# Эксперимент по повышению точности квантового нивелира на основе водородных квантовых часов с использованием фазовых измерений ГЛОНАСС/GPS

# © В.Ф. Фатеев, Ф.Р. Смирнов, А.А. Карауш

Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений, 141570 Менделеево, Солнечногорский р-н., Московская обл., Россия e-mail: karaush aa@vniiftri.ru

Поступило в Редакцию 22 февраля 2023 г. В окончательной редакции 25 апреля 2023 г. Принято к публикации 3 мая 2023 г.

Исследованы измерения разности гравитационных потенциалов и ортометрических высот квантовым нивелиром на основе водородных квантовых часов. Для повышения точности сличения шкал времени предложено использовать высокоточный метод абсолютной навигации по фазовым измерениям глобальных навигационных спутниковых систем с целочисленным разрешением неоднозначности. При интервале накопления измерений около 5 суток и использовании мобильных квантовых часов с суточной относительной нестабильностью порядка  $1 \cdot 10^{-15}$  предлагаемый метод позволяет измерить разность ортометрических высот и гравитационных потенциалов с погрешностью 7.7 m и 75.3 m<sup>2</sup>/s<sup>2</sup> соответственно. При этом остается возможность уменьшения погрешности при использовании квантовых часов с более высокой стабильностью и увеличении интервала накопления измерений.

Ключевые слова: разность ортометрических высот, разность гравитационных потенциалов, целочисленное разрешение фазовой неоднозначности.

DOI: 10.21883/JTF.2023.08.55981.32-23

# Введение

11

К настоящему времени в РФ на основе гравитационного эффекта замедления времени Эйнштейна [1] проведены несколько экспериментов по измерению разности гравитационных потенциалов и соответствующей разности ортометрических высот с помощью стационарных и мобильных высокостабильных водородных квантовых часов (КЧ) [2]. При этом для сличения шкал времени этих часов в измерительных точках использовался либо метод релятивистской синхронизации [3], либо волоконно-оптическая линия связи, либо сигналы глобальных навигационных спутниковых систем (ГНСС) [4]. В зарубежном наземном гравитационном эксперименте для этого применена система дуплексной связи через спутники связи [5]. Одно из предложений по повышению точности измерений в экспериментах такого рода основано на использовании квантово-оптических систем, или спутниковых лазерных дальномеров [6].

Вместе с тем метод с использованием сигналов ГНСС обеспечивает самую простую реализацию квантового нивелира, поскольку, кроме квантовых часов, он требует установки в точках измерений лишь малогабаритных приемников сигналов спутниковых навигационных систем. В известных экспериментах с использованием навигационных приемников ГНСС для измерения эффекта гравитационного смещения шкал времени на интервале накопления эффекта использовались кодовые ГНСС измерения. Это обеспечивало погрешность изме-

рения расхождений шкал времени пары пространственно разнесенных квантовых часов 0.3 ns и более, что не позволило получить приемлемую точность измерений разности гравитационных потенциалов. Для повышения точности измерений разности гравитационных потенциалов в настоящей работе предлагается использование фазовых измерений ГНСС и методов целочисленного разрешения фазовой неоднозначности.

# 1. Замысел эксперимента, основные соотношения

Эксперимент основан на использовании стационарных водородных квантовых часов, размещенных на пункте "Менделеево" Московской обл., и перебазируемых водородных квантовых часов, которые после взаимной калибровки со стационарными часами перемещаются на пункт "Евпатория".

Цель эксперимента: измерение разности гравитационных потенциалов и ортометрических высот между пунктами "Менделеево" и "Евпатория" на основе использования непрерывных фазовых измерений сигналов ГНСС.

В качестве стационарных квантовых часов КЧ-0 с базовой шкалой собственного времени  $\tau_0$  выступал первичный эталон единиц времени и частоты национальной шкалы времени РФ ГЭТ 1-2022 [7] с относительной нестабильностью  $5 \cdot 10^{-16}$ , размещаемый на пункте "Менделеево". В качестве перебазируемых

часов КЧ-М использовались перевозимые водородные квантовые часы (ПКЧВ-Н) производства ЗАО "Время-Ч" (Россия) с собственной бортовой шкалой собственного (измеряемого) времени  $\tau_m$ , а также относительной нестабильностью не хуже ( $\sigma f/f_0$ ) =  $1 \cdot 10^{-15}$  за 3600 s. Для измерения расхождения шкал времени квантовых часов, размещенных на концах маршрута, использовалась навигационная аппаратура потребителей (НАП) ГНСС Javad Sigma G3T с частотой съема информации 1 Hz. Текущая температура КЧ-М в процессе эксперимента контролировалась с помощью бортовой метеостанции Combi-Sensor DTF 1MV с чувствительностью 0.01°С и погрешностью измерений 0.3°С.

Разность частот перебазируемых квантовых часов КЧ-М, прибывших в пункт "Евпатория" и установленных там неподвижно, а также стационарных часов КЧ-0, размещенных в пункте "Менделеево", определяется известным соотношением [8]:

$$f_E - f_0 = \Delta f_{GR} + \Delta f_\Omega + \Delta f_K + \Delta f_T + \Delta f_R, \qquad (1)$$

где индексы 0, *E* относятся к пунктам "Менделеево" и "Евпатория" соответственно;  $f_{GR}/f_0 = \frac{\varphi_0 - \varphi_E}{C^2}$  — гравитационное смещение в поле Земли;  $\varphi_0$ ,  $\varphi_E$  — гравитационные потенциалы соответственно в пунктах "Менделеево" и "Евпатория";

$$\Delta f_{\Omega} / f_0 = \frac{\Omega^2}{2c^2} [(x_0^2 + y_0^2) - (x_E^2 + y_E^2)]$$

— разность частот за счет центробежных потенциалов Земли;  $\Omega$  — угловая скорость вращения Земли;  $(x_0, y_0), (x_E, y_E)$  — геоцентрические координаты пунктов "Менделеево" и "Евпатория";  $\Delta f_K$  — начальная калибровочная разность частот перебазирумого стандарта по отношению к эталонной частоте задающего генератора КЧ-0  $f_0$ ;  $\Delta f_T = K_T^{\dagger} \Delta T$  — температурное отклонение частоты КЧ-М, которое рассчитывается через температурный коэффициент частоты его задающего генератора  $K_T^f$  и отклонение температуры  $\Delta T$  часов КЧ-М; Δf<sub>R</sub> — непредсказуемое случайное изменение частоты КЧ-М за время перемещения от пункта "Менделеево" ло пункта "Евпатория" из-за собственной нестабильности стандарта. Эффект Саньяка, накопленный во время перемещения КЧ-М и неизменный при неподвижном положении КЧ-М в точке "Е", не представляет интереса для решения задачи измерения разности гравитационных потенциалов, поэтому здесь и далее не учитывается.

Применительно к данному эксперименту, когда разность измеряемых ортометрических высот не превышает 250 m, выразим гравитационные потенциалы  $\varphi_0$ ,  $\varphi_E$ через потенциал геоида  $\varphi_G$ , одинаковый для всех точек поверхности Земли:

$$\varphi_0 = \varphi_G + \int g_0(H) dH_{ort}^0 \approx \varphi_G - g_0 H_{ort}^0,$$
  
$$\varphi_E = \varphi_G + \int g_E(H) dH_{ort}^E \approx \varphi_G - g_E H_{ort}^E, \qquad (2)$$

где  $H_{ort}^0$ ,  $H_{ort}^E$  — ортометрические высоты точек размещения квантовых часов "Менделеево" и "Евпатория" относительно поверхности геоида соответственно;  $g_0$ ,  $g_E$  — ускорения свободного падения в этих точках соответственно.

В результате, пренебрегая незначительными влияниями неоднородности гравитационного поля Земли, и учитывая, что при небольшой разности ортометрических высот (не более километра)  $g_0 = g_m = g$  [9], искомое гравитационное смещение (1) определяется следующей приближенной формулой:

$$f_{GR} = f_0 \frac{\varphi_0 - \varphi_E}{c^2} = f_0 \frac{\Delta \varphi_{0E}}{c^2} \approx f_0 \frac{g \Delta H_{ort}}{c^2}, \qquad (3)$$

где  $\Delta \phi_{0E}$ ;  $\Delta H_{ort} = H^E_{ort} - H^0_{ort}$  — соответственно искомая разность потенциалов и ортометрических высот.

# Определение разности частот удаленных стандартов частоты с использованием фазовых ГНСС измерений

Для сравнения шкал времени и частот КЧ-М и КЧ-0 в настоящей работе предлагается использование методики высокоточного абсолютного позиционирования с целочисленным разрешением неоднозначности, известной как Integer Precise Point Positioning (IPPP или PPP-AR) [10]. Исходными данными для проведения решения по данной методике являются кодовые и фазовые измерения ГНСС приемника в двух частотных диапазонах. Также требуется информация о высокоточных орбитах и поправках к бортовым шкалам времени навигационных спутников. Высокоточные поправки рассчитываются независимыми центрами анализа ГНСС измерений, и доступны апостериорно с задержкой от 1 до 14 суток. В настоящей работе использовались высокоточные продукты центра анализа СОDE (Берн, Швейцария).

Для высокоточного сравнения шкал времени необходимо осуществить накопление кодовых и фазовых ГНСС измерений на протяжении нескольких суток с периодом не более 30 s. Важным условием является непрерывность фазовых измерений на всем временном интервале решения задачи.

На первом этапе производилась независимая обработка по методу IPPP данных базовой и мобильной станции. Целочисленное разрешение неоднозначности осуществлялось по методу, разработанному в CNES, Франция [11]. В результате данной обработки независимо вычислялись расхождения шкал времени (ШВ) КЧ-0 и КЧ-М относительно некоторой опорной высокостабильной шкалы времени, которая используется в применяемых высокоточных эфемеридах. Поскольку искомой величиной является разность ШВ КЧ-0 и КЧ-М, третья шкала не представляет интереса, поскольку исключается при формировании разности. Таким образом, мы получаем высокоточную оценку разности шкал времени перебазируемого и стационарного квантовых стандартов.

Преимуществом технологии ІРРР является получение единого решения на всем массиве обрабатываемых измерений при условии непрерывности фазовых измерений. Такое решение не подвержено влиянию межсуточных скачков и других факторов, ухудшающих точность. В результате разность расхождений шкал времени между любыми моментами времени в пределах интервала обработки может быть определена с очень высокой точностью. При этом для каждого сеанса обработки будет существовать постоянная погрешность оценки ШВ, которая зависит от шума кодовых измерений и ряда других факторов, однако для решения задачи измерения разности потенциалов абсолютное значение разности ШВ не важно, необходимо знать только набег фазы ШВ между начальной и конечной точкой интервала обработки. Таким образом, постоянная погрешность для каждой из независимо обрабатываемых станций на результат не влияет, и погрешность оценки разности потенциалов определяется только случайной составляющей фазовых измерений и применяемых в решении моделей.

Случайная погрешность оценки ШВ с применением метода IPPP оценивается как не превышающая 50 ps, что соответствует погрешности сравнения частот порядка *n* · 10<sup>-16</sup> за одни сутки. По результатам эксперимента, проведенного специалистами ВНИИФТРИ, была получена оценка девиации Аллана, равная 3 · 10<sup>-16</sup>, на суточном интервале усреднения для коротких базовых линий. Систематическая погрешность оценки относительной разности частот с применением метода IPPP не превышает ±1-10<sup>-16</sup>. Данный результат был получен во ВНИИФТРИ на основе сравнения результатов обработки с данными измерений, полученных с помощью фазового компаратора [12]. Зарубежными специалистами также проводились эксперименты, в ходе которых сравнивались оценки, полученные Integer PPP и по оптическому каналу сличений частот. Эксперименты показали [13], что случайная погрешность метода Integer РРР не превышает 1-10<sup>-16</sup> на интервале усреднения 3 суток для базовых линий порядка 1000 km. Проведение сравнений на более длинных базовых линиях затруднено из-за отсутствия альтернативного канала сличений с требуемой точностью для проверки метода.

# 3. Проведение эксперимента

Эксперимент выполнялся поэтапно.

#### 3.1. Этап І. Начальная калибровка по частоте

На этом этапе была определена разность частот  $\Delta f_K = f_m - f_0$  базовых и мобильных квантовых часов

1183

с погрешностью не более  $1 \cdot 10^{-16}$ . Измерения проводились с помощью частотного компаратора VCH-314 при размещении часов в непосредственной близости друг от друга в термостабилизированном помещении в течение трех суток. Относительная начальная калибровочная расстройка с учетом линейного дрейфа частоты задающего генератора КЧ-М составила:  $\Delta f_{\text{init}}/f_0 = (66.32 - 1.99 \cdot T \pm 4.40) \cdot 10^{-16}$ , где T время наблюдения в сутках.

Температурный коэффициент частоты (ТКЧ) определялся путем сравнения расхождений частот задающих генераторов часов КЧ-М и КЧ-О при разной температуре внутреннего объема автомобильной термостабилизированной лаборатории, которая размещалась вблизи эталона ГЭТ1-2022, в которой располагались КЧ-М. Контроль колебаний температуры мобильной лаборатории во время калибровки производился с помощью бортового термогигрометра ИВА-6А-КП-Д с чувствительностью 0.1°C и погрешностью измерений ±0.3°C. При разности температур лаборатории 7.194°C и интервале наблюдения 2.51 суток ТКЧ в относительном выражении составил:  $K_T^T = 2.18 \cdot 10^{-16} \circ C^{-1}$ .

# 3.2. Этап II. Перемещение часов КЧ-М в пункт "Евпатория" и проведение измерений разности частот часов КЧ-М и КЧ-0 на интервале 5 суток с использованием НАП ГНСС

С помощью фазового метода на НАП ГНСС выполняются непрерывные измерения расхождений шкал времени базовых часов КЧ-0, находящихся в п. "Менделеево", и КЧ-М, находящихся в п. "Евпатория":

$$\Delta \tau \left( \tau_0 = \left[ \tau_E(\tau_0) - \tau_0 \right] + \delta \tau_R + \delta \tau_S, \tag{4}$$

где  $\delta \tau_R$ ,  $\delta \tau_S$  — случайная и систематическая погрешность сравнения шкал времени КЧ-М и КЧ-О.

Затем на основе оценок разности ШВ вычисляется средняя разность частот двух стандартов  $f_s - f_0$  на интервале 5 суток. Для этого методом наименыших квадратов  $\Delta \tau (\tau_0)$  приближенно представляется полиномом первого порядка. Коэффициент при линейном члене полинома представляет искомую разность частот задающих генераторов сравниваемых квантовых часов. Как и было отмечено выше, систематическая погрешность не влияет на оценку этой разности частоты, следовательно, погрешность оценки зависит только от случайной погрешности  $\delta \tau_R$ . С увеличением интервала накопления измерений  $\tau_H$  при условии нормального закона распределения случайной величины  $\delta \tau_R$  погрешность оценки разности частоть частоть оценки разности частот линейно умень на оценки разности частоть частоть оценки разности частоть оценки разности частоть частоть на частоть част

Результат измерения разности частот КЧ-М и КЧ-0, согласно формулам (1) и (3), представляется в виде

$$(f_E - f_0)^{meas} = f_0 \frac{g\Delta H_{ort}}{c^2} + \Delta f_K + \Delta f_\Omega + \Delta f_T + \Delta f_C + \delta f^{meas}, \qquad (5)$$



**Рис. 1.** Текущая разность значений шкал времени КЧ-0 и КЧ-М во время стоянки в Евпатории.

где  $\delta f^{meas}$  — погрешность измерения разности частот.

Интервал накопления измерений  $\tau_{Acc}$  в эксперименте составил 5 суток. Полученные текущие расхождения шкал времени базовых часов КЧ-0, находящихся в п. "Менделеево", и мобильных часов КЧ-М, находящих-ся в п. "Евпатория", представлены на рис. 1.

Обработка измерений проводилась в апостериорном режиме после возвращения мобильных часов обратно во ВНИИФТРИ.

# 3.3. Этап III. Перемещение КЧ-М обратно в Менделеево

По возвращении во ВНИИФТРИ были проведены измерения разности частот базовых и мобильных квантовых часов с помощью фазового компаратора VCH-314 (аналогично этапу I). Возвращение произошло примерно через 13.7 суток. Подставив это значение в уравнение начальной калибровочной расстройки, мы получаем предсказанное значение относительной разности частот, равное  $\tilde{f}_{\text{final}}/f_0 = 39.06 \cdot 10^{-16}$  с учетом линейного дрейфа. Измеренное действительное значение относительной разности частот дрейфа. Измеренное действительное значение относительной разности частот составило  $\Delta f_{\text{final}}/f_0 = 37.658 \cdot 10^{-16}$ , что совпадает с предсказанным значением в пределах собственной нестабильности часов.

Среднеквадратическое отклонение разности ШВ КЧ-0 и КЧ-М на интервале наблюдения 5 суток составляет 36 ps (после снятия линейного тренда для оценки разности частот). На рис. 2 представлен фазовый шум измерений, а на рис. 3 — девиация Аллана полученного расхождения ШВ.

# 4. Обсуждение результатов

Характер полученной девиации Аллана позволяет сделать вывод о близости распределения случайной погрешности сравнения ШВ к нормальному закону. Девиация



**Рис. 2.** Шум оценки разности ШВ после снятия линейного тренда.



Рис. 3. Девиация Аллана оценки разности шкал времени.

Аллана линейно уменьшается с увеличением времени усреднения.

Необходимо отметить, что представленная девиация Аллана, помимо собственно погрешности метода, содержит также составляющие собственной нестабильности перебазируемых и стационарных квантовых часов. Исходя из этого, относительная погрешность сравнения частот с использованием предложенного метода оценивается авторами как не превышающая 5 · 10<sup>-16</sup> на интервале времени наблюдения 5 суток. Также, используя полученную оценку девиации Аллана, можно оценить реальную суммарную нестабильность перебазируемого и стационарного стандартов частоты в ходе эксперимента. Видно, что девиация Аллана на двухсуточном интервале усреднения составляет порядка 5 · 10<sup>-16</sup>. Можно принять это значение в качестве пессимистичной оценки суммарной нестабильности стандартов, поскольку она является составляющей полученной девиации Аллана, как было отмечено выше.

Далее из формулы (5) с учетом формулы (3) определяется искомая разность потенциалов:

$$\Delta \varphi_{0e} \approx g \Delta H_{ort} = \frac{c^2}{f_0} [(f_E - f_0)^{meas} - \Delta f^{calc} - \Delta f_R - \delta f^{meas}],$$
(6)

где  $(f_E - f_0)^{meas}$  — измеренная при погрешности  $\delta f_{meas}$  разность частот задающих генераторов квантовых часов на интервале накопления расхождения шкал времени  $\tau_{Acc}$ ;  $\Delta f^{calc} = (\Delta f_{\Omega} + \Delta f_K + \Delta f_T)^{calc}$  — вычисленное значение суммы помеховых разностей частот, представленных в формуле (1);  $\Delta f_R$  — суммарное значение непредсказуемых случайных отклонений частот задающих генераторов обоих квантовых часов от их номиналов, вызванных их собственной нестабильностью.

При этом вычисляется по формуле (1) на основе имеющихся исходных данных:

 $\Omega = 7.29 \cdot 10^{-5} \text{ l/s}, \quad x_0 = 2845476.75 \text{ m},$   $y_0 = 2160917.71 \text{ m}, \quad z_0 = 5265974.39 \text{ m},$   $x_E = 3760896.45 \text{ m}, \quad y_E = 2473953.78 \text{ m},$  $z_E = 4503304.79 \text{ m}.$ 

Высота пункта "Менделеево" над эллипсоидом составляет 238.35 m, над геоидом — 222.25 m. Высоты пункта "Евпатория" составляют 45.95 и 20.88 m соответственно. Используемые ортометрические высоты отличаются от приведенных нормальных высот на единицы сантиметров, что пренебрежимо мало и не изменяет результатов проводимого эксперимента.

Относительное значение начального отклонения частот квантовых часов  $\Delta f_K/f_0 = \Delta f_{init}/f_0$  определено нами на этапе I при первоначальной калибровке по частоте, где случайная составляющая калибровки равна  $\sigma_{\Delta f_K} \approx 4.4 \cdot 10^{-16}$ .

Для расчета температурного отклонения частоты  $\Delta f_T^{calc}$  используются данные об изменении средней температуры на этапе начальной калибровки и на



**Рис. 4.** График изменения бортовой температуры КЧ-М в ходе эксперимента.

этапе измерений в Евпатории. На рис. 4 представлены измерения температуры внутри мобильной лаборатории в ходе всего эксперимента, полученные бортовым термогигрометром. На этапе начальной калибровки среднее значение температуры составило  $+21.371 \pm 0.173$ °С, на этапе измерений в Евпатории —  $+21.065 \pm 0.221^{\circ}$ С, при проведении измерений на исходном эталоне по возвращению КЧ-М, среднее значение температуры составило  $+21.010 \pm 0.238^{\circ}$ С. Таким образом, зная ТКЧ, можно вычислить среднее отклонение частоты за счет изменения температуры  $\Delta f_T = K_T \Delta T = 2.18 \cdot 10^{-16} \,^{\circ}\text{C} \cdot 0.306^{\circ}\text{C} = 6.67 \cdot 10^{-17} \,^{\circ}\text{B}$ относительных единицах частоты. Поскольку СКО отклонения температуры от среднего ее значения в ходе эксперимента не превышало 0.3°C, остаточное влияние данных отклонений на частоту стандарта также не будет превышать  $7 \cdot 10^{-17}$ , что примерно в 15 раз меньше, чем собственная нестабильность стандарта.

Далее, переходя в формуле (6) к случайным погрешностям определения составляющих этой формулы, находим погрешность определения разности потенциалов и разности ортометрических высот:

$$\sigma_{\Delta\varphi} = g \Delta H_{ort} = c^2 \sqrt{\sigma_{meas}^2 + \sigma_g^2 + \sigma_R^2 + \sigma_{calc}^2},$$
  
$$\sigma_{\Delta H} = \frac{\sigma_{\Delta\varphi}}{g}.$$
 (7)

Здесь приняты обозначения:

1)  $\sigma_{meas} \approx 5 \cdot 10^{-16}$  — погрешность определения разности частот задающих генераторов квантовых часов КЧ-0 и КЧ-М на основе измерения расхождения их шкал времени  $\Delta \tau (\tau_0)$  (4) на интервале накопления 5 суток;

2)  $\sigma_R$  — суммарная относительная среднеквадратическая погрешность отклонения частот от номиналов за счет нестабильности частоты КЧ-0 и частоты КЧ-М ( $\sigma_m$ ). Поскольку перемещение мобильного стандарта заняло около двух суток, в качестве меры погрешности предлагается принять полученную ранее девиацию Аллана на этом интервале. Таким образом,  $\sigma_R \approx 5 \cdot 10^{-16}$ ;

3)  $\sigma_E$ — погрешность за счет отбрасывания члена  $\Delta f \Delta H$  в формуле (3), поскольку измерения ускорения свободного падения в конечных точках маршрута не производились. Согласно модели гравитационного поля Земли EGM2008,  $\Delta g$  между пунктами "Менделеево" и "Евпатория" составляет около 0.01 m/s<sup>2</sup>, что при исследуемой разности высот около 200 m приводит к изменению частоты стандарта частоты порядка  $\sigma_g \approx 2 \cdot 10^{-17}$ ;

4)  $\sigma_{calc}^2 = \sigma_{\Delta f_{\Omega}}^2 + \sigma_{\Delta f_{K}}^2 + \sigma_{\Delta f_{T}}^2$  — суммарная относительная погрешность вычислений составляющих суммы  $\Delta f_{calc}$ , определяемой формулой (6). Составляющие этой формулы имеют следующие значения:

А) случайная погрешность вычисления относительного частотного смещения, вызванного разностью центробежных потенциалов крайних точек маршрута  $\sigma_{\Delta f_{\Omega}}$ . Она определяется погрешностью определения координат в начальной точке (Менделеево) и конечной точке маршрута (Евпатория). Задаваясь примерно равными

погрешностями используемой НАП ГНСС Javad Sigma G3T  $\sigma_x = \sigma_y \approx 1$  m для обеих точек и учитывая малость самих центробежных потенциалов (на экваторе максимальное центробежное частотное смещение составляет около  $10^{-12}$ ), находим, что  $\sigma_{\Delta f_{\Omega}} \leq 10^{-18}$ ;

Б) погрешность определения начального рассогласования частот, согласно калибровочным измерениям на этапе I, составляет  $\sigma_{\Delta f_x} \sim 4.40 \cdot 10^{-16}$ ;

В) как уже отмечалось, случайная погрешность вычисления температурного частотного дрейфа  $\sigma_{\Delta f_T} \approx 7 \cdot 10^{-17}$ .

При этих исходных данных, а также при среднем значении ускорения свободного падения  $g \approx 9.81 \text{ m/s}^2$ , получаем искомые погрешности измерений:  $\sigma_{\Delta\phi} \approx 75.3 \text{ m}^2/\text{s}^2$ ;  $\sigma_{\Delta H} \approx 7.7 \text{ m}$ . Это существенно меньше, чем в эксперименте, использующем кодовые измерения сигналов ГНСС [4].

Измеренное значение  $(f_E - f_0)^{meas}/f_0$  составило – 150.34 · 10<sup>-16</sup>,  $\Delta f^{calc}/f_0$  с учетом линейного дрейфа и момента начала второго этапа эксперимента (T = 2.941 суток) составило 60.46 · 10<sup>-16</sup>. Подставив все полученные значения в формулу (6), мы можем определить искомую величину  $\Delta H_{ort}$ . Оценка  $\Delta H_{ort}$  составляет – 193.127 m, что находится в переделах максимального значения неопределенности  $(3\sigma_{\Delta H})$  относительно фактической разности высот (201.37 m).

В настоящем эксперименте доминирующим фактором, ограничивающим точность метода, является нестабильность используемых мобильных квантовых часов (~  $1 \cdot 10^{-15}$ ). Поэтому повышение точности измерений возможно на основе использования созданных в России микроволновых водородных квантовых часов с двойной сортировкой атомов, которые имеют стабильность до  $0.7 \cdot 10^{-16}$  [14]. Если использовать пару таких часов со средней относительной нестабильностью  $0.9 \cdot 10^{-16}$  на концах маршрута, то при соизмеримой случайной составляющей погрешности начальной калибровки  $\sigma_{\Delta f_x} \approx 0.9 \cdot 10^{-16}$  и неизменных других исходных данных получаем  $\sigma_{\Delta \phi} \sim 15.3 \text{ m}^2/\text{s}^2$ ;  $\sigma_{\Delta H} \approx 1.6 \text{ m}$ .

Как следует из формулы (7), один из путей дальнейшего повышения точности состоит в снижении погрешности измерения разности частот задающих генераторов часов  $\delta f^{meas}$  (см. формулу (5)), что возможно путем увеличения интервала наблюдения разности шкал времени (4).

#### Заключение

Впервые предложено использование фазовых ГНССизмерений текущего расхождения шкал времени и частоты стационарных и мобильных квантовых часов в интересах измерения разности гравитационных потенциалов и разности ортометрических высот точек на поверхности Земли.

При разности высот между крайними точками маршрута не более 250 m, а также при использовании перебазируемых квантовых водородных часов с относительной нестабильностью  $1 \cdot 10^{-15}$  и времени накопления измерений 5 суток погрешность измерения разности потенциалов и ортометрических высот составила соответственно около 75.3 m<sup>2</sup>/s<sup>2</sup> и 7.7 m.

Пути повышения точности геодезических измерений состоят в использовании новых отечественных водородных квантовых часов с повышенной стабильностью, а также в снижении погрешности измерений по сигналам ГНСС, что возможно путем увеличения интервала накопления измерений.

#### Финансирование работы

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 19-29-11023.

### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

# Список литературы

- [1] Л.Д. Ландау, Е.М. Лифшиц. Теория поля, издание 5-е, исправленное и дополненное (Наука, М., 1967)
- [2] S.M. Kopeikin, V.F. Kanushin, A.P. Karpik, A.S. Tolstikov, E.G. Gienko, D.N. Goldobin, N.S. Kosarev, I.G. Ganagina, E.M. Mazurova, A.A. Karaush, E.A. Hanikova. Gravitation and Cosmology, 22, 234 (2016). DOI: 10.1134/S0202289316030099
- [3] В.Ф. Фатеев, Е.А. Рыбаков, Ф.Р. Смирнов. Письма в ЖТФ, 43 (10), 91 (2017). [V.F. Fateev, Е.А. Rybakov, F.R. Smirnov. Tech. Phys. Lett., 43 (5), 456 (2017).]
- [4] В.Ф. Фатеев, Е.А. Рыбаков. ДАН. Физика, технические науки, 496 (1), 41 (2020). [V.F. Fateev, Е.А. Rybakov. Dokl. Phys., 66 (1), 17 (2021).]
- [5] P. Cheng, W. Shen, X. Sun, Ch. Cai, K. Wu, Z. Shen. Remote Sens., 14, 451 (2022). DOI: 10.3390/rs14030451
- [6] В.Ф. Фатеев, И.Ю. Игнатенко. Альманах современной метрологии, **1** (29), 106 (2022).
- [7] Государственная поверочная схема для средств измерений времени и частоты (Приказ № 2360 от 26.09.2022 Об утверждении государственной поверочной схемы для средств измерений времени и частоты"). https://www.gost.ru/portal/gost/home/ activity/documents/orders#/order/370259
- [8] В.Ф. Фатеев. Альманах современной метрологии, **3**, 11 (2020).
- [9] N.K. Pavlis, S.A. Holmes, S.C. Kenyon, J.K. Factor. J. Geophys. Res., 117, B04406 (2012). DOI: 0.1029/2011JB008916
- [10] P. Collins, S. Bisnath, F. Lahaye, P. Héroux. NAVIGATION: J. Institute of Navigation, 57 (2), 123 (2010).
- S. Loyer, F. Perosanz, F. Mercier, H. Capdeville, J.-Ch. Marty. J. Geod., 86, 991 (2012). DOI: 10.1007/s00190-012-0559-2

- [12] А.А. Карауш, С.В. Больгинова, Н.Б. Кошеляевский. Исследование метрологических характеристик канала сличений удаленных стандарта частоты на основе нейтральных атомов 87Sr в оптической решетке и первичного Cs стандарта частоты фонтанного типа (Конференция молодых ученых и специалистов, ФГУП "ВНИИФТРИ", 2019)
- G. Petit, J. Leute, S. Loyer, F. Perosanz. Sub 10–16 frequency transfer with IPPP: Recent Results. 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) (Besancon, France, 2017), p. 784–787.
   DOI: 10.1109/FCS.2017.8089035
- [14] V. Polyakov, Y. Timofeev, N. Demidov. Frequency Stability Improvement of an Active Hydrogen Maser with a Single-State Selection System.2021 Joint Conference of the European Frequency and Time Forum Andieee International Frequency Control Symposium (7–17 July 2021, Gainesville, FL, USA/ EFTF/IFCS 2021 — PROCEEDINGS Virtual), DOI: 10.1109/EFTF/IFCS52194.2021.9604270