20

Лазерная доставка, процессы и спектральное исследование современного хлоринсодержащего препарата для лечения онихомикоза при лазерном воздействии с длиной волны 405 nm

© А.В. Беликов^{1,2}, А.Д. Козлова^{1,¶}, Ю.В. Федорова¹, С.Н. Смирнов¹

Поступила в редакцию 10.01.2023 г. В окончательной редакции 03.02.2023 г. Принята к публикации 08.02.2023 г.

В эксперименте *in vitro* исследована лазерная микропорация ногтевой пластины и активная лазерная доставка под ногтевую пластину современного хлоринсодержащего фотосенсибилизирующего препарата Chloderm для лечения онихомикоза лазерным излучением с длиной волны 405 nm. Оценены скорость и эффективность абляции ногтевой пластины, а также скорость доставки препарата под ногтевую пластину. Максимальная скорость абляции составила $2600 \pm 200 \, \mu \text{m/s}$, а эффективность абляции $2.6 \pm 0.2 \, \mu \text{m/mJ}$. Максимальные скорость доставки препарата составила $5.3 \pm 0.5 \, \text{mg/s}$ при $P = 1.0 \, \text{W}$ и времени воздействия $t = 0.3 \, \text{s}$. Впервые обнаружены и описаны процессы, возникающие при воздействии лазерного излучения на Chloderm и его водные растворы. Представлены результаты исследования спектров экстинкции водного раствора Chloderm в диапазоне $350-900 \, \text{nm}$ до и после воздействия лазерного излучения. Показано, что воздействие лазерного излучения с длиной волны $405 \, \text{nm}$ и параметрами, достаточными для активной лазерной доставки водного раствора препарата Chloderm (C = 5%) под ногтевую пластину, не изменяет конформационное состояние препарата, а значит не ухудшает его фотодинамические и люминесцентные свойства

Ключевые слова: лазерная доставка, микропорация, абляция, ногтевая пластина, эффективность, онихомикоз, хлоринсодержащий фотосенсибилизирующий препарат, спектр экстинкции, длина волны.

DOI: 10.21883/OS.2023.06.55919.119-23

Введение

Лазеры широко применяются в современной физике, технике и медицине, в том числе в дерматологии для лечения грибковых заболеваний. Онихомикоз является распространенным в дерматологии заболеванием ногтей, вызванным грибковой инфекцией [1,2]. Для лечения онихомикоза широко применяют пероральные противогрибковые препараты. Однако в этом случае терапия занимает длительное время, и существует риск гепатотоксичности. Хирургические методы лечения онихомикоза весьма болезненны [3]. Также при лечении онихомикоза широко используются местные фармацевтические препараты. Эффективность такого лечения ограничена, так как ногтевая пластина препятствует доставке местных лекарственных средств к ногтевому ложу, пораженному грибком [4,5].

Проницаемость ногтевой пластины можно увеличить с помощью лазерной микропорации. При лазерном воздействии в результате преобразования поглощаемой лазерной энергии в тепло биоткань нагревается и аблируется, образуя микропоры, по которым возможна доставка лекарства [6]. Лазерное излучение с длиной волны 405 nm может быть использовано для эффек-

тивной лазерной микропорации здорового и пораженного онихомикозом ногтя, так как оно эффективно поглощается кератином ногтевой пластины, а также меланином, вырабатывающимся меланоцитами ногтевой матрицы вследствие меланонихии (гиперпигментации ногтей) при онихомикозе, а также возбудителями онихомикоза, находящимися в ногтевой пластине [7]. Однако эффективность и скорость абляции ногтевой пластины излучением лазера с длиной волны 405 nm до сих пор не исследовались.

Увеличение эффективности доставки местных препаратов под микропорированную ногтевую пластину может быть достигнуто в ограниченной степени путем улучшения состава препарата и в большей степени путем применения внешней энергии для улучшения проникновения препаратов в биоткань (активная доставка) [8,9]. В частности, лазерно-индуцированные гидродинамические процессы могут увеличивать скорость проникновения препаратов в биологические ткани [10,11]. При этом важно избежать нежелательного изменения свойств препарата под действием лазерного излучения. Известно, что под действием лазерного излучения происходит изменение оптических свойств фотосенси-

¹ Университет ИТМО,

¹⁹⁷¹⁰¹ Санкт-Петербург, Россия

² Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова, 197022 Санкт-Петербург, Россия

[¶]e-mail: ntavalin@gmail.com

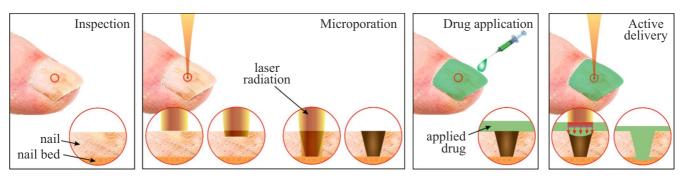
билизирующих препаратов, в том числе в результате изменения их конформационного состояния [12–15].

Современными эффективными фотодинамическими препаратами для лечения онихомикоза являются хлоринсодержащие фотодинамические препараты нового поколения, в том числе Chloderm (ИП "В.В. Ашмаров", Россия). Фотодинамический агент этого препарата, трисмеглуминовая соль хлорина еб, является мощным фотосенсибилизатором. Для спектра поглощения хлорина еб характерно наличие наиболее интенсивной В-полосы поглощения (полоса Cope), Qx 00- и Qx 01-полос, а также Qy 00-полосы. В-полоса довольно широкая и по основанию простирается от 320 до 480 пт. При фотодинамической терапии в основном используются источники света, длина волны которых попадает в пик Qy 00-полосы. Это связано с тем, что свет с этой длиной волны глубоко приникает в биоткани. Однако это излучение поглощается фотосенсибилизатором не так эффективно, как излучение попадающее в пик Вполосы. Применение же источников с длиной волны, попадающей в В-полосу, ограничено малой глубиной проникновения их излучения в биоткань. Для ряда дерматологических заболеваний и прежде всего онихомикоза глубина проникновения света не должна быть выше 0.3-0.5 mm, что открывает возможность использования излучения, лежащего вне Qy 00-полосы, в том числе с длиной волны 405 nm, попадающей в пик В-полосы поглощения. В работе [15] показано, что воздействие на Chloderm лазерного излучения с длиной волны 405 nm и интенсивностью 200 mW/cm² эффективно обесцвечивает препарат вследствие генерации синглетного кислорода, который обладает выраженным цитотоксичным действием и приводит к разрушению клеточных мембран клеток. Однако скорость доставки препарата Chloderm под ногтевую пластину излучением лазера с длиной волны 405 nm до сих пор не исследовалась. Также не исследовалась возможность изменения конформационного состояния Chloderm под действием этого излучения с параметрами достаточными для активной лазерной доставки препарата под ногтевую пластину. В этой связи актуальным является определение средней мощности и времени воздействия лазерного излучения с длиной волны 405 nm, которые, с одной стороны, приводят к активной доставке препарата под ногтевую пластину, а с другой стороны, не приводят к агрегации молекул хлорина и, следовательно, к существенному ухудшению их фотодинамических и люминесцентных свойств для последующего фотодинамического воздействия.

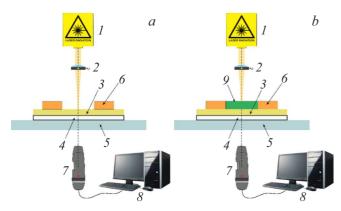
Таким образом, целью настоящей работы являлось *in vitro* исследование лазерной микропорации ногтевой пластины и активной лазерной доставки под ногтевую пластину современного хлоринсодержащего фотосенсибилизирующего препарата Chloderm для лечения онихомикоза лазерным излучением с длиной волны 405 nm, в результате которого будут определены скорость и эффективность абляции ногтевой пластины, а также скорость доставки препарата под ногтевую пластину,

исследованы спектры экстинкции Chloderm до и после воздействия лазерного излучения, а также оценено влияние воздействия лазерного излучения с длиной волны 405 nm и параметрами достаточными для активной лазерной доставки Chloderm под ногтевую пластину на конформационное состояние препарата.

Материалы и методы


Исследовался современный хлоринсодержащий фотосенсибилизирующий препарат Chloderm (ИП "В.В. Ашмаров", Россия) и его водные растворы с различной массовой концентрацией (C) препарата. Процессы, протекающие при воздействии лазерного излучения с длиной волны 405 nm на Chloderm, регистрировались с помощью цифрового USB-микроскопа DTX 50 (Levenhuk, Inc., США) с 4-кратным увеличением в отраженном свете.

Применялся метод микропорации ногтевой пластины и активной лазерной доставки лекарственного препарата под ногтевую пластину, который предполагает инспекцию состояния ногтя, микропорацию ногтевой пластины лазерным излучением без нанесенного на поверхность ногтя слоя препарата с последующим нанесением препарата на дорсальную поверхность микропорированной ногтевой пластины и воздействием лазерного излучения через слой этого препарата для его активной доставки под ногтевую пластину (рис. 1).


В исследовании *in vitro* использовались образцы, представляющие собой фрагменты свежеэкстрагированных здоровых ногтевых пластин человека от трёх добровольцев. Всего было исследовано 20 образцов. Перед началом эксперимента образцы ногтевых пластин, средняя толщина которых составила $370 \pm 20\,\mu\text{m}$, были механически очищены от грязи и промыты дистиллированной водой.

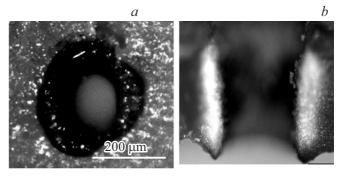
Для in vitro микропорации ногтевой пластины и активной лазерной доставки использовалось излучение непрерывного (CW) полупроводникового InGaN лазера производства компании Xinrui technology (Китай) с длиной волны 405 nm. Средняя мощность лазерного излучения составляла $P=0.5,\ 0.8$ и $1.0\,\mathrm{W}$ и была ограничена параметрами используемого лазерного диода. Размер лазерного пучка на дорсальной поверхности ногтевой пластины составлял $140 \times 110 \,\mu\mathrm{m}$ (по уровню e^{-2}). Время лазерного воздействия t соответствовало 0.04, 0.08, 0.1, 0.12, 0.15, 0.2, 0.3, 0.4 и 0.6 s. Схема экспериментальной установки для микропорации ногтевой пластины и активной доставки фотосенсибилизирующих препаратов под ногтевую пластину лазерным излучением была аналогична описанной в работе [14] и представлена на рис. 2.

На обращенной к лазеру поверхности образца ногтевой пластины создавалась микрокювета, при этом поверхность ногтевой пластины являлась дном микрокюветы. Размеры внутреннего пространства кюветы со-

Рис. 1. Метод микропорации ногтевой пластины без нанесенного на поверхность ногтя слоя препарата и активной лазерной доставки лекарственного препарата после нанесения препарата на дорсальную поверхность микропорированной ногтевой пластины при лечении заболеваний ногтей человека.

Рис. 2. Схема экспериментальной установки для микропорации (a) и активной лазерной доставки (b) Chloderm под ногтевую пластину: I — лазер $(\lambda = 405 \, \mathrm{nm})$, 2 — линза $(F = 120 \, \mathrm{mm})$, 3 — фрагмент ногтевой пластины, 4 — бумажная подложка, 5 — стеклянная пластина, 6 — микрокювета, 7 — цифровой USB-микроскоп DTX 50 (Levenhuk, Inc., США), 8 — компьютер, 9 — хлоринсодержащий фотосенсибилизирующий препарат.

ставляли $\sim 1.5 \times 1.5 \times 0.1$ mm. При помещении хлоринсодержащего фотосенсибилизирующего препарата в это внутреннее пространство формировался слой препарата толщиной $100 \pm 10 \, \mu$ m.


На первом этапе (рис. 2, a) микрокювета на ногтевой пластине не заполнялась фотосенсибилизирующим препаратом, лазерное излучение фокусировалось на обращенную к лазеру поверхность ногтевой пластины. В результате лазерного воздействия с длиной волны $405\,\mathrm{nm}$ в ногтевой пластине создавалась микропора. Процесс микропорации ногтевой пластины (кожи) контролировался с помощью цифрового USB-микроскопа, соединенного с компьютером и размещенного с тыльной стороны бумажной подложки, на которой располагался образец ногтевой пластины. Момент микропорации соответствовал моменту появления дефекта на тыльной стороне бумажной подложки. На втором этапе (рис. 2, b) микрокювета заполнялась фотосенсибилизи-

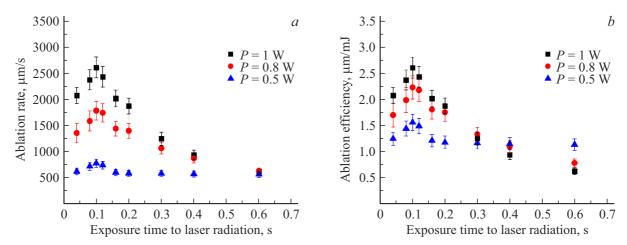
рующим препаратом. Сразу после этого осуществлялась его активная доставка в результате лазерного воздействия с длиной волны 405 nm. Момент доставки фотодинамического препарата регистрировался цифровым USB-микроскопом и соответствовал моменту окраски бумажной подложки препаратом.

Внешний вид создаваемых в ногтевой пластине микропор и их продольных шлифов, получаемых в результате абразивного шлифования вдоль оси микропоры, регистрировался микроскопом Zeiss Axio Scope.A1 (Carl Zeiss, Германия). Анализ полученных изображений микропор в программе CorelDRAW Graphics Suite 2021 (Corel Corp., Канада) позволял определить их форму и глубину, а также скорость и эффективность абляции ногтевой пластины. Скорость абляции определялась как отношение глубины кратера в ногтевой пластине ко времени действия лазерного излучения. Эффективность абляции определялась как отношение глубины кратера в ногтевой пластине к энергии лазерного излучения, необходимой для его создания. Масса $PM_{Chloderm}$ фотосенсибилизирующего препарата, проникшего через одиночное отверстие в момент его доставки под ногтевую пластину, и скорость V_{Chloderm} доставки препарата через одиночное микроотверстие под ногтевую пластину определялись аналогично методу, изложенному в [14].

Для обнаружения конформационных изменений хлоринсодержащего фотосенсибилизирующего препарата Chloderm в процессе его активной доставки лазерным излучением с длиной волны 405 nm были исследованы спектры экстинкции Chloderm в диапазоне 350-900 nm до и после лазерного воздействия с длиной волны 405 nm. Для регистрации спектров экстинкции использовался двухлучевой спектрофотометр Т90+ (PG Instruments Ltd, Великобритания). В эксперименте водный раствор Chloderm (C=5%) помещался в кварцевую кювету с размерами идентичными размерам внутреннего пространства микрокюветы, создаваемой на поверхности ногтя при микропорации ногтевой пластины и активной лазерной доставке (см. выше). В опорное плечо спектрометра помещалась идентичная по размерам кварцевая кювета с дистиллированной водой. Регистрировался спектр пропускания водного раствора Chloderm до лазерного воздействия. Затем производилось облучение водного раствора Chloderm путем сканирования лазерного излучения с длиной волны 405 nm вдоль поверхности фотосенсибилизирующего препарата. При этом средняя мощность лазерного излучения была максимальной и равной 1 W. Сканирование осуществлялось дискретно от точки к точке с шагом равным диаметру лазерного пучка, до тех пор, пока не была облучена вся площадь поверхности препарата. Время лазерного воздействия в одну точку составляло 0.2, 0.4 или 0.8 s. Затем облученный водный раствор Chloderm внутри кюветы в течение $60 \pm 1\,\mathrm{s}$ перемешивался в мультиротаторе Multi Bio RS-24 (Biosan, Латвия), осуществлявшем вращательное, возвратно-поступательное движение и встряхивание кюветы, после чего регистрировался спектр пропускания раствора. Каждое измерение проводилось с шагом 1 nm и длилось порядка 3 min. Для каждого образца выполнялось по 10 измерений.

По полученным спектрам пропускания в соответствии с законом Бугера-Ламберта-Бера рассчитывался спектр экстинкции водного раствора Chloderm до и после лазерного воздействия. Коэффициент экстинкции μ_t в данном случае учитывал как поглощения, так и рассеяния. В экспериментах исследовались полосы поглощения с пиком на длине волны $672 \pm 3 \, \mathrm{nm}$ (Qy 00полоса поглощения препарата) и с пиком на длине волны 697 ± 3 nm, которые соответствуют конформационным состояниям хлорина еб в форме мономера и тетрамера соответственно [16], а также коэффициент экстинкции на длине волны $405 \pm 5\,\mathrm{nm}$ (В-полоса поглощения препарата). Для оценки конформационного состояния хлорина еб в Chloderm рассчитывался коэффициент спектральной трансформации (k_t) как отношение коэффициента поглощения препарата на длине волны 672 nm, соответствующей поглощению мономеров к коэффициенту поглощения на длине волны 697 nm, соответствующей поглощению тетрамеров. Исследовалось изменение k_t в зависимости от времени лазерного воздействия t. Следует отметить, что в данном случае анализ k_t позволяет понять только тенденцию изменения отношения количества мономеров к количеству тетрамеров в растворе, но не оценить их количество. Для оценки количества мономеров и тетрамеров в растворе до и после лазерного воздействия нужно исследовать поведение их молярных коэффициентов поглощения, что выходит за рамки данной работы. В предположении о постоянстве молярных коэффициентов поглощения мономеров и тетрамеров, увеличение k_t указывает на то, что количество мономеров увеличивается относительно количества тетрамеров. Статистическая обработка данных, полученных в экспериментах, заключалась в определении средних значений и стандартного отклонения измеренных величин и проводилась в программном пакете STATGRAPHICS Plus 5.0 (Statistical Graphics Corp., CIIIA).

Рис. 3. Внешний вид ногтевой пластины, микропорированной лазерным излучением с длиной волны 405 nm: фото дорсальной стороны ногтевой пластины с микропорой сверху (a) и фото продольного шлифа ногтевой пластины с микропорой (b) $(P=1~\mathrm{W},\,t=0.2~\mathrm{s}).$


Результаты и обсуждение

Характерный внешний вид ногтевой пластины, микропорированной излучением с длиной волны 405 nm, представлен на рис. 3.

Видно, что в результате воздействия лазерного излучения с длиной волны 405 nm возможно создание в ногтевой пластине сквозных микропор диаметром порядка 200 μm. Стенки микропоры существенно деформированы, прилежащая к ним ткань увеличена в размерах и карбонизирована, что свидетельствует о существенном нагреве ногтевой пластины в процессе ее микропорации. Толщина увеличенной карбонизированной области, прилежащей к стенке микропоры, достигает 70 μ m. Следует отметить, что карбонизация свидетельствует о достижении высоких температур, которые могут травмировать ногтевое ложе в результате микропорации ногтевой пластины. Вместе с тем в работе [17] авторы изучали абляцию ногтевой пластины излучением Er:YAG лазера, при которой так же, как и в нашем случае, наблюдалась карбонизация ногтевой пластины. Авторы этой работы показали, что такое лазерное воздействие в сочетании с последующим действием противогрибковым препаратом (аморолфином) приводит к повышению эффективности местного лечения онихомикоза. В этой связи можно ожидать, что карбонизация не окажет негативного влияния на результат лечения и в случае воздействия лазерного излучения с длиной волны 405 nm, хотя данное утверждение, безусловно, нуждается в дополнительной проверке, которая планируется авторами в будущем, но выходит за рамки данной работы.

Зависимости скорости и эффективности абляции ногтевой пластины от времени лазерного воздействия с длиной волны $405\,\mathrm{nm}$ при его различной средней мощности представлены на рис. 4,a и 4,b соответственно.

Видно, что представленные зависимости имеют экстремум при времени лазерного воздействия 0.1 s. Рост скорости и эффективности абляции ногтевой пластины

Рис. 4. Зависимости скорости (a) и эффективности (b) абляции ногтевой пластины от времени воздействия лазерного излучения с длиной волны 405 nm и различной средней мощностью.

при временах меньших 0.1 s можно связать с ростом поглощенной ногтевой пластиной энергии лазерного излучения и связанным с этим увеличением превышения плотностью энергии пороговой величины, необходимой для начала абляции ногтевой пластины. Уменьшение скорости и эффективности абляции ногтевой пластины при временах больших 0.1 s можно связать с уменьшением достигающей дна микропоры плотности энергии лазерного излучения в результате отдаления дна микропоры от плоскости перетяжки лазерного пучка в течение времени лазерного воздействия, а также с накоплением продуктов лазерного разрушения внутри кратера, которые поглощают излучение. Также следует отметить, что скорость и эффективность абляции ногтевой пластины увеличиваются с ростом мощности лазерного излучения, что, очевидно, обусловлено увеличением объема ногтевой пластины, внутри которого плотность энергии лазерного излучения превышает пороговую для абляции величину. При времени лазерного воздействия $t=0.6\,\mathrm{s}$ скорости абляции ногтевой пластины для всех трех исследованных в работе значений средней мощности лазерного излучения становятся сопоставимы друг с другом (рис. 4, a). Это можно объяснить различием в динамике изменения эффективности абляции ногтевой пластины для этих мощностей (рис. 4, b). При t = 0.3 s эффективность абляции для средней мощности лазерного излучения $P = 0.5 \, \mathrm{W}$ уступает эффективности при P = 0.8 и 1.0 W, а при t = 0.4 s эффективность абляции для средней мощности $P = 0.5 \,\mathrm{W}$ уже превышает эффективность при P=0.8 и 1.0 W. То есть для P = 0.5 W эффективность с течением времени воздействия уменьшается медленнее, чем для P = 0.8 и 1.0 W, и при $t = 0.6 \,\mathrm{s}$ для $P = 0.5 \,\mathrm{W}$ меньшая средняя мощность компенсируется большей эффективностью абляции.

Максимальная скорость абляции ногтевой пластины излучением с длиной волны 450 nm составила $2600\pm200\,\mu\text{m/s}$, а эффективность абляции ногтевой пластины — $2.6\pm0.2\,\mu\text{m/m}$ Ј при воздействии на ногтевую

пластину лазерного излучения с мощностью $P=1.0\,\mathrm{W}$ в течение $t=0.1\,\mathrm{s}$. Для сквозной микропорации ногтевой пластины толщиной $370\pm20\,\mu\mathrm{m}$ при $P=1.0\,\mathrm{W}$ потребовалось $t=0.2\pm0.02\,\mathrm{s}$.

Следует отметить, что эффективность абляции ногтевой пластины излучением непрерывного InGaN лазера с длиной волны 405 nm превышает эффективность абляции ногтевой пластины излучением непрерывного лазера с длиной волны $450\,\mathrm{nm}$ $(1.47\,\mu\mathrm{m/mJ})$ [14] и уступает эффективности абляции излучением импульсного Er:YLF лазера $(4.6\,\mu\text{m/mJ})$ [18], что можно объяснить как различием в поглощении ногтевой пластиной излучения на этих длинах волн, так и различием в импульсной мощности. Скорость абляции ногтевой пластины излучением непрерывного InGaN лазера с длиной волны $405\,\mathrm{nm}$ и $P=1.0\,\mathrm{W}$ сопоставима со скоростью абляции ногтевой пластины излучением непрерывного лазера с длиной волны $450\,\mathrm{nm}$ с $P=1.9\,\mathrm{W}$ $(2750 \pm 30 \,\mu\text{m/s})$ [14] и превышает скорость абляции излучением импульсного Er:YLF лазера с $P = 0.12 \,\mathrm{W}$, энергией в импульсе $E=4\,\mathrm{mJ}$ и частотой следования $f = 30 \,\text{Hz} \,(360 \,\mu\text{m/s}) \,[18].$

При воздействии лазерным излучением с длиной волны 405 nm на каплю препарата Chloderm и его водных растворов, расположенную на поверхности микропорированной ногтевой пластины, впервые были обнаружены пять процессов: активная доставка, пузырение, потемнение, деформация поверхности капли препарата и горение (рис. 5). Факт возникновения этих процессов зависел от средней мощности, времени воздействия лазерного излучения и концентрации Chloderm в водном растворе.

При воздействии лазерного излучения с длиной волны $405\,\mathrm{nm}$ с мощностью $P=1\,\mathrm{W}$ в течение $t=0.2\,\mathrm{s}$ на каплю водного раствора Chloderm с концентрацией C<2%, расположенную на поверхности микропорированной ногтевой пластины, наблюдалась только активная доставка раствора под ногтевую пластину. При воздействии лазерного излучения на водный раствор

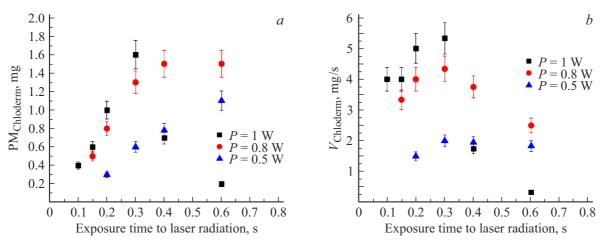
Active delivery	Bubbling	Darkening	Deformation	Buming
Top view of the nail plate	1mm		3	
View of the paper substrate under the nail plate	0 <u>\$ mm</u>			

Рис. 5. Процессы, возникающие при воздействии лазерного излучения излучением с длиной волны 405 nm на каплю хлоринсодержащего фотосенсибилизирующего препарата "Chloderm", расположенную на поверхности микропорированной ногтевой пластины.

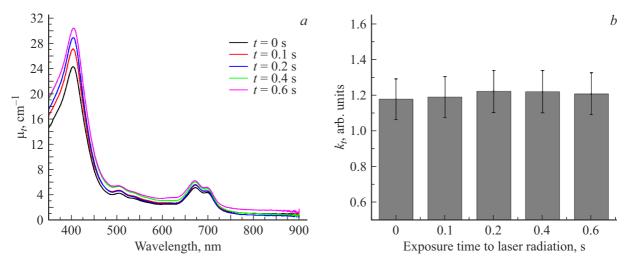
Chloderm с концентрацией C=2-25% наблюдались активная доставка раствора под ногтевую пластину и его пузырение. При воздействии лазерного излучения на водный раствор Chloderm с концентрацией C=25-55%наблюдались активная доставка раствора и деформация поверхности капли. При воздействии лазерного излучения на водный раствор Chloderm с концентрацией C = 55-60% наблюдались активная доставка раствора, потемнение и деформация поверхности капли. При воздействии лазерного излучения на водный раствор Chloderm с концентрацией C > 60% и препарат наблюдались потемнение и горение. Для дальнейших исследований была выбрана концентрация C = 5%, так как в этом случае можно было оценить влияние только процесса пузырения на конформационное состояние хлорина e6 в Chloderm при его активной лазерной доставке излучением с длиной волны 405 nm.

Зависимости массы PM_{Chloderm} водного раствора Chloderm (C=5%), проникшего через одиночную микропору в ногтевой пластине в момент его доставки под ногтевую пластину, и скорости (V_{Chloderm}) активной лазерной доставки этого водного раствора под ногтевую пластину от времени воздействия лазерного излучения с длиной волны $405\,\mathrm{nm}$ и различной средней мощностью представлена на рисунках 6,a и 6,b соответственно.

Видно, что представленные зависимости PM_{Chloderm} и V_{Chloderm} имеют экстремум. Экстремум для PM_{Chloderm} расположен на $t=0.3\,\mathrm{s}$ при $P=1\,\mathrm{W}$, на $t=0.4\,\mathrm{s}$ при $P=0.8\,\mathrm{W}$, а для $P=0.5\,\mathrm{W}$ в исследуемом диапазоне времен воздействия t и средних мощностей лазерного излучения P не был обнаружен. Экстремум для V_{Chloderm} расположен на $t=0.3\,\mathrm{s}$ при всех P. Первоначальный рост PM_{Chloderm} и V_{Chloderm} связан с ростом энергетической экспозиции лазерного излучения. Последующее падение PM_{Chloderm} и V_{Chloderm} может быть связано как с частичным разлетом капли водного раствора Chloderm в результате формирования в ней под действием лазер-


ного излучения парогазовых полостей (пузырей), так и с вызванным этим процессом падением коэффициента поглощения на длине волны лазерного излучения.

Максимальные масса $PM_{\mathrm{Chloderm}} = 1.6 \pm 0.15\,\mathrm{mg}$ и скорость доставки $V_{\mathrm{Chloderm}} = 5.3 \pm 0.5\,\mathrm{mg/s}$ были зарегистрированы при $P = 1.0\,\mathrm{W}$ и $t = 0.3\,\mathrm{s}$. Минимальное время, необходимое для активной лазерной доставки, наблюдалось при $P = 1.0\,\mathrm{W}$ и соответствовало $t = 0.1\,\mathrm{s}$.


Следует отметить, что скорость доставки $V_{\rm Chloderm}$ (C=5%) излучением непрерывного InGaN лазера с длиной волны 405 nm превышает скорость доставки $V_{\rm Chloderm}$ (C=0.65%) излучением непрерывного лазера с длиной волны 450 nm ($1.15\pm0.10\,{\rm mg/s}$) [14] и скорость доставки $V_{\rm Chloderm}$ (C=0.65%) излучением Er.YLF лазера с длительностью импульса 270 μ s, энергией импульса $E=4\,{\rm mJ}$ и частотой следования $f=30\,{\rm Hz}$ ($1.40\pm0.15\,{\rm mg/s}$) [19], что можно объяснить различием в количестве хлорина еб в препарате и, соответственно, с отличиями в поглощении препаратами излучения лазеров с длинами волн 405 и 450 nm, а также с различием в импульсной мощности лазерных источников.

Спектры экстинкции водного раствора Chloderm (C=5%) до и после воздействия лазерного излучения с длиной волны 405 nm и мощностью $P=1.0\,\mathrm{W}$ (интенсивность 6500 W/cm²) представлены на рис. 7, a. Зависимость коэффициента спектральной трансформации k_t от времени этого лазерного воздействия представлена на рис. 7, b.

Спектры экстинкции водного раствора Chloderm (C=5%) имеют ярко выраженные полосы поглощения с пиками на длинах волн 405 ± 5 nm (В-полоса), 672 ± 3 и 697 ± 3 nm (Qy 00-полосы). До лазерного воздействия коэффициент экстинкции μ_t водного раствора Chloderm на длине волны 405 nm составлял 24.24 cm $^{-1}$, на длине волны 672 nm — 5.14 cm $^{-1}$, а на длине волны 697 nm — 4.37 cm $^{-1}$. После воздействия на водный раствор Chloderm (C=5%) непрерывного

Рис. 6. Зависимости массы PM_{Chloderm} (a) и скорости (V_{Chloderm}) активной лазерной доставки (b) водного раствора Chloderm (C=5%) от времени воздействия лазерного излучения с длиной волны 405 nm и различной средней мощностью.

Рис. 7. Спектры экстинкции (μ_t) водного раствора Chloderm (C=5%) (a) и коэффициенты спектральной трансформации k_t (b) до и после лазерного воздействия с длиной волны 405 nm, мощностью $P=1.0\,\mathrm{W}$ и различным временем лазерного воздействия.

лазерного излучения с длиной волны 405 nm и мощностью $P = 1.0 \,\mathrm{W}$ (рис. 7, a) в течение t = 0.1, 0.2, 0.4 и $0.6\,\mathrm{s}$ коэффициент экстинкции μ_t на длине волны $405\,\mathrm{nm}$ увеличился до 27.07, 28.86, 30.41 и 30.37 cm⁻¹, на длине волны $672 \,\mathrm{nm}$ — до 5.52, 5.63, 6.04 и $6.25 \,\mathrm{cm}^{-1}$, а на длине волны $697 \,\mathrm{nm}$ — до 4.63, 4.63, 4.96 и $5.18 \,\mathrm{cm}^{-1}$ соответственно. Увеличение может быть связано с увеличением концентрации фотосенсибилизатора (хлорин еб) в препарате из-за испарения воды под действием лазерного излучения. Наблюдаемый процесс пузырения, очевидно, свидетельствует о том, что в растворе достигается температура близкая к 100°C, необходимая для испарения воды. Можно также отметить, что пики полос поглощения на длинах волн 405, 672 и 697 nm не смещаются, что говорит в пользу отсутствия изменений состояния молекулы хлорин еб.

Коэффициент спектральной трансформации до и после лазерного воздействия $k_t > 1$. Коэффициент транс-

формации k_t при $t=0.6\,\mathrm{s}$ статистически значимо (p-value < 0.05) увеличивается с 1.18 ± 0.11 (t = 0 s) до 1.21 ± 0.12 . Это свидетельствует о том, что с ростом t изменяется конформационное состояние водного раствора Chloderm и количество мономеров хлорина еб увеличивается. Рост количества мономеров хлорина еб приводит к росту квантового выхода синглетного кислорода и увеличению эффективности фотодинамической терапии [20–22]. Рост k_t может быть связан с изменением температуры и рН препарата в результате светового воздействия [16,20,21,23-25]. Изменение конформационного состояния хлорина еб может происходить как за счет агрегации, так и за счет изменений, происходящих в самих мономерах и тетрамерах. Исследуемый в работе коэффициент спектральной трансформации описывает агрегацию и не позволяет судить об изменениях, происходящих в мономерах и тетрамерах, так как не учитывает изменения их молярных коэффициентов поглощения. При минимальном необходимом для активной лазерной доставки Chloderm времени лазерного воздействия с длиной волны $405\,\mathrm{nm}\ (t=0.1\,\mathrm{s})\ k_t$ статистически значимо не изменяется, что говорит о том, что при лазерной доставке современного хлоринсодержащего препарата Chloderm (C=5%) излучением с длиной волны $405\,\mathrm{nm}$ и средней мощностью $P=1.0\,\mathrm{W}$ его конформационное состояние не изменяется, а значит не ухудшаются его фотодинамические и люминесцентные свойства.

Заключение

В условиях in vitro исследована микропорация ногтевой пластины и активная лазерная доставка современного хлоринсодержащего препарата Chloderm после его нанесения на дорсальную поверхность микропорированной ногтевой пластины излучения непрерывного InGaN лазера с длиной волны 405 nm. Впервые обнаружены возникающие при воздействии лазерным излучением с длиной волны 405 nm на каплю препарата Chloderm и его водных растворов, расположенную на поверхности микропорированной ногтевой пластины, процессы: активная доставка, пузырение, потемнение, деформация поверхности капли препарата и горение. Факт возникновения этих процессов зависел от средней мощности, времени воздействия лазерного излучения и концентрации Chloderm в водном растворе. Определены скорость и эффективность абляции ногтевой пластины излучением непрерывного InGaN лазера с длиной волны 405 nm. Максимальная скорость абляции составила $2600 \pm 200 \, \mu \text{m/s}$, а эффективность абляции — $2.6 \pm 0.2 \, \mu \text{m/mJ}$. Продемонстрирована возможность активной доставки водного раствора Chloderm (C=5%) под микропорированную этим лазером ногтевую пластину. Показано, что при $P = 1.0 \,\mathrm{W}$ и $t = 0.3 \,\mathrm{s}$ скорость активной лазерной доставки под ногтевую пластину водного раствора Chloderm излучением с длиной волны $405\,\mathrm{nm}$ достигает $5.3\pm0.5\,\mathrm{mg/s}$, а минимальное время, необходимое для активной лазерной доставки препарата, составляет 0.1 s. Исследованы спектры экстинкции водного раствора Chloderm до и после лазерного воздействия с длиной волны 405 nm. Установлено, что при $P = 1.0 \,\mathrm{W}$ и $t = 0.6 \,\mathrm{s}$ коэффициент его экстинкции увеличивается, а коэффициент спектральной трансформации k_t статистически значимо возрастает, но при $t = 0.1\,\mathrm{s}$ минимальном необходимом для активной лазерной доставки Chloderm k_t статистически значимо не изменяется.

Благодарности

Авторы выражают благодарность В.В. Ашмарову за предоставленные образцы современных хлоринсодержащих фотосенсибилизирующих препаратов.

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-25-00468).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] P. Rich, R. K. Scher. *An atlas of diseases of the nail* (CRC Press, Boca Raton, 2003).
- [2] B.E. Elewski. American J. Clinical Dermatology, 1 (1), 19 (2000). DOI: 10.2165/00128071-200001010-00002
- [3] L.G. Hochman. J. Cosmetic Laser Therapy, 13 (1), 2 (2011).DOI: 10.3109/14764172.2011.552616
- [4] A.K. Gupta, N. Stec, R.C. Summerbell, N.H. Shear, V. Piguet, A. Tosti, B.M. Piraccini. J. European Academy of Dermatology and Venereology, 34 (9), 1972 (2020). DOI: 10.1111/jdv.16394
- [5] M.T. Tsai, T.Y. Tsai, S.C. Shen, C.Y. Ng, Y.J. Lee, J.D. Lee, C.H. Yang. Sensors, 16 (12), 2111 (2016). DOI:10.3390/s16122111
- J. Neev, J. Stuart Nelson, M. Critelli, J.L. McCullough, E. Cheung, W.A. Carrasco, B.C. Stuart. Lasers in Surgery and Medicine, 21 (2), 186 (1997).
 DOI: 10.1002/(SICI)1096-9101(1997)21:2<186::AID-LSM10>3.0.CO;2-D
- [7] E.G. Bendit. Biopolymers: Original Research on Biomolecules, 4 (5), 539 (1966). DOI: 10.1002/bip.1966.360040506
- [8] Е.Г. Кузнецова, В.А. Рыжикова, Л.А. Саломатина, В.И. Севастьянов. Вестник трансплантологии и искусственных органов, **18** (2), 152 (2016). DOI: 10.15825/1995-1191-2016-2-152-162
- [9] Качественная клиническая практика, (1), 2 (2001).
- [10] V.I. Yusupov, V.M. Chudnovskii, V.N. Bagratashvili. Laser Phys., 20 (7), 1641 (2010). DOI: 10.1134/S1054660X1014001X
- [11] A.V. Belikov, A.D. Tavalinskaya, S.N. Smirnov, A.N. Sergeev. Biomedical Optics Express, 10 (7), 3232 (2019). DOI: 10.1364/BOE.10.003232
- [12] G. Pradeep, S. Cyriac, S. Ramkumar, C.S. Kartha. Japanese J. Appl. Phys., 39 (1R), 137 (2000). DOI: 10.1143/JJAP.39.137
- [13] A.V. Belikov, A.D. Tavalinskaya, S.N. Smirnov. Lasers in Surgery and Medicine, 53 (8), 1122 (2021). DOI: 10.1002/lsm.23379
- [14] А.В. Беликов, Ю.В. Федорова, А.Д. Козлова, С.Н. Смирнов. Опт. и спектр., **130** (6), 872 (2022). DOI: 10.21883/OS.2023.06.55919.119-23
- [15] A.V. Belikov, A.D. Kozlova, S.N. Smirnov, Y.V. Fyodorova.
 J. Biomed. Photonics & Engineering, 8 (4), 040502 (2022).
 DOI: 10.18287/JBPE22.08.040502
- [16] Е.В. Кунделев. Круговой дихроизм в оптических спектрах агрегатов тетрапиррольных молекул и комплексов квантовая точка-молекула. Автореф. канд. дис. (СПб НИУ ИТМО, СПб. 2017).
- [17] O.O.D. Morais, I.M.C. Costa, C.M. Gomes, D.H. Shinzato, G.M.C. Ayres, R.M. Cardoso. Anais brasileiros de dermatologia, 88 (5), 847 (2013). DOI:10.1590/abd1806-4841.20131932

- [18] A.V. Belikov, A.N. Sergeev, S.N. Smirnov, A.D. Tavalinskaya. Frontiers of Optoelectronics, 10 (3), 299 (2017). DOI: 10.1007/s12200-017-0719-3
- [19] А.Д. Козлова. Исследование процессов лазерной микропорации и доставки фотодинамических препаратов под ногтевую пластину. Автореф. канд. дис. (СПб НИУ ИТМО, СПб. 2022).
- [20] H.A. Isakau, M.V. Parkhats, V.N. Knyukshto, B.M. Dzhagarov, E.P. Petrov, P.T. Petrov. J. Photochem. Photobiol. B: Biology, 92 (3), 165 (2008). DOI: 10.1016/j.jphotobiol.2008.06.004
- [21] B. Čunderlíková, L. Gangeskar, J. Moan. J. Photochem. Photobiol. B: Biology, **53** (1–3), 81 (1999). DOI: 10.1016/S1011-1344(99)00130-X
- [22] D.R. Dadadzhanov, I.V. Martynenko, A.O. Orlova, V.G. Maslov, A.V. Fedorov, A.V. Baranov. Opt. Spectrosc., 119 (5), 738 (2015). DOI: 10.1134/S0030400X15110053
- [23] Т.И. Ермилова, Д.С. Тарасов. В сб.: Сборник работ 69-й научной конференции студентов и аспирантов Белорусского государственного университета 14-17 мая 2012 г., (Изд. центр БГУ, Минск, 2013), І, 126.
- [24] Н.В. Белько, М.П. Самцов, А.П. Луговский. Журн. Белорусского государственного университета. Физика, 2, 19 (2020). DOI:10.33581/2520-2243-2020-2-19-27
- [25] А.В. Беликов, С.Н. Смирнов, А.Д. Тавалинская. Опт. и спектр., 129 (6), 698 (2021). DOI: 10.21883/OS.2023.06.55919.119-23