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Diffraction of electromagnetic waves on one-dimensional diffraction

gratings formed by slots in an absolutely absorbing screen
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Two-sided approximate boundary conditions are obtained for an absolutely absorbing (
”
black“) layer lying on a

multilayer dielectric. Paired summation equations (PSEs) are obtained for the tangent components of the electric

and magnetic field strengths at the slots. These equations are solved by the Galerkin method with basis functions

in the form of Chebyshev and Legendre polynomials. The resulting system of linear algebraic equations has fast

internal convergence. To control the accuracy of the obtained solution, a dual problem is solved — a lattice of

”
black stripes“. In this case, the unknowns in the PSU are the current density on the strips. The properties of

lattices are analyzed.
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Introduction

This paper continues theoretical and experimental stud-

ies of X-ray beam diffraction by microchannel plates

(MCPs) [1–3]. An MCP is a plate of leaden-silicate glass

with a hexagonal lattice of round holes. Hole diameters

are typically less than 12µm. Within the energy range

100−500 eV (the wavelength being nearly 2−10 nm) the

glass has a complex refractive index with the modulus

lightly less than one. A solid glass plate is a nearly total

absorber, it s reflection and transmission coefficients are

less than −30 dB. The propagation of X-rays in channels

is analogous to the propagation of optical and microwave

electromagnetic radiation in waveguides. In Ref. [1] and

other papers, the excitation, propagation, and emission of

microchannel eigenwaves is studied using the Kirchhoff

approximation. Due to the large number of waves, such

a calculation is rather labor consuming. Due to the large

number of waves, such a calculation is quite laborious.

Therefore, the authors of Refs. [2,3] proposed a simplified

approach of considering diffraction by holes in an opaque

screen. The obtained results are in good agreement with

experiment. Further development of the theory is the

diffraction by holes in a totally absorbing
”
black“screen.

When studying diffraction by tin screens or bodies with

thin-film coating, it is convenient to use the method of

approximate boundary conditions (ABC). For example,

in Ref. [4], impedance ABCs are obtained, including

for a
”
black“ coating, which were used to simulate the

characteristics of wave scattering by bodies with absorbing

coating.

In the case of thin screens, double-sided ABCs (DABCs)
are introduced for dielectric layers [5], for thin films with

curvature [6], for thin metallic gratings [7], etc.

The field of DABC application are screens whose thick-

ness is much less than the wavelength. A modification

of double-sided DABCs is possible for the case of screen

thickness simply less than the wavelength. In Ref. [8], this
is done for plasmonic optical gratings.

Although ABCs have been introduced for films unlimited

in length and width, they are widely used for solving

problems of scattering by diffraction gratings [8–12]. In

the case of applying the ABC method, it is required to

substantiate the reliability of the results obtained. One

of possible approaches to this problem is to compare

the results of calculations for the same structure by two

methods. In Refs. [8,12,13], the problem of diffraction of

electromagnetic waves in the optical and terahertz ranges by

a two-dimensional lattice of metal and graphene strips was

solved by two methods. The first method is based on the

numerical-analytical method for solving a volume integro-

differential equation (VIDE). The unknowns in VIDE are

the components of the electric field strength inside the

plasmonic strips. The second method uses approximate

boundary conditions for a thin dielectric layer. Comparison

of the results calculated by these methods substantiated the

validity of applying the ABC method to reveal the main

physical regularities.

The aim of this work is to modify the double-sided ap-

proximate boundary conditions (DABCs) of the impedance

type for calculating the diffraction of electromagnetic waves

by holes in totally absorbing screens; application of these

boundary conditions to solve the boundary value problem

of diffraction by a 1D periodic grating of holes in a
”
black“

screen. In contrast to Refs. [1–3], we develop a rigorous

theory in the wavelength range commensurate with the

grating dimensions.
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Sommerfeld defined a
”
black“ body as the body with

ε = µ having a large imaginary part [14]. Therefore, for

calculating “black“ screens it is reasonable to use the

DABC [5] involving the permittivity and permeability of the

screen.

The ADCs for black screens can be used also to calculate

thin film superwideband absorbers, which find application

in increasing the sensibility of optical instruments, in solar

batteries, to counteract the means of visual-optical, optoelec-

tronic and electronic intelligence, to improve electromag-

netic compatibility in the microwave and terahertz ranges, in

modulators and polarizers [15]. To absorb electromagnetic

radiation in a certain frequency range, various materials are

being developed and used. To date, a large number of

composite polymeric radio-absorbing materials are known

based on various forms of carbon particles, e.g., carbon

nanotubes, as well as ferrite powders or nanoparticles.

Modern absorbing structures must be thin and provide

almost 100% absorption over a wide range of frequencies

and incidence angles. In the optical range, coatings made of

vertically oriented carbon nanotubes [16] based on titanium

carbide [17] demonstrate the best results. Of particular

interest are studies devoted to perfect absorbers based

on metamaterials, such as periodic structures with layers

of graphene [12,13,15,18–21], VO2 [22], cylinders with

complex permittivity and inhomogeneous shell [23].

1. Double-sided ABCs for a thin
absorbing screen

The general form of double-sided ABCs for a thin

dielectric screen is presented in the monograph [5]:

E+
x ,z − E−

x ,z = ±
ρ

2
(H+

z ,x + H−

z ,x),

H+
x ,z − H−

x ,z = ∓
σ

2
(E+

z ,x + E−

z ,x).

Symbols ± denote the fields above and below the screen,

the time dependence is exp( jωt):

ρ = jω(µ − 1)µ0τ , σ = jω(ε − 1)ε0τ , (1)

where µ, ε, τ are the equivalent permittivity and permeabil-

ity and the screen thickness.

For the two-dimensional case, the ABCs will take the

following form

for E-polarization: EHe:

E(0, 0, E),H(Hx , Hy , 0),H =
j

kZ0µ

(

ex
dE
dy

− ey ikx E
)

,

E+ = E− = a

(

1

µ+

dE+

dy
+

1

µ−

dE−

dy

)

;

(

1

µ+

dE+

dy
−

1

µ−

dE−

dy

)

= −k2b(E+ + E−), (2)

where

a = −
ρ

2

j
kZ0

, b = − jZ0

σ

2k
, (3)

where k, Z0 are the wave number and the characteristic

impedance in a vacuum;

for H-polarization:

H(0, 0, E), E(Ex , Ey , 0), H =
jZ0

kε

(

ex
dE
dy

− ey ikx E
)

;

it is necessary to make replacements ρ ↔ σ , Z0 → 1/Z0,

µ → −ε in Eq. (1).

2. Double-sided ABCs for a totally
absorbing screen

We solve the problem of reflection from a screen

placed between two semi-infinite layers with the parameters

ε1µ1 (upper layer from which the wave is incident) and

ε2mu2. Double-sided ABCs (2) are fulfilled at the screen. It

can be easily shown that the coefficients of reflection R and

transmission T satisfy the system of linear equations

1 + R − T = ja(ξ1k(1)
y (1− R) + T ξ2k(2)

y ),

jξ1k(1)
y (1− R) − T jξ2k(2)

y = −k2b(1 + R + T ),

where k(1,2)
y are the wave vector components normal to

the screen in layers 1 and 2, ξ1,2 = 1
µ1,2

for E-polarization,

ξ1,2 = 1
ε1,2

for H-polarization.

The solution of the system of linear equations at

R = T = 0 is possible with the coefficients

a = −
j

ξ1k(1)
y

, b = −
jξ1k

(1)
y

k2
. (4)

Let us substitute Eqs. (1) and (3) into Eq. (4) and assume

that ξ1 = 1 (vacuum). As a result, we get

(µ − 1)d = −
2 j

k(1)
y

, (ε − 1)d = −2 j
k(1)

y

k2
.

For normal incidence

(ε − 1)d = (µ − 1)d = −
2 j
k
, (5)

which agrees with the Sommerfeld definition of a black

body ε = µ, with a large imaginary part [14].

3. Diffraction by a grating of slits is an
absorbing screen

The system of coordinates is chosen such that the grating

is periodic with period d along the axis x (Fig. 1). The slits

are directed along the axis z . The axis y is perpendicular

to the grating plane. The screen with slits lies in the
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Figure 1. Slit grating

plane y = 0, the slit width is 2l . The wave is incident

from above from the medium with ε = µ = 1, below the

screen (y ≤ 0) there is a multilayer substrate. The plane

of incidence is perpendicular to the slits. Therefore, the

polarization does not change upon diffraction. The angle

of incidence is θ. Let us denote U(x , y) = Ez (x , y) for

E-polarization, U(x , y) = Hz (x , y) for H-polarization and

expand the unknown U(x , y) in a Floquet series

U(x , y) = Uext(x , y) +
1

d

∞
∑

n=−∞

Ũn(y) exp( jαnx),

αn =
2nπ

d
+ kx , (6)

where kx = k sin θ is the incident wave vector component

tangent to the screen, Uext(x , y) is the external field, i.e.,

the incident field plus the field reflected from the screen

and transmitted through the screen without slits. Uext(x , y)
satisfies the ABCs (2). Functions Ũn(y) exp( jαnx) satisfy

the Helmholtz equation in each layer (see Appendix).

Ũn(y) =

{

AnU+
n (y), y ≥ 0,

BnU−

n (y), y ≤ 0,
(7)

where AnBn are unknown coefficient,

U+
n (y) = exp(−γny)γn =

√

α2
n − k2

x , functions U−

n (y)
are defined in the Appendix. They satisfy the condition

U−

n (0) = 1.

Let us introduce the functions

f (x) =

{

U+ −U− − a
(

ξ+
dU+

dy + ξ−
dU−

dy

)

, |x | ≤ l,

0, d ≥ |x | ≥ l,

g(x) =

{

(

ξ+
dU+

dy − ξ+
dU−

dy

)

+ k2b(U+ + U−), |x | ≤ l,

0, d ≥ |x | ≥ l.

We substitute Eqs. (6), (7) into Eq. (13) As a result, we

get

f n = An − Bn − a(−γnAn + νn,0Bn);

gn = (−γnAn − νn,0Bn) + k2b(An + Bn), (8)

where f n, gn are coefficients in the Floquet series for

functions f (x), g(x), νn,0 = U ′−

n (0).

From Eq. (8), we find

(

An

Bn

)

= â

(

f n

gn

)

. (9)

Since calculating the elements of matrix â is an elemen-

tary task, we do not present them here.

The next step of solution is to satisfy the continu-

ity conditions for functions U(x , y), ∂
∂y U(x , y) at a slit

(y = 0, |x | ≤ l):

Eext,+(x , 0) − Eext,−(x , 0)

+
1

d

∞
∑

n=−∞

(An − Bn) exp( jαnx) = 0,

E ′ext,+(x , 0) − E ′ext,−(x , 0)

+
1

d

∞
∑

n=−∞

(γnAn + νn,0Bn) exp( jαnx) = 0, (10)

where

An − Bn = a11 f n + a12gn − (γnAn + νn,0Bn)

= −γna21 f n − νn,0a22gn, |x | ≤ l.

Thus, we obtained the first pair of the pair summatory

equations with respect to f n, gn. The second pair follows

from the definition of functions f (x), g(x)

1

d

∞
∑

n=−∞

f n exp( jαnx) = 0,

1

d

∞
∑

n=−∞

gn exp( jαnx) = 0, d ≥ |x | ≥ l. (11)

4. Diffraction by a grating of absorbing
strips

Naturally, a slit grating can be presented as a grating of

strips as well. Hence, the solution considered below is of

interest for checking the reliability and precision of results.

For the strip grating, the external field is the field in the

structure without strips. As in the previous case,we write

the fields in the form (6), (7). We introduce functions

f (x), g(x), defined at y = 0

f (x) =

{

U+ −U−, |x | ≤ l̄,

0, d ≥ |x | ≥ l̄,

g(x) =

{

(

ξ+
dU+

dy − ξ−
dU−

dy

)

, |x | ≤ l̄,

0, d ≥ |x | ≥ l̄,

where 2l̄ = d − 2l is the strip width.

We express An, Bn in terms of f n, gn:

f n = An − Bn, gn = (−γnAn − νn,0Bn).
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Hence we get

(

An

Bn

)

= b

(

f n

gn

)

, (12)

b11 =
νn,0

γn + νn,0
, b12 = −

1

γn + νn,0
,

b21 = −
γn

γn + νn,0
, b22 = −

1

γn + νn,0
.

The next step is to satisfy the ABCs (2) at the strips. We

substitute Eqs. (12) into them. As a result, we arrive at the

first pair of summatory equations at |x | ≤ l̄. The second

pair is (10), but at d ≥ |x | ≥ l̄.

5. Solving the PSE by Galerkin method

We seek the solution in the form

f (x) =

{

∑

∞

m=0 X ( f )
m Bm(x), |x | ≤ l,

0, d ≥ |x | ≥ l;

g(x) =

{

∑

∞

m=0 X (g)
m Bm(x), |x | ≤ l,

0, d ≥ |x | ≥ l,
(13)

where X ( f )
m , X (g)

m are unknown coefficients, Bm(x) are the

basis functions (BFs). As BFs, we use the Chebyshev

polynomials Tm,Um and Legendre polynomials Pm [8]:

Bm(x) = Pm(x/l), or Bm(x) = Tm(x/l), (14)

Bm(x) = Um(x/l)
√

l2 − x2. (15)

For the strip grating, the basis is the same, but with the

replacement l → l̄.
We use basis (14) a) for slit grating and H-polarization,

b) for strip grating and E-polarization. Basis (15) is used

a) for slit grating and E-polarization, b) for strip grating and

H-polarization. The Floquet transforms of BFs are equal to

a constant, which then will enter the unknown coefficients,

B̃m,n(x) =
Jm+1/2(αnl)

α
1/2
n

,

or B̃m,n(x) = Jm(αnl) for the basis (14),

B̃m,n(x) =
Jm+1(αnl)

αn
,

for the basis (15).
We substitute Eqs. (14), (15) into Eq. (13)

f n =

∞
∑

m=0

X̄ ( f )
m B̃m,n, gn =

∞
∑

m=0

X̄ (g)
m B̃m,n,

where X̄ ( f )
m , X̄ (g)

m are unknown coefficients differing from the

old ones X ( f )
m , X (g)

m by constants. The obtained f n, gn satisfy

Eq. (10).

Then we substitute Eq. (12) into Eq. (9) and project the

resulting equations on BFs (14) or (15). As a result, we get

a system of linear algebraic equations (SLAE) for unknown

X̄ ( f )
m , X̄ (g)

m . The SLAE possesses fast internal convergence,

so that in series (13) it is sufficient to consider 5−15 terms

to calculate the complex amplitudes of spatial harmonics

with an error less than 0.5%.

6. Calculation results

First, let us consider the dependence of grating param-

eters on the wavelength (Fig. 2, 3). The grating with

the dimensions 2/d = 0.75 is placed on a double-layered

dielectric. Th upper layer has the thickness h1 = 0.95d and

the refractive index 1.5, the lower layer is a semi-infinite

substrate with the refractive index 1.77. The incidence

is normal. We choose the wavelength λ0, for which the

conditions of total absorption are satisfied. Figures 2, 3
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Figure 2. Dependence of grating parameters on the wavelength

E-polarization
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Figure 3. Dependence of grating parameters on the wavelength

H-polarization
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Figure 4. Dependence of grating parameters on the wavelength

E-Polarization. 2λ/d = 2λ0/d = 4.

show the wavelength dependences of the power reflection

coefficient R, power transmission coefficient T and losses

P = 1− R − T . Solid lines correspond to a = 0, Imb → ∞,

i.e. perfectly transmitting screen, P → 0, the lines with

symbols represent an absorbing screen. Circles correspond

to 2λ0/d = 4, squares to 2λ0/d = 6.

The results for the gratings with absorbing screen demon-

strate the following distinctive features as compared to those

for non-absorbing screen:

• the reflection coefficient is substantially decreased;

• the wavelength dependence of reflection and transmis-

sion coefficients is weaker;

• the transmission coefficient either grows with wave-

length, or has a small extremum.

The reflection coefficient R is minimum at the layer

thickness equal to a quarter of wavelength in the dielectric.

When the thickness is greater than half-wave, R is practically

independent of the thickness.

Figures 4, 5 present the dependences of the grating

parameters on the slit width and Figs. 6, 7 — on the angle

of incidence. Solid lines correspond to a totally transparent

screen, P → 0, lines with symbols are for an absorbing

screen. It should be noted that the transmission coefficient

values T are commensurable for the absorbing and totally

transparent screens. The character of angular dependences

R(θ), T (θ) in these two types of screens, is naturally the

same, namely, the reflection coefficient sharply grows upon

increasing he incidence angle. Although the condition

of total absorption (5) is valid for normal incidence, the

reflection coefficient is less than 0.15 up to θ = 50◦ for E-

polarization and θ = 70◦ for H-polarization.

Figures 8, 9 illustrate the calculation results for another

type of screen made of magneto-dielectric with ε > 1,

µ > 1. We substitute Eq. (1) into Eq. (3). As a result,

we get

a =
(µ − 1)τ

2
, b =

(ε − 1)τ

2
.
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Figure 5. Dependence of grating parameters on the wavelength

H-Polarization. 2λ/d = 2λ0/d = 4.
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Figure 6. Dependence of grating parameters on the incidence

angle E-Polarization. 2λ/d = 2λ0/d = 6.
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Figure 7. Dependence of grating parameters on the incidence

angle H-Polarization. 2λ/d = 2λ0/d = 6.

Technical Physics, 2023, Vol. 68, No. 4



10th International Symposium on Optics and Biophotonics 413

0

0.2

0.4

0.6

0.8

1.0

2λ/d

R

4.0 4.5 5.0 5.5 6.0

3

2

1

1

3

2

a = 0.5

Figure 8. Dependence of the grating reflection coefficient on

the wavelength at changing the parameter a . 2l/d = 0.75, b = a .
Curves without symbols — H-polarization, with symbols — E-

polarization.
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Figure 9. Dependence of the grating reflection coefficient on

the wavelength. 2l/d = 0.5, b = a . Curves without symbols —
H-polarization, with symbols — E-polarization.

Assume ε, µ to be real-valued. Then there are no losses

and the reflection coefficient T = 1− R. In the figures, a

total reflection effect is seen, which arises upon the field

resonance in magneto-dielectric strips. The width of the

strips is 2w = d − 2l, therefore, in Fig. 7 2w/d = 0.25,

and in Fig. 8 twice as much. The resonances in Fig. 7

are of the first order and in Fig. 8 of the second order. The

resonance wavelength, naturally, increases with an increase

in parameters a/d, d/d . The resonance of the transverse

electric field (H-polarization of the incident wave) are

longer-wavelength than the resonances of the longitudinal

field (E-polarization).

Thus, in this work, from the solution to the problem of the

electromagnetic wave reflection from a screen satisfying the

double-sided boundary conditions of the impedance type,

the conditions for the complete absorption of the wave by

the screen are obtained. The obtained boundary conditions

are applied to solve the problem of diffraction by a grating

made of slits and stripes in a totally absorbing screen. The

problem is reduced to solving paired summatory equations,

for which the Galerkin method is used. A comparison with

diffraction gratings in a totally transparent screen revealed a

sharp decrease in the reflection coefficient in a wide range

of wavelengths and angles of incidence with a comparable

transmission coefficient and weaker dependence of the

reflection and transmission coefficients on the wavelength.
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Appendix

Let us define the function U−

n (y) in Eq. (7) for the

substrate of the diffraction grating. The substrate is located

at y ≤ 0 (Fig. 1). It consists N + 1 of layers (in Fig. 1

N = 2), the layer with the number N + 1 being semi-

infinite. The layers are numbered from top to bottom. The

thickness of the layer is p(p = 1, . . . N)hp, its permittivity

is εp . The permeability of all layers is equal to one.

The coordinates of the layer boundaries are y = y p, where

y1 = 0, y p+1 = y p − hp, p = 1, . . . N + 1.

The functionU(x , y) (6) is a solution to the Helmholtz

equation in each layer

(

∂2

∂x2
+

∂2

∂y2
+ k2ε(y)

)

U(x , y) = 0.

Therefore, functions U−

n (y) (see Eqs. (6), (7)) satisfy the

equations

(

∂2

∂y2
+ k2ε(y) − α2

n

)

U−

n (y) = 0. (A.1)

The boundary conditions imply the continuity at y = y p,

p(p = 2, . . . N + 1) of functions a) U−

n (y) and b) ξ
dU−

n (y)
dy

(ξ = 1 for E-polarization, ξ = 1
ε
for H-polarization). Be-

sides that, the condition c) U−

N (0) = 1 must be fulfilled.

To simplify the fulfilment of the boundary conditions for

the solutions of Eqs. (A. 1), let us write them in the form:

at y p ≥ y ≥ y p+1, (p = 1, . . . N)

U−

n (y) =
X

sh κn,phP

{

−Dp+1 sh[κn,p(y − y p)]

+ Dp sh[κn,p(y − y p+1)]
}

, (A.2)
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at y ≥ yN+1

U−

n (y) = −XDN+1 exp[κn,N+1(y − yN+1)], (A.3)

where X , Dp are unknown coefficients, κn,p =
√

α2
n − k2εp .

The functions (A. 2), (A. 3) satisfy the boundary

condition a), i.e., they are continuous at layer interfaces.

Applying the second boundary condition b), we arrive at

the recurrent scheme

DpQn,p = Dp+1(Tn,p + Tn,p+1)

− Dp+2Qn,p+1, p = N, N − 1, . . . 1, (A.4)

where

DN+2 = 0, Qn,p =
ξpκn,p

sh(κn,phP)
,

Tn,p =

{

ξpκn,p cth(κn,php), p 6= N + 1,

ξPκn j,p, p = N + 1.

We put in Eq. (A. 4) DN+1 = 1 and find all Dp . Finally,

we find the unknown coefficient X from the condition c)

U−

n (o) = XD1 = 1.

Thus, all unknown coefficients in Eqs. (A. 2), (A. 3) are

determined.
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