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Novel scheme of Bragg resonators implementing three-dimensional distributed feedback is proposed. The study of

their electrodynamic characteristics in the framework of the coupled wave approach has been carried out and high

selective properties for the three mode indices have been demonstrated under conditions of substantial oversize. The

results of the theoretical analysis are corroborated by the 3D simulations. The prospects of using these resonators

in the project of a super-power terahertz-band free electron laser, which is currently being developed at the BINP

RAS (Novosibirsk) in collaboration with the IAP RAS (Nizhny Novgorod), are discussed.
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Bragg resonators in the form of waveguide sections

with shallow corrugation of side walls are widely used as

electrodynamic systems of high-power relativistic masers.

These resonators were proposed in [1,2] and implement

one-dimensional distributed feedback (DFB). Just as their

optical counterparts [3], traditional structures of this type

(diagram 1 in Fig. 1, a) provide coupling and mutual scat-

tering of two counter-propagating wave beams: a concurrent

one, which interacts synchronously with the electron flow,

and a counter one, which establishes the feedback cycle.

However, as these resonators grow in size, they lose their

selectivity against transverse mode indices (modes with

differing transverse structures). At the same time, the

construction of higher-power generators based on high-

intensity relativistic electron beams and the shift to shorter

and shorter wavelengths inevitably lead to enhancement of

their oversize factor.

Efficient mode selection in relativistic generators with a

transversally extended interaction region may be achieved

through the use of the so-called
”
two-dimensional“ Bragg

resonators implementing the two-dimensional DFB mech-

anism [4] (diagram 2 in Fig. 1, a). Resonators of this

type feature two-dimensionally periodic corrugation that

provides coupling and mutual scattering of four partial

waves. Two of these waves propagate along and counter

to the electron flow (as in
”
traditional“ resonators), and

the other two waves propagate in the transverse direction.

Earlier studies have shown that such resonators provide

efficient mode selection against the
”
broad“ transverse index

(i.e., coordinate x directed along the resonator plates, see

Fig. 1) through to a system size of lx/λ > 102.

The system may be extended in the second transverse

direction (coordinate y directed along the resonator gap)

with the use of another type of Bragg structures: the so-

called advanced structures, which are specific in that quasi-

cutoff waves are introduced into the feedback circuit [5]
(diagram 3 in Fig. 1, a). This provides an opportunity to

enhance the selectivity of resonators considerably (com-

pared to their
”
traditional“ counterparts) and ensure stable

excitation of the operating mode at an interaction region

size a0/λ ∼ 20−40.

The efficiency of resonators of this new type has been

verified experimentally in free electron masers/lasers, which

have been tested through to the W band at an oversize factor

up to 5λ (with the use of advanced Bragg structures [5]) and
up to ∼ 50λ (with two-dimensional structures [4]).

A combination of selection methods in the above-

described structure types allows one to enhance the oversize

factor in both transverse directions. In the present study, a

Bragg resonator implementing the three-dimensional DFB

mechanism (Fig. 1, b) is proposed. This resonator is a

section of a planar waveguide with corrugation of the

following form:

a = a2D cos(h̄x) cos(h̄z ) + a1D

[

cos(h̄z ) + cos(h̄x)
]

. (1)

If the Bragg resonance condition

h̄ ≈ h (2)

is satisfied, such corrugation provides coupling and mutual

scattering of wave flows propagating in three mutually

perpendicular directions:

[

(

A+z e−ihz +A−z eihz +A+x e−ihx +A−xeihx
)

EA+BEB

]

eiωt .

(3)
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Figure 1. a — Known designs of planar Bragg resonators. 1 —
”
Traditional“ Bragg resonator implementing one-dimensional DFB, 2 —

Bragg resonator with two-dimensional DFB, and 3 — advanced Bragg resonator with a quasi-cutoff feedback wave. Arrows represent

partial wave flows that form a normal wave in each structure type. b — Bragg resonator implementing the mechanism of three-dimensional

DFB. Geometric sizes are indicated. The corrugation structure of plates in the resonator of this type is shown in the inset.

Specifically, the first term in (1) (as in a two-dimensional

Bragg structure [4]) represents mutual scattering of wave

flows A±z and A±x propagating in directions ±z and

±x , respectively, while the second term (as in advanced

Bragg structures [5]) represents the scattering of these

waves into quasi-cutoff wave B , which (according to the

Brillouin theory) may be interpreted as a standing wave

in direction y that is locked between plates forming a

planar waveguide. Here, h̄ = 2π/d, d is the corruga-

tion period, a1D and a2D are the amplitudes of the

corresponding corrugation
”
components“ (spatial harmon-

ics), A±x ;±z and B are the slowly varying amplitudes

of partial waves, and EA,B are functions characterizing

the transverse (along axis y) structure of these waves,

which matches one of the eigen modes of an unperturbed

planar waveguide. Let us assume for simplicity that

waves A±x ;±z are of the lowest TEM type. At the

same time, wave B is one of the TMp-waves of a planar

waveguide; if the oversize is substantial (i.e., a0 ≫ λ),
it has a high transverse index p ≫ 1 and, consequently,

a multitude of variations along the gap (along coordi-

nate y).
Following the coupled-wave approach, which was detailed

in [1], one may characterize the process of mutual scattering

of waves (3) off corrugation (1) using the equations for

their slowly varying amplitudes A±x ;±z (x , z ) and B(x , z )
(cf. [4,5]):

∂Â±z/∂Z ± iδÂ±z ∓ iα2D

(

Â+x + Â−x

)

∓ iα1DB̂ = 0, (4a), (4b)
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∂Â±x/∂X ± iδÂ±x ∓ iα2D

(

Â+z + Â−z

)

∓ iα1DB̂ = 0, (4c), (4d)

∂2B̂/2∂Z2 + ∂2B̂/2∂X2 +
(

δ + 1− iσ
)

B̂

− iα1D

(

Â+z + Â−z + Â+x + Â−x

)

= 0, (4e)

where (X ; Z) = h̄(x ; z ), δ = (ω − ω̄)/ω̄ is the detuning

between the frequency of partial waves and Bragg reso-

nance frequency ω̄ = h̄c , 1 = (ω̄ − ωc)/ω̄ is the detuning

between Bragg frequency ω̄ and cutoff frequency ωc of a

quasi-cutoff wave, σ = s/a0 is the Ohmic loss parameter,

s is the skin layer depth, (Â±x ;±z ; B̂) = (A±x ;±z ;B)/
√

NA;B ,

and NA;B are norms of the corresponding waves. The

coupling coefficients of waves are (cf. [4,5]) α2D = a2D/4a0

and α1D = a1D/
√
2a0.

Analyzing Eqs. (4), one finds that the considered sys-

tem under strong coupling (αLx ,z ≫ 1) features a spec-

trum of high-Q modes, which may be divided into five

families. In the geometric optics approximation (i.e.,
when terms ∼ ∂2B̂/∂(X ; Z)2 in Eq. (4e), which char-

acterize diffraction effects for quasi-cutoff wave B , are

neglected), the corresponding solutions for eigenfrequencies

ωn,m = ω̄(1 + Reδn,m) and Q-factors Qn,m ≈ 1/2Imδn,m of

these modes are given by

δn,m = ±(
√
5± 1)α ±

π2

4
√
5α

(

n2

L2
x

+
m2

L2
z

)

+ i

[

√
5± 1

2
√
5

σ

+
π2

(
√
5± 1)

√
5α2

(

n2

L3
x

+
m2

L3
z

)]

, (5a), (5b)

δn,m = −2α −
π2

4α

(

n2

L2
x

+
m2

L2
z

)

+ i

[

σ +
π2

2α2

(

n2

L3
x

+
m2

L3
z

)]

,

(5c)

δn,m =
π2(n2 + m2)

4αLx Lz
+ i

[

π2σ

2α2

(

n2 + m2

4Lx Lz
+

m2n2

n2L2
z + m2L2

x

)

+
π2(n2 + m2)2

4α2(n2L2
z + m2L2

x )

(

1

Lx
+

1

Lz

)]

, (5d)

δn,m = −1 + iσ, (5e)

where n = 0, ±1, ±2 . . . is the transverse (along axis x)
mode index, and m = 0, ±1, ±2 . . . is the longitudinal

(along axis z ) mode index. The eigenmode spectrum of

the resonator was determined under the assumption of zero

external electromagnetic fluxes and perfect matching for

partial waves in emission from the resonator. For simplicity,

Eqs. (5a)−(5e) were derived under the assumption that the

coupling coefficients of waves remain the same in different

feedback cycles: α2D ≈ α1D ≡ α; it was also assumed that

1 ≪ α.

The spectrum of resonator modes determined within

the geometric optics approximation of the coupled-wave

approach at αLx = αLz = 3 is presented in Fig. 2 (di-
mensions are the same as those of a resonator examined

in a subsequent numerical simulation). The frequencies
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Figure 2. Mode spectrum of the
”
three-dimensional“ planar

Bragg resonator within the geometric optics approximation. Di-

amonds, triangles, squares, and asterisks correspond to mode

families 1 (solutions (5a)), 2 (5b), 3 (5c), and 4 (5d). The

filled circle denotes the eigenmode from family 5 (degenerate
family specified by solutions (5e)). Its frequency and Q-factor

were determined in CST simulations.

of modes are located in the vicinity of δ ≈ (
√
5 + 1)α

and δ ≈ −(
√
5− 1)α (families 1 and 2 specified by (5a)

and (5b)), δ ≈ −2α (family 3, (5c)), δ ≈ 0 (family 4,

(5d)), and δ ≈ −1 (family 5, (5e)). According to our

analysis, the fundamental mode with the highest Q-factor

belongs to family 5. However, modes of this family are

degenerate within the considered approximation in both

frequency Reδn,m ≈ −1 (that matches the cutoff frequency

of quasi-cutoff wave B , which forms the feedback circuit;

i.e., ωn,m ≈ ωc) and Q-factor, which is limited by Ohmic

losses only: Qn,m = QOhm ≈ 1/2σ . This degeneracy is the

result of straightening of dispersion curves in the case when

diffraction effects are neglected in Eq. (4e).
Simulations with CST Microwave Studio were performed

to verify the results of theoretical analysis obtained within

the coupled-wave approach. The Bragg resonator im-

plementing the three-dimensional DFB mechanism was

designed to operate in a frequency band around 0.3 THz

and had the following parameters: lx = lz = 50mm (i.e.,
∼ 50λ), a0 = 5mm (∼ 5λ), d = 1mm, a1D = 0.05mm,

and a2D = 0.14mm (thus, α2D ≈ α1D). Periodic meander-

type functions (see the inset of Fig. 1, b) were used to

approximate harmonic functions (1). The structure was

excited by a short electromagnetic pulse of a dipole located

within it.

The results of modeling of spatiotemporal dynamics of

the high-frequency (HF) field in the resonator are shown in

Fig. 3, a, which presents the HF field spectra at the initial

(1 6 t 6 6 ns) and end (10 6 t 6 15 ns) stages of evolution.
These results suggest that a large number of eigenmodes

of the structure belonging to different families are excited

at the initial stage. Their frequencies agree closely with

solutions (5a)−(5e). The decay and de-excitation of waves
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Figure 3. Results of CST modeling of the
”
three-dimensional“ Bragg resonator in the sub-terahertz frequency range. a — HF field

spectra at the initial (upper fragment) and final (lower fragment) stages; b — spatial structure of the HF field in the resonator at the final

stage of evolution.

then occur over times that are inversely proportional to

their Q-factors. Consequently, the fundamental mode with

the highest Q-factor, which is located at the center of the

band of Bragg scattering at the exact resonance frequency

specified by relation (2), is singled out at the final stage (the
modeled resonator parameters corresponded to 1 = 0; i.e.,

ω̄ ≈ ωc). The HF field decay factor may be used to estimate

the Q-factor of this mode: Q ∼ 4500. The structure of the

HF field in the resonator at the final stage of evolution (see
Fig. 3, b) verifies that a normal wave, which is shaped by

the specified combination of partial wave flows in the form

of four travelling TEM waves and a quasi-cutoff TM10 wave,

is established in the resonator.

Thus, the results of theoretical analysis and com-

puter modeling reveal fine selectivity of the proposed

spatially-extended Bragg resonators that implement the

three-dimensional DFB mechanism. These resonators have

high potential to be used as electrodynamic systems of free

electron lasers and may support stable single-mode lasing

under the conditions of substantial oversize in sub-terahertz

and terahertz ranges. Free electron lasers operating in these

ranges at sub-gigawatt and gigawatt power levels with a
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pulse energy content of ∼ 10−100 J, which exceeds the

one typical of known world-class laser systems of this

kind, are currently being constructed based on a linear

induction accelerator [6] at the BINP RAS (Novosibirsk)
in collaboration with the IAP RAS (Nizhny Novgorod).
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