06.1;13.1

Оже-электронная спектроскопия поверхности МАХ-пленок (Cr_{0.5}Mn_{0.5})₂GaC, окисленной в результате хранения на воздухе

© Т.А. Андрющенко¹, С.А. Лященко¹, А.В. Лукьяненко¹, С.Н. Варнаков¹, С.Г. Овчинников^{1,2}

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Сибирский федеральный университет, Красноярск, Россия E-mail: ata12@iph.krasn.ru

Поступило в Редакцию 16 ноября 2022 г. В окончательной редакции 14 апреля 2023 г. Принято к публикации 18 мая 2023 г.

> Методом оже-электронной спектроскопии в совокупности с ионным травлением проведен анализ химического связывания атмосферного кислорода с хромом и марганцем на поверхности эпитаксиальной МАХ-фазы (Cr_{0.5}Mn_{0.5})₂GaC. Обнаружено, что для данной системы характерно анизотропное окисление, при котором атомы кислорода связываются с атомами хрома и марганца активнее на краях кристаллитов слоистой МАХ-фазы в отличие от базальной плоскости (0001). При этом на последней наблюдается доминирование химической связи Mn–O над связью Cr–O.

> Ключевые слова: МАХ-фазы, оже-электронная спектроскопия, эпитаксиальные пленки, ионное травление.

DOI: 10.21883/PJTF.2023.14.55821.19430

МАХ-фазы принадлежат к семейству атомно-слоистых тройных соединений с общим составом $M_{n+1}AX_n$ (где М — ранний переходный металл, А — чаще всего элементы III-V групп Периодической таблицы элементов (Al, Si, Ga, Ge и т.д.), X — углерод или азот, n = 1 - 3). Среди широкого набора возможных комбинаций МАХ-материалов повышенный интерес представляют тонкие пленки ферромагнитной системы состава $(Cr_{1-x}Mn_x)_2$ GaC при x > 0.3, в которых возможно преодолеть верхний предел концентрации Mn, характерный для объемной МАХ-фазы [1]. В частности, эпитаксиальные пленки (Cr_{0.5}Mn_{0.5})₂GaC демонстрируют ферромагнитное упорядочение даже при комнатной температуре благодаря высокой концентрации Mn [1], но при этом все еще обладают высокой химической стойкостью из-за наличия химической связи Cr-C [2]. В настоящее время еще слабо изучены процессы окисления поверхности таких (Cr, Mn-содержащих) МАХ-материалов на воздухе, без дополнительных защитных покрытий. Понимание этих процессов дополнительно могло бы помочь в выборе функциональных групп для терминированных кислородом Cr, Mn-содержащих МХенов — квазидвумерных материалов, получаемых химическим расщеплением МАХ-фазы путем удаления А-компонента [3].

Целью настоящей работы является анализ результата окисления атмосферным кислородом атомно-слоистой МАХ-фазы $(Cr_{0.5}Mn_{0.5})_2$ GaC вследствие ее хранения на воздухе с помощью совокупности методов оже-электронной спектроскопии (ОЭС) и ионного травления. Эксперименты проводились в Лаборатории магнитных МАХ-материалов Института физики им. Л.В. Киренского на двух образцах эпитаксиальной пленки $(Cr_{0.5}Mn_{0.5})_2$ GaC толщиной 12.5 и 40.3 nm, ранее синтезированных в Линчёпингском университете (Швеция)

методом магнетронного соосаждения на подложку MgO(111). Детали синтеза исследуемых образцов приведены в работе [4]. Образцы хранились при нормальных условиях в помещении, где не проводились работы с кислотами, щелочами и другими едкими веществами, при комнатной температуре, относительной влажности $60 \pm 10\%$ на протяжении четырех лет. По данным сканирующей электронной микроскопии (см. рис. 1, *b* и *d* в работе [2]) образец МАХ-пленки толщиной 12.5 nm имеет развитую поверхность, значительная часть которой относится к боковым, непараллельным плоскости MgO(111) граням текстурированных кристаллитов. Образец МАХ-пленки толщиной 40.3 nm имеет более однородную морфологию с преобладанием базальных плоскостей, параллельных поверхности MgO(111).

Образцы с латеральными размерами около $1.5 \times 2 \, \text{mm}$ поочередно закреплялись на держателе и отжигались в сверхвысоком вакууме (СВВ) с базовым давлением $5 \cdot 10^{-7}$ Ра при 300°С в течение 3 h. Отжиг проводился для удаления адсорбированной воды и очистки поверхности образцов от возможных органических загрязнений как результата хранения на воздухе. Для определения влияния атомарного кислорода и гидроксид-ионов ОН, образующихся в процессе диссоциации молекул воды внутри вакуумной камеры при нагреве образцов, осуществлялся анализ остаточных газов с помощью масс-спектрометра SRS RGA100. В процессе нагрева образцов отношение парциальных давлений H₂O/(O+OH) не изменялось с точностью 10⁻¹¹ Ра, что указывает на десорбцию молекул воды без последующей диссоциации. После отжига и охлаждения каждого образца до комнатной температуры снимались данные ОЭС с помощью системы ErLEED 100 производства SPECS. Энергия первичных электронов составляла 3 keV, диаметр электрон-

Рис. 1. Данные ОЭС для образца толщиной 12.5 nm до (*a*) и после (*b*) ионного травления. Цифрами отмечены пики от углерода в форме карбида: $I - 252 \,\text{eV}, 2 - 272 \,\text{eV}$. Цветной вариант рисунка представлен в электронной версии статьи.

ного пучка < 1 mm, ток эмиссии электронов ~ 0.4μ A, ускоряющее напряжение 660 V, шаг записи спектров 0.1 eV. Калибровка детектора спектрометра на оже-пики Cr и Mn проводилась по поликристаллическим пленкам этих элементов толщиной около 50 nm, синтезированным магнетронным осаждением в CBB-камере из мишеней массовой чистоты 99.95% непосредственно перед измерением оже-спектров. После записи оже-спектров

на $(Cr_{0.5}Mn_{0.5})_2$ GaC без извлечения образцов из CBB проводилось травление ионами аргона. Ионный пучок диаметром около 15 mm был направлен на поверхность образца под углом 60° от нормали. Образец вращался вокруг оси со скоростью 0.5 rpm. Ускоряющее напряжение ионной пушки 1.5 kV, давление аргона в камере 0.013 Pa. Время травления для обоих образцов составляло 60 min, что соответствовало уменьшению толщины

Рис. 2. Данные ОЭС для образца толщиной 40.3 nm до (a) и после (b) ионного травления. Цифрами отмечены пики от углерода в форме карбида: a) 1 - 250 eV, 2 - 271 eV, 3 - 275 eV; b) 1 - 250 eV, 2 - 260 eV, 3 - 271 eV, 4 - 275 eV. Цветной вариант рисунка представлен в электронной версии статьи.

пленки состава $(Cr_{0.5}Mn_{0.5})_2GaC$ в среднем на 3 nm (по результатам предварительной калибровки скорости травления с применением атомно-силовой микроскопии и маски из фоторезиста).

После ионного травления образцы (Cr_{0.5}Mn_{0.5})₂GaC повторно отжигались в CBB до 300°C в течение 30 min для десорбции аргона. В завершение при комнатной

температуре повторно проводилась запись оже-спектров в тех же координатах.

Полученные данные ОЭС для обоих образцов после вычитания фона и сглаживания методом Савицкого–Голея показаны на рис. 1 и 2. Там же для детального анализа полученных данных приведены результаты разложения оже-спектров с использованием

До травления			После травления		
Номер пика	E_{\min}, eV	<i>A</i> , a. u.	Номер пика	E_{\min}, eV	<i>A</i> , a. u.
1	34.5 ± 0.4	10.10 ± 0.11	1	35.74 ± 0.18	12.5 ± 0.3
2	46.41 ± 0.14	3.1 ± 0.2	2	47.5 ± 0.8	1.4 ± 0.2
3	51.22 ± 0.09	0.7 ± 1.2	3	52.0 ± 0.7	1.5 ± 0.3
4	477.9 ± 0.4	1.38 ± 0.09	4	478.4 ± 0.7	2.33 ± 0.13
5	493.39 ± 0.13	9.7 ± 0.2	5	493.2 ± 0.3	9.5 ± 0.5
6	512.57 ± 0.15	25.1 ± 1.2	6	512.7 ± 0.8	16.8 ± 0.4
7	512.44 ± 0.08	7.10 ± 0.14	7	513.7 ± 0.4	9.8 ± 0.7
8	588.1 ± 0.5	3.0 ± 1.0	8	542.9 ± 1.7	15.6 ± 0.9
			9	590.4 ± 1.4	20.2 ± 0.9

Таблица 1. Параметры подгоночных дифференциальных пиков Гаусса оже-спектра образца толщиной 12.5 nm

Таблица 2. Параметры подгоночных дифференциальных пиков Гаусса оже-спектра образца толщиной 40.3 nm

До травления			После травления		
Номер пика	E_{\min}, eV	<i>A</i> , a. u.	Номер пика	E_{\min}, eV	<i>A</i> , a. u.
1	40.9 ± 1.6	65.1 ± 1.8	1	39.0 ± 0.6	60.0 ± 1.4
2	49.4 ± 1.4	17.1 ± 0.7	2	51.9 ± 0.3	24.0 ± 1.1
3	54.6 ± 1.7	14.9 ± 0.9	3	59.4 ± 0.6	5.4 ± 0.8
4	477.9 ± 0.6	4.9 ± 0.3	4	81.2 ± 1.8	3.9 ± 1.4
5	492.4 ± 0.2	18.4 ± 0.4	5	477.7 ± 1.8	1.8 ± 0.3
6	514.00 ± 0.08	33.7 ± 0.3	6	492.4 ± 0.5	5.9 ± 0.2
7	512.6 ± 0.3	9.4 ± 1.1	7	513.7 ± 0.6	14.7 ± 0.3
8	588.1 ± 1.1	7.2 ± 0.5	8	514.17 ± 0.09	25.7 ± 0.6
			9	531.3 ± 0.3	18.8 ± 0.7
			10	542.7 ± 0.6	4.1 ± 0.3
			11	591.1 ± 0.9	4.4 ± 0.3

дифференциальных пиков Гаусса в виде [5]:

$$f(x) = y_0 - A(x - x_c) \exp\left(-\frac{(x - x_c)^2}{2w^2}\right) / w^2, \quad (1)$$

где A — амплитуда интегрального пика, x_c — положение точки перегиба дифференциального пика на спектре, w — энергия от точки перегиба дифференциального пика до точки минимума амплитуды.

Значения энергии оже-пиков E_{min} определялись как положения минимумов дифференциальных подгоночных пиков следующим образом: $E_{min} = x_c + w$. Параметры подгоночных пиков для образцов толщиной 12.5 и 40.3 nm представлены в табл. 1 и 2 соответственно. Выбор начальных параметров и количество подгоночных пиков определялись наилучшим согласованием между формой экспериментальных спектров и кривых, описывающих сумму подгоночных пиков. Подгонка пиков проводилась до достижения наименьших значений погрешностей параметров *A*, x_c и *w*.

В результате разложения спектров можно заметить, что для обоих образцов большая интенсивность пика около 513 eV обусловлена наложением пиков марганца и кислорода с близкими значениями энергии [6-8]. Увеличение энергии оже-пика марганца для образца толщиной 12.5 nm (пик 7 в табл. 1) на $1.3 \pm 0.4 \, \text{eV}$ в результате травления вызвано разрывом химической связи марганца с кислородом [9]. Для спектров образца толщиной 40.3 nm изменение энергии оже-пиков марганца (пик 7 в табл. 2) имеет аналогичный характер: увеличение в результате ионного травления на $1.1 \pm 0.7 \,\text{eV}$. После ионного травления также стали различимы оже-пики марганца и хрома (соответственно пики 9 и 10 в табл. 2). Дополнительно мы обнаружили, что у МАХ-фазы (Cr_{0.5}Mn_{0.5})₂GaC энергия оже-пиков марганца в целом меньше, чем для чистой поликристаллической пленки металла. Основываясь на данных работы [10], а также на принадлежности Ga и Ge к одному классу А-компонентов МАХ-фазы, можно объяснить смещение пиков Mn в область низких энергий образованием химической связи между Mn, Ga и C.

В работе [11] показано, что при образовании оксида хрома Cr_2O_3 происходят изменения в оже-спектрах хрома, а именно, наблюдается смещение оже-пика хрома в низкоэнергетической области в сторону уменьшения кинетической энергии и появление второго (дополни-

тельного) пика, отстоящего от основного на 13 eV в сторону большей энергии. В спектрах образца толщиной 12.5 nm видны пики с энергиями около 35 и 47 eV (пики 1 и 2 в табл. 1), что, согласно данным [11], является признаком связи Cr-O. Разложение низкоэнергетической области экспериментального спектра образца толщиной 40.5 nm на четыре пика, аналогичных пикам разложения для спектра образца толщиной 12.5 nm, выполнить не удается, что свидетельствует об отсутствии связи Cr-O. Также обнаружено, что энергия оже-пиков хрома в спектрах образца 40.3 nm после ионного травления (пики 1 и 9 в табл. 2) имеет бо́льшие значения, чем в спектрах чистого хрома (36.9 и 530.4 eV). Эти изменения могут быть следствием уменьшения энергии связи электронов с ядром в атомах Cr из-за образования химической связи с атомами Mn, Ga и C.

На спектрах обоих образцов до и после травления видны характерные для карбидов [12] оже-пики углерода около 275 eV. В спектрах образца толщиной 40.3 nm отчетливо видно разделение минимума основного пика углерода на два пика (рис. 2), что является признаком образования карбидов хрома [13,14]. Признаки такого "раздвоения" пика (в виде несимметричности его склонов) проявляются и для образца толщиной 12.5 nm. Пик 3 в составе спектра после ионного травления образца толщиной 12.5 nm (табл. 1) и пики 2-4 в составе спектра после ионного травления образца толщиной 40.3 nm (табл. 2) идентифицируются как слабые оже-пики галлия [6-8]. Несовпадение значений их энергии для двух образцов мы считаем следствием различий в химическом окружении или образования связей с кислородом, что не удается подтвердить из-за отсутствия литературных данных по этому вопросу.

Подводя итог, можно отметить, что у обоих образцов до ионного травления для марганца наблюдаются только пики, соответствующие его химической связи с кислородом. Остаточное смещение пиков Mn в область меньших по сравнению с энергией для чистого металла значений может быть вызвано образованием химической связи между Mn, Ga и C. Информацию о связи марганца с другими элементами нам не удалось получить из-за возможного химического сродства атомов Mn и Cr в М-слое МАХ-фазы (Cr_{0.5}Mn_{0.5})₂GaC. Для хрома можно отметить, что признаки его химической связи с кислородом обнаружены только для пленки толщиной 12.5 nm как до, так и после травления, что приводит к следующему выводу: хром на воздухе окисляется только в разрывах эпитаксиальной МАХ-пленки (Cr_{0.5}Mn_{0.5})₂GaC, которые имеются в большом количестве у образца толщиной 12.5 nm, а в пределах базальной плоскости кислород связывается преимущественно с атомами Mn. Из значений выхода распыления для хрома и марганца из работы [15] следует, что скорость мгновенного распыления [16] для марганца примерно в 1.5 раза больше, чем для хрома. Этим объясняется разрушение связи Mn-O, но сохранение связи Cr-O в ходе ионного травления пористого МАХ-слоя образца толщиной 12.5 nm. Использование

метода разложения оже-спектров на дифференциальные пики Гаусса позволило установить различия результатов окисления MAX-пленок $(Cr_{0.5}Mn_{0.5})_2GaC$ в зависимости от морфологии поверхности образцов и сделать заключение об анизотропном характере их окисления.

Благодарности

Авторы выражают благодарность исследовательской группе Й. Розен (Линчёпингский университет, Швеция) за предоставление образцов для анализа.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 21-12-00226 (http://rscf.ru/project/21-12-00226/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Mockute, J. Lu, E.J. Moon, M. Yan, B. Anasori, S.J. May, M.W. Barsoum, J. Rosen, Mater. Res. Lett., 3 (1), 16 (2015). DOI: 10.1080/21663831.2014.944676
- [2] Iu.P. Novoselova, A. Petruhins, U. Wiedwald, D. Weller, J. Rosen, M. Farle, R. Salikhov, Mater. Res. Lett., 7 (4), 159 (2019). DOI: 10.1080/21663831.2019.1570980
- [3] Z. Chen, Z. Chang, Z. Liu, N. Zhou, Appl. Surf. Sci., 602, 154375 (2022). DOI: 10.1016/j.apsusc.2022.154375
- [4] A. Petruhins, A.S. Ingason, J. Lu, F. Magnus, S. Olafsson, J. Rosen, J. Mater. Sci., 50 (13), 4495 (2015).
 DOI: 10.1007/s10853-015-8999-8
- [5] J. Marien, T. Wagner, G. Duscher, A. Koch, M. Rühle, Surface Sci., 446 (3), 219 (2000).
 DOI: 10.1016/S0039-6028(99)01172-3
- [6] L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, R.E. Weber, *Handbook of Auger electron spectroscopy* (Physical Electronics, Minnesota, 1976), p. 33, 81, 103.
- [7] K.D. Childs, B.A. Carlson, L.A. LaVanier, J.F. Moulder, D.F. Paul, W.F. Stickle, D.G. Watson, *Handbook of Auger electron spectroscopy* (Physical Electronics, Minnesota, 1995), p. 317, 332, 338.
- [8] G.E. McGuire, Auger electron spectroscopy reference manual (Plenum Press, N.Y., 1979), p. 10, 45, 57.
- [9] C.N.R. Rao, D.D. Sarma, Phys. Rev. B, 25 (4), 2927 (1982).
 DOI: 10.1103/PhysRevB.25.2927
- [10] M. Petit, M.T. Dau, G. Monier, L. Michez, X. Barre, A. Spiesser, V.L. Thanh, A. Glachant, C. Coudreau, L. Bideux, Ch. Robert-Goumet, Phys. Status Solidi C, 9 (6), 1374 (2012). DOI: 10.1002/pssc.201100448
- [11] R. Weißmann, R. Koschatzky, W. Schnellhammer, K. Müller, Appl. Phys., 13 (1), 43 (1977). DOI: 10.1007/BF00890718
- [12] T.W. Haas, J.T. Grant, G.J. Dooley III, J. Appl. Phys., 43 (4), 1853 (1972). DOI: 10.1063/1.1661409
- [13] M.A. Smith, L.L. Levenson, Phys. Rev. B, 16 (4), 1365 (1977). DOI: 10.1103/PhysRevB.16.1365

- [14] S. Danyluk, J.Y. Park, D.E. Busch, Scripta Met., 13 (9), 857 (1979). DOI: 10.1016/0036-9748(79)90174-1
- [15] M.P. Seah, Thin Solid Films, 81 (3), 279 (1981).DOI: 10.1016/0040-6090(81)90490-9
- [16] Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии, под ред. Д. Бриггса, М.П. Сиха (Мир, М., 1987), с. 166. [Practical surface analysis by Auger and X-ray photoelectron spectroscopy, ed by D. Briggs, M.P. Seach (John Wiley and Sons, Ltd, Chichester, 1983), p. 166.].