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Particular features of the thermoelectric power factor of encapsulated

structures formed by two-dimensional layers
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Model approach is used to obtain expression for the thermoelectric power factor σ S2 (σ — is the static

conductivity, S — is the Seebeck coefficient), characterized monoatomic 2D layer of IV group elements, placed

between two slabs, formed by hexagonal 2D layers of III−V com-pounds. The h-BN/graphene/h-BN structure is

thoroughly studied and the dependence of the σ S2 value on the chemical potential µ is examined. The analytical

estimates of the function σ S2(µ) are given.
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1. Introduction

One of widely used characteristics of the thermoelectric

capability of materials is the Z = σ S2/κ parameter known

as figure of merit, where σ being electric conductivity,

S being thermoelectric power (or Seebeck coefficient),
κ being thermal conductivity. Sometimes the dimensionless

product of ZT is used for the same evaluations, where T be-

ing temperature. For a long enough time developers

managed to achieve ZT ≈ 1 for the best thermoelectrical

bulk materials [1]. A significant progress became visible

after the publication of study [2], where structures with

quantum wells have been considered. With appearance

of two-dimensional materials and structures based on them

the modern stage of thermoelectricity has been started [3].

In this study we consider the σ S2 product as a thermoelec-

tric characteristic.

The overwhelming majority of modern device struc-

tures are a set of vertically arranged microlayers and/or

nanolayers of different nature [4]. This study con-

siders hexagonal monolayers (ML) sandwiched between

two covers, i. e. encapsulated monolayers (EnML). To

describe the electron spectrum of EnML, a model is

used [5], which is based on the adsorption approach to

the problem of epitaxial monolayers (EpML) [6]. The

essence of this model is reduced to the representation

of EpML as a lattice of adatoms, namely: if the elec-

tronic state of an adatom is described by the Green

function gad(ω) =
(

ω−εa−6(ω)
)−1

, where ω is energy

variable, εa is energy of the level of adsorbed atom A,
6(ω) is self-energy part that describes the interaction

with the substrate, then, by arranging the adatoms into

a lattice and including interaction t between the nea-

rest neighbors, we get for EpML the Green function

G−1
EpML(ω, k) = g−1

ad (ω)−t f (k), where the f (k) periodic

function corresponds to the geometry of the adatom lattice,

k is wave vector. The same result can be obtained if the

Green function gML(ω, k) =
(

ω−εa−t f (k)
)−1

is assigned

to a free ML and then the interaction with substrate 6(ω)
is included. The purpose of this study is to determine the

effect of EnML covers on the value of the σ S2 product of

an encapsulated ML.

2. General relationships

According to the Mott formula [7], the Seebeck coeffi-

cient is

S = −1

3

(

π2k2
BT/e

)

[d lnσ (µ, T = 0)/dµ],

where e is elementary charge, kB is Boltzmann constant,

T is temperature, µ is chemical potential, the problem

is reduced to the determination of the σ (µ) dependence

at zero temperature. The problem of static conductivity

and Seebeck coefficient of epitaxial graphene within the

framework of adsorption approach was solved for the first

time in [8] for a semiconductor substrate, which density

of states (DoS) was described by the Haldane−Anderson

model.

When turning from EpML to the EnML problem, it is

easy to understand that the corresponding Green function

has the same form as GEpML(ω, k) but 6(ω) is replaced

with 6(ω) = 61(ω) + 62(ω), where 61(2)(ω) being contri-

bution from cover 1(2) [9]. Using the results of [8,9], it
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can be shown that for µ inside the resulting band gap with

boundaries of E∗

C and E∗
V defined by the following inequality

E∗

V = max{EV1
, EV2

} < E∗

C = min{E∗

C1
, E∗

C2
},

where E∗
V1,2

and E∗

C1,2
are edges of the valence band and

the conduction band of covers 1 and 2, the reduced static

conductivity σ ∗ : = σπ~/e2 at T = 0 has the following form

σ ∗ =
ξ2F

F2 + 4µ̃2γ2
+

µ̃2 + γ2

2µ̃γ
R ≡ σ ∗

1 + σ ∗

2 ,

R(µ) = arctan
F(µ)

2γµ̃
+ arctan

µ̃2 − γ2

2γµ̃
. (1)

Here

F = ξ2 + γ2−µ̃2, µ̃ = µ−3̄(µ), 3̄(µ) = 31(µ) + 32(µ),

where 31,2 = Re61,2, ~ is reduced Plank constant,

ξ =
√

2π
√
3t is cutting energy for ML [10], γ is pa-

rameter of the natural attenuation of electronic states

in free ML; the Dirac point energy εD = εa is taken

equal to zero. In the same region (E∗
V, E∗

C) derivatives

dσ ∗/dµ = dσ ∗
1 /dµ + dσ ∗

2 /dµ are

dσ ∗

1 /dµ = − 2ξ2µ̃C
F2 + 4γ2µ̃2

(

1− 2
F(F − 2γ2)

F2 + 4γ2µ̃2

)

,

dσ ∗

2 /dµ =
µ̃2 − γ2

2γµ̃2
CR +

µ̃2 + γ2

2γµ̃

dR
dµ

,

dR
dµ

= −4γCD, C = 1− d3̄/dµ,

D =

(

ξ2 + γ2

F2 + 4γ2µ̃2
− 1

2(µ̃2 + γ2)

)

. (2)

3. Graphene encapsulated
by h-BN layers

Let us consider as an example the h-BN/Gr/h-BN
structure, where Gr is monolayer graphene, h-BN is

two-dimensional hexagonal boron nitride. According to

evaluations of [11], distances between the nearest neighbors,

hopping rnrrcies t and Dirac points εD for free Gr and h-BN
can be considered equal. At the same time, σ (µ) and S(µ)
functions are, respectively, symmetric and antisymmetric in

relation to the µ = 0 point for both the EpML and the

EnML, with σ (0) = σmin and S(0) = 0. The 3(µ) shift

function for graphene-like binary compounds calculated

within the low-energy approximation is

3̄(µ) = (4V 2µ/ξ2) ln |(12 − µ2)/(ξ2 + 12 − µ2)| [12],

whence it follows that µ̃ = µM, M = 1 + 3̄(µ)/µ,

C = M + 8V 2µ2/[(12 − µ2)(ξ2 + 12−µ2)],

where 21 is gap width in the ML spectrum, V is matrix

element of ML interaction with cover. Due to the

L
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Dependencies of a) dimensionless static conductivity σ ∗ (circles)
and L = d ln σ ∗/dµ (squares) and b) Z∗ = σ ∗L2 (triangles)
functions on the position of chemical potential µ inside the band

gap of h-BN for h-BN/Gr/h-BN structures (Gr — graphene) at

γ = 0.1, V 2 = 0.25 (light symbols) and V 2 = 0.50 (dark symbols).
All energy parameters are given in 1 units. Only right halves of

even σ ∗(µ), Z∗(µ) functions and odd L(µ) function are shown.

fact that ξ ≈ 10 eV and 1 ≈ 3 eV, we have 12/ξ2 ≪ 1.

Assuming γ/1 = 0.1, V 2/12 = 0.25, 0.50, the σ ∗(µ),

L(µ) = d ln σ ∗/dµ and Z∗(µ) = (σ ∗)−1(dσ ∗/dµ)2 ∝ S2

dependencies shown in the figure can be derived. It can

be easily shown that at µ → 0 the following is true:

σ ∗

0 ≈2(1 + µ2M2
0/γ

2), L0≈2µM2
0/γ

2,

Z∗

0 ≈ 2µ2M4
0/γ

4, (3)
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where M0 = M(µ = 0) and C0 = C(µ = 0), so that

M0 = C0 . At µ
2 → 12 the following can be written:

σ ∗

±1 ≈ 1

2
π3̄1/γ, L±1 ≈ ±C1/3̄1,

Z∗

±1 ≈ 1

2
πC2

1/(γ3̄1), (4)

where

3̄1 ≈ (4V 21/ξ2) ln[ξ2/(12 − µ2)]

and

C1 ≈ 4V 212/ξ2/(12 − µ2).

Whence it follows that the effect of covers is taken into

account by 3̄, M and C functions: with increase in V 2/ξ2

coupling constant the conductivity, the Seebeck coefficient

and the thermoelectric factor increase.

4. On extreme points of L(µ) and Z∗(µ)
functions

Now let us consider L(µ) and Z∗(µ) functions,

which points of extreme ±µL
ext and ±µZ∗

ext can be

determined, respectively, from the following equa-

tions: σ ∗(d2σ ∗/dµ2) = (dσ ∗/dµ)2 and 2(d2σ ∗/dµ2) =
= (dσ ∗/dµ)2. Using formulae (2), the following can be

written:
d2σ ∗

1

dµ2
= −B∗

1

dA∗

1

dµ
− A∗

1

dB∗

1

dµ
,

dA∗

1

dµ
=

2ξ2C2

F2 + 4γ2µ̃2

(

1 +
µ̃

C2

dC
dµ

+ 4µ̃2 F − 2γ2

F2 + 4γ2µ̃2

)

,

dB∗
1

dµ
=

8Cµ̃

F2 + 4γ2µ̃2

(

F − γ2 − F(F − 2γ2)2

F2 + 4γ2µ̃2

)

, (5)

where we have assumed dσ ∗

1 /dµ := −A∗

1B∗

1 and A∗

1 (B
∗

1) is

the first (the second) product term in (2);

d2σ ∗

2

dµ2
=

dA∗

2

dµ
+

dB∗

2

dµ
,

dA∗

2

dµ
=

γC2R
µ̃3

+
µ̃2 − γ2

2γµ̃2

(

R
dC
dµ

+ C
dR
dµ

)

,

dB∗
2

dµ
=

µ̃2 − γ2

2γµ̃2
C

dR
dµ

+
µ̃2 + γ2

2γµ̃2

d2R
dµ2

,

d2R
dµ2

= −4γD
dC
dµ

− 4γC
dD
dµ

,

dD
dµ

=
4(ξ2 + γ2)Cµ̃

(F2 + 4γ2µ̃2)2
(F − 2γ2) +

Cµ̃

(µ̃2 + γ2)2
, (6)

where A∗
2 (B

∗
2) is the first (the second) sum term in

formulae (2) for dσ ∗

2 /dµ. The analysis of (5) and (6) in

the extreme case of weak bond V 2 ≪ 12 ≪ ξ2 yields the

following

µLt
ext ∼ µeZ∗

ext ∼ γ, σ ∗ ∼ π/2,

|Lext| ∼
2

πγ
, Z∗

max ∼
2

πγ2
. (7)

It follows from order estimates (7) that there is almost no

effect of covers on the characteristics in question.

5. Conclusion

It is worth to note that the considered structures of

monolayers of gapless graphene and h-BN, are not only

of academic interest but also of real device interest [13–15].
Moreover, the results obtained in this study can be easily

expanded on other monatomic layers of group IV elements

(gapless silicene, germanene and stanene) [16] and covers

of A3B5 type 2D compounds. The main conclusion of this

study consists in that maximum values of the thermoelectric

power coefficient are realized in the cases when the

chemical potential is near edges of the resulting band gap of

the encapsulated structure. We believe, that this conclusion

is also true for monolayers with a gap in the spectrum

(gapped MLs) and for dielectric and/or semiconductor two-

dimensional and three-dimensional covers. In the case of

metal covers the maximum thermoelectric power coefficient

should be expected when the chemical potential is near

the edge of gap in the monolayer spectrum (see, for

example, [17]).
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