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Using the example of a seven-layer ferromagnetic structure with three thin (nanoscale) and four wide magnetic

layers, possible scenarios of domain boundary dynamics in a multilayer ferromagnet are considered. Significant

differences in the dynamics of the domain boundary were found in the presence of thin magnetic layers with

increased and decreased values of the magnetic anisotropy constant. A diagram of possible scenarios of the

dynamics of the domain boundary is constructed depending on the initial velocity of its movement and the distance

between thin magnetic layers. The presence of a critical distance between thin magnetic layers separating the

dynamics of the domain boundary into two regions with qualitatively different behavior of the system is revealed.
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1. Introduction

Achievements in the field of nanotechnology and methods

of measurement of magnetization statics and dynamics

allow coming back to earlier optical and magnetic studies

of the domain wall (DW) dynamics from a new point of

view and at a new level of experiments. Now there is the

possibility to investigate experimentally nanometer motions

of individual DWs and even the magnetic inhomogeneities

localized in a nanovolume [1–5]. An interesting subject

of such studies are multilayer magnetic structures. This is

related to increasingly wider possibilities of their production

and practical application [6–15]. Often, these are periodi-

cally alternating layers of two or more materials, including

nanoscale layers, with different physical parameters. Even

the creation of atomically flat magnetic interfaces has now

become a common place in magnetic nanotechnology [11].
The investigation of one-dimensional models of dynamics

of spin waves and magnetic inhomogeneities propagating in

these systems normally to layer interfaces provides insights

into the effect of the inhomogeneity of system parameters

on the processes under consideration [7,8,12–16].
Often, the case of ultrathin metal nonmagnetic interface

between two ferromagnetic or antiferromagnetic layers is

considered [17–18]. In this case, to describe the magneti-

zation dynamics in the layer, the Landau−Lifshitz equation

with constant parameters of the material is used, and some

boundary conditions are required to be met at the layer

interfaces. According to another approach, the presence of

layers, which are different from each other by values of one

or more magnetic parameters, is taken into consideration by

means of spatial modulation of magnetic parameters of the

material (see, for example, [7,8,12,13,15,19]). It is shown

in multilayer magnetic films, that the coercive force and the

magnetic anisotropy of layers can be controlled by varying

the modes of layer growing (see, for example, [20]). Often,
in these systems thin (down to nanometer sizes) magnetic

layers of one type are separated by wide layers of another

type. If a thin magnetic layer has a decreased magnetic

anisotropy, this layer is an effective
”
quantum well“ (or

”
flat

magnetic defect“) for magnetic inhomogeneities (see, for
example, [7,21,22]). The most interesting is the case,

when the size of DW and the size that characterizes

inhomogeneity of the anisotropy parameter, are of the

same order of magnitude. In this case the DW should

change its shape significantly when passing through the

thin magnetic layer. In these systems pinning of domain

walls, generation of localized magnetization waves, such

as magnetic solitons and breathers, generation of spin

waves are possible [7,12,14,23–24]. It is worth to note

that two-dimensional magnetic inhomogeneities of magnetic

vortex type near the inhomogeneities of the magnetic

anisotropy also demonstrate a diversity of their behavior:

pinning of the vortex by defect with explicit change in

the rotation speed, reflection before defect with different

motion paths, etc. [25]. The problem of description of

one-dimensional dynamics of DW in three-layer and five-

layer ferromagnetic structures, which are compositions of
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alternating wide and thin magnetic layers with different

magnetic parameters of the anisotropy, can be reduced,

under certain conditions, to the problem of interaction of

kinks of the sine-Gordon equation (SGE) with impuri-

ties [7,16,26]. The case of two thin magnetic layers gives

a large diversity of new multisoliton solutions for localized

magnetic inhomogeneities and dynamic effects as compared

to the case of one thin magnetic layer [27,28]. Even more

diversity of solutions can be expected for possible types

of magnetic inhomogeneities and dynamic effects in the

presence of three or more thin magnetic layers in the system.

This study investigates the dynamics of domain walls in a

multilayer ferromagnetic structure with three thin magnetic

layers.

2. The case of thin magnetic layer
in the form of

”
potential barrier“

Let us consider a seven-layer ferromagnetic structure

composed of four wide layers separated by three thin layers

(with a size of an order of magnitude of the domain wall

width) located at a distance of d from each other. Wide and

thin magnetic layers are different from each other by their

magnetic anisotropy constants. Let us consider a simple

case of inertial motion without attenuation. Parameters of

the anisotropy are considered to be functions of y coordinate

directed normally to the layer interface. Let us use spherical

coordinates M(cosϕ sin θ, sinϕ, cosϕ cos θ) to describe dy-

namics of the magnetization, where 0 ≤ θ ≤ 2π is angle in

the xz plane between the direction of magnetic moment

vector and the easy magnetization axis (the Oz axis),
−π/2 < ϕ < π/2 is angle that describes outgo of the M

from the plane of DW. By taking into account the exchange

interaction and the anisotropy in the energy density of the

magnetic material and assuming ϕ ≪ 1, the dimensionless

equation of motion for the magnetization in angular vari-

ables in the one-dimensional case can be represented as

follows [7,16,26,29]:

∂2θ

∂y2
− θ̈ − 1

2
f (y) sin 2θ = 0, (1)

where f (y) = K(y) = K1(y)/K0
1 is a function that de-

termines spatial modulation of the anisotropy constant,

K0
1 is the anisotropy constant in thick layers. Time t

is normalized to 4πMSγ
√

Q, where Q = K1/(2πM2
S) is

quality factor of the material. x coordinate is normalized

to δ0, where δ0 is width of the static Bloch DW. Equation (1)
is derived in the assumption that K1 ≪ 2πM2

S . Equation (1)
with zero right member and K(y) = 1 is transformed to the

known sine-Gordon equation [28].
The K(y) function is modelled by a rectangular shaped

function

f (x) =

{

1, |y | > W/2, |y + d| > W/2, |y − d| > W/2,

K, |y | < W/2, |y + d| < W/2, |y − d| < W/2,

(2)

where W is parameter that characterizes width of the thin

magnetic layer, K is constant of the magnetic anisotropy

in the region of the thin magnetic layer. It is worth to

note that thin layers with increased magnetic anisotropy as

compared to the homogeneous state are potential barriers

for the moving DW. In the extreme case, when thin layers

can be considered infinitely thin, equation (1) can be solved

analytically [30] using the collective variables technique [28].
With arbitrary W and K equation (1) can only be solved

numerically. Equation (1) was solved numerically using an

explicit scheme [12,16,26]. The equation was discretized by

the standard five-point scheme of
”
cross“ type that possesses

the stability condition of (1t/1y)2 ≤ 0.5, where 1t is time

step, 1y is coordinate step. At the initial moment of time

we have a Bloch-type DW moving at a constant speed of v0,

and boundary conditions are as follows: θ(−∞, t) = 0,

θ(+∞, t) = π, θ′(±∞, t) = 0. In addition, the scheme

used is convenient because it is a
”
single-step“ scheme that

uses relatively small number of calls to memory and has

a potential for optimization of the computational algorithm.

In the process of numerical experiment, the DW crosses the

regions of thin layers and at every moment of time the DW

structure and its main dynamic characteristics are calculated:

position of its center, speed and trajectory of motion.

The coordinate origin is placed in the center of the

second barrier for definiteness, and centers of other barriers

are located on both sides of the origin with dimensionless

coordinates of y1 = −3 and y3 = 3. W and K parameters

are taken as W = 1, K = 2. Let the DW moves from the

infinity toward potential barriers. To exclude the interaction

between the DW and barriers at the initial moment of

time, the initial position of the DW center must be set

at a sufficient distance from the barriers. The numerical

analysis has shown that for this purpose it is sufficient to

consider the case with the initial DW center coordinate of

y = −10. With initial DW speed less or equal to 0.59, it

reflects from the first barrier and moves back with the same

modulus of speed (curve 1 in Fig. 1). Therefore, this
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Figure 1. y coordinate of the DW center as a function of time

at W = 1, K = 2.0. Lines: (1) — v = 0.59: (2) — v = 0.595;

(3) — v = 0.59855; (4) — v = 0.5986; (5) — v = 0.602.
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Figure 2. Dependence of the maximum DW speed when

reflecting from the first barrier: a) in on value of the K at

different W . b) in on value of W at different K.

speed v = 0.59 will be considered as maximum DW speed

required to realize the scenario of its reflection from all

barriers at given parameters. With increase in K and W this

threshold maximum speed of DW reflection from barriers

increases non-linearly (Fig. 2). With approximation of

this and with a small size of the potential barrier the

following dependence is derived: v ∼
√

K and v ∼
√

W .

However, with sufficiently large W, K (for example, at

K > 2 in Fig. 2, a) nearly linear dependence on K is

observed for this threshold speed. Dependence of this speed

on d is shown in Fig. 3. It can be seen that with an increase

in d (when the collective effect of potential barriers on

the DW dynamics is already lost) it tends to a value equal

to the threshold speed for the case of one barrier. As d
tends to zero, three potential barriers have an effect on the

DW dynamics equal to that of one wider barrier, and the

threshold speed in this case is nearly equal to the value

obtained for the case of one barrier with 3W [31].

With a small increase in DW motion speed it can

pass through the first potential barrier but reflects from

the second barrier (curve 3 in Fig. 1). Two scenarios

are possible in this case. If the DW moves with a

speed of 0.59855, it passes the first barrier and at t ≈ 30

it reflects from the second barrier and, moving back,

passes the first barrier again and goes out to the infinity

(curve 3 in Fig. 1). However, in a small speed interval

of 0.59 < v < 0.59855, the DW, after having passed the

first barrier, looses part of its energy for the interaction

with the barrier. Then, when it reflects from the second

barrier, it has no sufficient energy to pass the first barrier

in the opposite direction, so it reflects from the first barrier

again. Thus, at a certain initial speed within this interval, for

example, at a speed of 0.595, the DW will oscillate within

the region limited by the first barrier and the second barrier

(curve 2 in Fig. 1). By increasing the speed, for example,

up to 0.5986, another possible scenario can be observed.

DW (curve 4 in Fig. 1). In this case the DW, after having

passed the second barrier, reflects from the third barrier and

starts oscillating between them. It is worth to note that the

DW oscillation between the first and the second barriers,

between the second and the third barriers is obviously non-

harmonic. With further increase in the initial speed (starting
from the speed of 0.602) the DW can pass all three barriers

and go out to the infinity (curve 5 in Fig. 1). It is worth to

note that when passing the middle barrier, the speed drops

nearly down to zero.

The dependence of this minimum speed of barrier passing

vcr on different values of K,W can be obtained. For

example, the dependence of vcr on K is shown in Fig. 4.

It can be seen in the figure, that this dependence has the

same behavior as that for the threshold maximum speed

of reflection. It can be seen from the ratio between

the maximum speed of reflection from all barriers and

the minimum speed of passing the barriers, that these

speeds are insignificantly different for the considered cases:

from 1% of difference to 2% of difference for large values

of (K > 2, W > 1.5). For the case of one barrier [32]
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Figure 3. Maximum speed of DW reflection from the first barrier

as a function of d at different values of K. Dashed line shows this

speed for the case of one barrier.
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Figure 4. Minimum speed of DW passing through barriers vcr as

a function of K at different values of W .
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an analytical formula for the threshold minimum speed of

passing is suggested

v2
cr =

1

2
(K − 1) tanh

(

W
2

)

. (3)

For the case of small values of W equation (3) can be

simplified as follows:

vcr ≈
1

2

√

(K − 1)W . (4)

From Fig. 4 at W = 1, K = 1.1 it follows that vcr = 0.215,

and by applying formula (4), we get vcr ≈ 0.16. The 25%

difference between these values is indicative that for-

mula (4) also can qualitatively describe the dependence of

the critical speed in question on K,W .

The comparison of speeds before and after interaction

with barriers shows that these speeds are nearly the same.

The start to be noticeably different only at large values

of K,W . For the threshold speed of reflection, starting from

K > 2 and W > 1 a decrease in speed by less than 1%

takes place as compared to the initial value. For the

minimum speed of barrier passing, from K > 2 and W > 1

the DW speed will be 3.5−4% less than the speed of the

DW initially approaching the barriers. Such a decrease in

speed will be related to the fact that the DW reflection and

passing from/through barriers is additionally accompanied

by generation of low-amplitude volume waves. The total

energy of the system in the case under consideration is

always constant.

It is worth to note that a dynamic DW behavior like this

has been found through numerical calculations for other

values of W and K as well. It can be expected that a

change in the form of function (2) (which has already

been investigated previously for the case of three-layer

structure (see, for example, [16,32])), also will not result

in a qualitative change in the dynamic behavior of the DW.

3. The case of thin magnetic layer
in the form of

”
quantum well“

Now let us consider the case of three thin magnetic

layers, which are
”
quantum wells“ for the DW. Let us

consider the K(y) function of form (2) with K = 0.5,

W = 1, d = 2. The numerical calculation shows a qualitative

difference between the observed scenarios of DW dynamics

and the case of
”
potential barriers“ considered above.

At a certain initial DW speed of v0 below the critical

speed of passing through three wells vcr , pinning of the

DW is observed at the first, the second and the third

wells (curves 1, 2, 3 in Fig. 5, a). The basic frequency

of oscillations can be determined by Fourier analysis.

In our case these frequencies are ω1 = 0.373, ω2 = 0.319,

ω3 = 0.319. Also, pinning scenarios were observed for the

case of DW hopping from one
”
quantum well“ to another

(see Fig. 6). Such DW hopping is due to the loss of energy

for radiation, the excitation of inner degrees of freedom of

6

0 180 360

t

12

–12

y

3

–3

–9

–15

y

9

15

–21

0 50 100 150
t

1

3

4

2

5

a

10

0

–10

y

20

0

0

200

200

400

400

600

600

t

t

b

1

3

2

800

800

3

–3

–9

–15

y

9

15

–21

1

3

2

c

Figure 5. DW center coordinate y as a function of

time: a) at W = 1, K = 0.5, d = 2, curves: (1) — v0 = 0.28;

(2) — v0 = 0.283043899; (3) — v0 = 0.2849; (4) — v0 = 0.33;

(5) — v0 = 0.343; (6) — v0 = 0.3426; b) for W = 1,

K = 0.5, d = 1, curves: (1) — v0 − 0.201; (2) — v0 = 0.14;

(3) — v0 = 0.06; c) W = 1, K = 0.8, d = 2, curves:

(1) — v0 = 0.0413; (2) —v0 = 0.0275; (3) — v0 = 0.0403.

the DW (for example, pulsation mode), the excitation of

localized oscillations of breather type in
”
quantum wells“

and their interaction with each other. It is worth to note

that oscillation frequencies are different from each other

despite the fact that thin layers are identical (ωa = 0.301,

ωb = 0.318, ωc = 0.301).
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As for the case of one and two thin layers [27,28,31], at
certain values of speeds below vcr , an interesting dynamic

effect is observed: the resonance reflection of the DW from

thin magnetic layers which are quantum wells (curve 4,

Fig. 5, a). In this case the DW, after having passed the

regions of thin magnetic layers, stops, then it starts moving

back and goes away in the direction opposite to the initial

direction with a speed of 0.19. This effect, as it has been

shown previously for one and two thin magnetic layers, has

a resonance behavior related to the interaction between the

DW and the breather-type localized magnetization waves

emerging on the thin magnetic layers. The detection of these

resonance speed is associated with certain difficulties in the

case of numerical calculations and requires at least an order

of magnitude higher accuracy of calculations. As in the case

of two thin magnetic layers [27], one more resonance effect

was observed, i.e.
”
quasitunneling“. In this case the DW,

having its speed below the minimum required to pass the

regions of three thin magnetic layers, passes through them

(curve 6, Fig. 5, a). With further increase in the DW speed

up to a certain values of vcr (curve 5, Fig. 5, a) it goes away
to the infinity.

Fig. 7 shows vcr as a function of K and W . It can

be seen from the figure, that with a decrease of K down

to approximately 0.75, this critical speed is low and at

all considered values of W remains nearly unchanged.

Although the presence of a small local maximum is

observed. For example, with W = 1 and 1.3 this maximum

is achieved at K ≈ 0.72. With further decrease in K, at

all considered values of W a sharp increase in W = 1.3

is observed. Thus, for the case of W = 1.3 this sharp
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Figure 6. DW center coordinate y as a function of time at W = 1,

K = 0.5. (a) — v0 = 0.3; (b) — v0 = 0.2; (c) — v0 = 0.27.
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increase is observed in the region of K ≈ 0.6, for W = 1

it is observed at K ≈ 0.59, for W = 0.5 it is observed at

K ≈ 0.4. It is worth to note that with a decrease in W the

region of sharp increase in vcr is stretched. For example,

for W = 0.5 this region starts at K ≈ 0.4 and ends at

K ≈ 0.55. For W greater than unit this region becomes very

small. Then, with increase in K the critical speed increases

almost linearly. Results of the studies of critical speed of

passing through multilayer regions (both quantum wells and

barriers) can be used to determine the effective coercive

force for multilayer ferromagnetic materials. For example,

it can be done by determining the magnetic field required

to accelerate the DW to the critical speed in the case of

homogeneous material.

Fig. 8 shows the final speed of DW as a function of

its initial speed. It can be seen from the figure, that

there is a set of resonance speeds, which, as it has been

shown for the case of one and two thin magnetic layers,

appear with a certain periodicity, and with approach to the

critical speed their number grows. The last vertical line

in Fig. 8 near the critical speed of passing corresponds to

the
”
quasitunneling“ scenario. If the vcr is exceeded, the

final DW speed increases non-linearly, however, as soon

as the v0 = 0.356 is exceeded, the final speed increases

almost linearly with growth of the initial speed. The same

dependence is also typical for the case of one and two

quantum wells [27,28,31,33]. For the case of one thin

Physics of the Solid State, 2023, Vol. 65, No. 4



One-dimensional dynamics of the domain boundary in a multilayer ferromagnetic structure 549

Possible scenarios of pinning and frequencies of DW oscillations

for different initial speeds and d. W = 1, K = 0.5, ωtheor = 0.311

Initial Scenario Frequency 1ω,

speed v0 of DW dynamics ω (|ω−ωtheor |)

d = 10

0.07 Pinning at the 1-st well 0.338 0.027

0.1 ≪ at the 1-st well 0.352 0.041

0.11 ≪ at the 1-st well 0.330 0.019

0.12 ≪ at the 2-nd well 0.339 0.028

0.13 ≪ at the 3-rd well 0.339 0.028

d = 5

0.05 Pinning at the 1-st well 0.344 0.033

0.15 ≪ at the 2-nd well 0.344 0.033

0.17 ≪ at the 3-rd well 0.324 0.013

d = 2

0.28 Pinning at the 1-st well 0.373 0.062

0.283043899 ≪ at the 2-nd well 0.319 0.008

0.2849 ≪ at the 3-rd well 0.319 0.008

magnetic layer [34] a formula is suggested that relates the

final DW speed with its initial speed exceeding vcr :

v2
k = c(v2

0 − v2
min). (5)

It can be noticed for the considered case of W = 1,

K = 0.5, d = 2, that at a coefficient c = 1.47 formula (5)
gives a good description of the final speed for our case

as well. By making an assumption that the c coefficient

in our case is a function of W, K, d and n being number

of thin layers, this dependence can also be approximately

represented as follows

c theor =
W Kdn

2
.

For example, for the above-considered case: c theor = 1.5,

which is with a quite high accuracy coincides with the value

obtained from the numerical experiment.

Frequencies of DW oscillations in the case of pinning

at different thin layers can be determined with the use of

Fourier analysis. Let us compare the numerically obtained

frequencies to the frequency determined by the following

formula

ω2
theor = (1− K)sech2(W ) tanh(W/2), (6)

suggested in [34] for the case of one thin magnetic layer

(see the table). Frequencies of DW oscillations at different

thin layers obtained through calculation are not always

equal to each other and are different from the theoretical

frequency of ωtheor = 0.311 by 1ω. The differences of

frequencies from each other and from the value obtained

by formula (6) may be related to the interaction between

the DW and the oscillations localized in the region of

thin magnetic layers, as well as to the fact that maximum

amplitude of non-linear oscillations at pinning may be

different and dependent on the DW speed. It can be

seen from the table, that differences between numerically

obtained frequencies are not more than 3%, and differences

from the frequency determined by formula (6) can be

from 3 to 20%.

With a decrease in d below a certain critical value, the

number of possible scenarios with DW pinning decreases

considerably. With initial speeds below the critical level,

pinning of the DW oscillating in the region of all three

thin magnetic layers is observed (lines 2 and 3, Fig. 5, b).
That is in this case three thin layers

”
work“ as a single

effective layer. Frequencies of DW oscillations in this

case are independent from the initial speed of the DW

and equal to ω = 0.141. It is worth to note that the

frequency determined by formula (6) for the case of one

impurity with W = 3 is 0.067. When the critical speed is

achieved, the DW goes away to the infinity (line 1, Fig. 5, b).
The same scenario of DW pinning can be observed by

decreasing K without changes in d (Fig. 5, c). The frequency
in this case is also independent from the initial speed of the

DW and equal to ω = 0.060. It is worth to note that similar

dynamic behavior of the DW has been obtained previously

for the case of two thin magnetic layers as well [31].

4. Conclusion

The emergence of both known and new scenarios of

DW dynamics in a multilayer ferromagnetic with three thin

(nanoscale) and four wide magnetic layers as compared

with previously considered cases of one and two thin

magnetic layers is shown. A large difference is observed in

the dynamics of the domain wall between the cases of thin

magnetic layers with increased and decreased constant of

magnetic anisotropy. In the second case the DW dynamics

is accompanied by generation of localized waves. The

interaction with them results, as in the case of one and

two thin magnetic layers, in resonance effects of DW

reflection from quantum wells and DW passing through

them at an initial speed below the critical level. Non-

linear dependencies of this critical speed of passing through

regions of three thin layers on the layer sizes and anisotropy

are determined. For the case with increased constant of

magnetic anisotropy in the thin layer the final DW speed

is nearly the same as the initial speed, i. e. the additional

increase in the number of layers up to three does not

result in any noticeable change in the speed. For the

case with decreased constant of magnetic anisotropy these

speeds may be significantly different from each other, and

with increase in the number of layers this critical speed

increases. A formula is suggested that contains a constant
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dependent on the number of thin layers. The formula relates

the final DW speed to the initial speed, which is above

the critical level. Results of the studies of critical speed of

passing through multilayer regions can be used to determine

the effective coercive force for multilayer ferromagnetic

materials. It is clear, that the effect of strengthening of the

”
collective influence“ of thin layers, which are

”
quantum

wells“ for the domain wall, with increase in the number

of these layers will continue to result in emergence of new

physical effects and scenarios of DW dynamics. Study of

the case of periodic thin magnetic layers, that has been

previously considered within the studying of spin wave

dynamics, is of special interest.
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