooth functions of coordinates p.

Their approximations Ĵ′′ and X̂′′ for p ∈ A provide an AM

describing the system state in the specified region with a

preset accuracy. The approximation relative error may be

estimated using the following relation:

ρA = ρA(p) = |Ŵ′′M̂′ − Î∗|/|Î∗|, Ŵ′′ = (ĴX̂−1ĴT )′′,

M̂′ = (ĴX̂ĴT )′, (ĴĴT )′ = Î∗. (3)

Approximations Ĵ′′ and X̂′′ are performed based on initial

arrays { j} and {ξ} which are Ĵ′ and X̂′ calculated for a

point array {p} ∈ A. Restoration of Ĵ′ and X̂′ from { j}
and {ξ} may be performed using different interpolation
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options (linear, spline-interpolation, etc.). The { j} and

{ξ} dimensions are rather large; therefore, AM implies

formation of procedures Tj and Tξ allowing restoring { j}
and {ξ} with a known accuracy from more compact

underlying arrays { j∗} and {ξ∗}, respectively. Desirable is

that { j∗} and {ξ∗} have a satisfactory compaction potential

defined by the number of elements whose elimination from

the arrays would not initiate a significant increase in error

of the { j} and {ξ} restoration. In paper [5] we showed

that the frequency dependence of the EN and EV elements

is well approximatable by polynomial expansions. The

compaction potential of { j∗} can be increased by projecting

the instantaneous-frequency EV on fixed-frequency EV.

Consider one of the versions of constructing such an

AM for tubular antenna (Fig. 1) whose internal problem

is defined in the form of a singular IE [6]. In Fig. 1, the

following designations are used: L is the antenna length,

a is the tube radius, 2b is the clearance width, s is the

clearance center displacement along axis Oz . The IE form

is consistent with problem (1) where u = η(z ) is the surface
current density, v = Eext

z (z )/Z; Eext
z is the z -component

of the impressed field, Z is the wave resistance of the

medium. For the structure under consideration, p = {x , γ}
where x = L/λ, γ = a/L. Due to the symmetry in the

framework of the method of moments it is possible to

construct two independent SLAEs with respect of even and

odd PFSs. In our case, the antenna was divided into equal-

length segments; as the basis and test ones, superpositions of

piecewise-constant functions and delta-functions accounting

for the structure symmetry were used respectively. As initial

arrays, the following were taken:

{ξ} = {ξr, f ,p} = ξ ′p(p f ,r ), { j} = { j r, f ,n,p} = J′(p f ,r ),

p f ,r = {x f , γr}, x f ∈ {x}, γr ∈ {γ},

n = 1 . . . Ns/2, p = 1 . . . P,

f = 1 . . . N f , r = 1 . . . Nr , (4)

N f is the number of wavelengths, Nr is the number of

normalized radii, Ns is the number of segments. Procedure

Tξ determines array {ξ∗} = {ξ∗r,c,p} whose c-elements are

coefficients of the {ξ} f -elements expansion in terms

of Chebyshev polynomials (c = 1 . . . Nc). Procedure Tj

determines array { j∗} = { j∗r,c,q,p} whose c-elements are

coefficients of the array { j ′r, f ,q,p} =
∑
n
{ j r, f ,n,q}{ j r,1,n,p}

f -elements expansion in terms of Chebyshev polynomials.
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Figure 1. The tubular antenna geometry.
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Figure 2. Estimation of the approximation error according

to (3). γ = 1.875 · 10−4 (1), 9.375 · 10−4 (2), 9.375 · 10−3 (3),
9.375 · 10−2 (4).

Compaction of arrays {ξ∗r,c,p}, { j∗r, f ,q,p} consists in eliminat-

ing low-amplitude elements so that related residuals ρξ and

ρ j between the initial and compacted arrays do not exceed

the in-advance known values of εξ and ε j .

The AM was constructed using the following parameters:

Ns = 300, N = 150, P = 25, Nc = 64, 2b/L = 1/100,

εξ = 10−7, ε j = 10−3, x f ∈ [10−3; 2.5], γr ∈ [10−4; 10−1].
In calculations, double-precision numbers were used. For

x , a uniform step (250 points) was used; for γ , the

range was divided into three decades [1; 10] · 10n−5, where

n = 1, 2, 3 is the decade No. Inside each decade, the arrays

were calculated at the following points: γ/10n−5 = 1, 1.375,

1.75, 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10 (three decades contain

four boundary points and eight inner points each). Thus,

the total number of computational points for γ was 28. The

calculations provided the following real dimensions of the

initial and compacted underlying arrays: {ξ} — 2.6MB,

{ξ ′} — 106KB, { j} — 3.36GB, { j ′} — 1MB, dimension

of the underlying array { j r,1,n,p} was 2MB. Fig. 2 presents

the results of calculating the error of the inverse integral

operator approximation via formula (3). Fig. 3 presents

normalized curves representing approximated distributions

of the surface current density for the worst case, which were

calculated using the model presented here. The antenna

was assumed to be symmetrical (s = 0), while field Eext
z

was assumed to be localized in the vicinity of the clearance.

Similar curves obtained by using directly calculated ENs and

EVs exhibit a quite small visual difference from the curves

obtained using the AM.

Thus, this paper is devoted to the problem of con-

structing AM of radiating and reradiating structures based

on the eigenfunction method. General principles of the

AM creation are considered. Notice that the in-depth

analysis of properties of the underlying arrays makes it

possible to improve the initial AM. The initial AM may
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Figure 3. Comparison of normalized current distributions

obtained based on the initial (I′ = η′/ηmax) and restored in the

framework of AM (I′′ = η′′/ηmax) eigen numbers and eigen

vectors. 1 — ReI′ , 2— ImI′, 3 — ReI′′, 4 — ImI′′ .
εξ = 10−7, ε j = 10−3, x = 2.5, γ = 9.375 · 10−2 (the worst

case), Imax = max(|η′(t)|, |η′′(t)|), t = 2z/L.

become a basis for a more compact AM with a lower

approximation accuracy. The paper presents an easily

implementable version of constructing a tubular antenna

AM for a specified frequency range; in this version, the

tube radius is taken into account. The authors believe that

this AM may be used in engineering calculations and for

creating models of multi-component vibrator antennas. A

drawback of the proposed AM is some loss of physical

sense of data stored in the underlying arrays. In [3],
we emphasized especial importance of extrema of the EN

frequency dependences, which define the general character

of the internal problem solution. Ideally, such information

should be included in the underlying arrays in the explicit

form. This allows maximally accurate storage of data

necessary for analyzing, interpreting and predicting the

obtained results. The proposed AM contains these data

implicitly, and obtainment of information on the extrema

needs additional (relatively simple) computation procedures

with somewhat less accuracy. In future the authors plan to

create AMs accounting for this aspect to the fullest extent.
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