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The solution of the
”
paradox“in scattering theory is considered, according to which the extinction cross section

is expressed in terms of the forward scattering amplitude (the so-called
”
optical theorem“), whereas for a point

source, and as a consequence, for any emitter located at a finite distance from the scatterer, a similar ratio is

often written through a scattered field near the emitter, i.e. determined by
”
backscattering“. A clear picture of

the formation of radiation losses during the transition of energy from the source to the scatterer is presented. It

is shown that although the field backscattered to the source determines the change in its radiation characteristics

(the Purcell effect), the optical theorem includes an extinction factor which is generally related to the work of the

incident wave on the currents induced in the scatterer. This factor passes into the forward scattering amplitude in

the limiting case of a plane incident wave.
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Introduction

Most physical measurements are ultimately associated

with the energy transition from one form to another. In the

theory of wave or particle scattering in describing the energy

balance the so-called optical theorem plays a fundamental

role (see, for example, [1–6], and also the history of the

problem in [7]; in foreign literature the names
”
extinction

theorem“,
”
forward scattering theorem“,

”
optical cross-

section theorem“ are also used). According to this theorem,

the extinction cross-section, i.e. the total attenuation cross-

section of a plane wave incident on the scatterer σext, which

is equal to the sum of the scattering and absorption cross-

sections, is expressed in terms of the imaginary part of

the scattering amplitude in the
”
forward“ direction ImA(0).

This ratio is universal, i.e. it does not depend on the

structure of the scatterer. With appropriate minor modifi-

cations, it is performed for a wide class of wave problems

in optics [1–3], electrodynamics [4], quantum mechanics [5],
acoustics [8], elasticity theory [9], seismology [10], etc.,

covering both bulk and surface [11]waves. Thus, in the

case of an electromagnetic field for the plane incident wave

with a unit polarization vector e0, the scalar amplitude

A(0) goes into the projection of the corresponding vector

amplitude A(0) onto the complex conjugate value e∗0 , and

the optical theorem becomes σext = (4π/k0)Im e0
∗A(0),

where k0 — wave number.

The optical theorem can also be extended to the case of

field excitation by a point source, which in some special

settings was considered for the first time in [12]. The

description of the point source makes it possible to pass

from the usual formulation of the optical theorem for the

plane incident wave to the case of an arbitrary incident

wave, and to consider, in particular, the energy transfer

to the scatterer from distributed sources of radiation close

to it. Among the various generalizations of the optical

theorem described in many dozens of papers, this case

gained particular importance due to the development of

nanooptics and photonics, where the use of the optical

theorem is often associated with the Purcell factor, which

describes changes in the emission of a fluorescent molecule

due to the nanoparticles presence near it [13]. Recently,

the author of this paper proposed an operator approach to

obtain the optical theorem [14,15], which makes it possible

to significantly simplify its derivation in the general case,

including the case of point source.

In the literature there is often an opinion that for a point

source the extinction cross section is expressed in terms

of the scattered field near the source, i.e., it is actually

connected with scattering in the
”
backward“ direction.

Acceptance of this thesis leads to an obvious
”
paradox“.

Indeed, the plane incident wave can be considered as

a limit special case of wave created by an infinitely

distant point source. But if for the radiation of the point

source the extinction on the scatterer was determined by

backscattering, then the transition to the infinitely distant

source could not give the usual optical theorem related

to
”
forward“ scattering, since it is difficult to imagine a

situation when during simple limit transition the meanings

”
backward“ and

”
forward“ exchange places.

Nevertheless, this erroneous opinion is quite widespread.

Thus, in the Russian translation of a well-known monograph

on nanooptics [13], when discussing the scattering of

radiation produced by point dipole source, the following

statement is contained:
”
According to the optical theorem,

the relaxation power (the sum of the scattered and absorbed
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powers) can be expressed in terms of the backscattered

field“ ([13]). This formulation is incorrect and obviously

contradicts the usual form of the optical theorem, in which

the amplitude of
”
forward“ scattering appears. Comparison

with the original shows that the correct formulation of the

optical theorem is given in the English text. However,

this fragment
”
corrected“ by the translator, can hardly be

attributed to chance. Apparently, the translator kept in

mind the case of a point source actually related to the

backscattering, which was further considered in [13] in

relation to the Purcell factor, and identified this case with

the optical theorem characterizing the scatterer.

If the above example can still be attributed to termino-

logical confusion, then there are papers in which attempts

were made to directly
”
explain“ the optical theorem by

backscattering. In the case of plane incident wave, as

an example of this kind, one can specify the paper [16],
in which for scattering by an ideally conducting sphere

the optical theorem was related to backscattering. In

order to emphasize the radical difference from the usual

interpretation of
”
forward scattering theorem“, the term

”
backward scattering theorem“ was even introduced. This

conclusion was criticized in the paper [17], where the formal

nature of the reasoning [16]and the validity of the traditional

approach were emphasized.

In the case of point source this erroneous thesis about the

decisive role of backscattering was also developed in [18].
In it, an attempt was made to use the optical theorem

for the point source to explain the physics of the Purcell

effect in terms of the Wheeler−Feynman theory [19]. At

the same time, despite the correct description of energy

flow balances, the optical theorem for the point source was

formulated in [18] as σext = (4π/k0) Im e∗scp, where esc is

the polarization vector of the backscattered wave, and p is

the dipole moment of the source, i.e., the extinction cross-

section σext, was expressed in terms of the field scattered

back to the source. This relation is incorrect and contradicts

the results of papers [12,14,15] for the field of the point

source. The absence in literature of the explanation of such a

contradiction can confuse the insufficiently prepared reader.

The purpose of these methodological notes is to clarify this

issue.

Section 1 describes the local laws of energy conservation

related to the total field separation into the field of the

incident and scattered waves. Here, in contrast to traditional

approaches, attention is focused on the separation of radia-

tion (currents) sources into given a priori and secondary

ones, i.e., induced in the scatterer. The presentation

is carried out on the example of a simple scalar wave

equation. This simplifies the notations and ensures digress

from details that are not essential for the problem under

consideration. The final balance relations remain unchanged

also for the electromagnetic problem, including the case of

anisotropic as well as bianisotropic scatterers (see remarks

and references given below). Section 2 considers the

transition from local to integral conservation laws. This

Section extends the results of the papers [18,20] on the

energy balance for the electromagnetic problem, giving a

visual description of power flows and the formation of

radiation losses on a simpler example of a scalar field.

Section 3 compares different approaches to the optical

theorem for a point source. In the Conclusion the main

conclusions are formulated, revealing the reasons for the

occurrence of the indicated
”
paradox“, and allowing us to

avoid such errors in the future.

1. Local energy conservation laws in the
scattering problems

The aforementioned
”
paradox“ is associated with an

incorrect interpretation of the energy balance conditions in

the scattering problem. We present a brief derivation of

these conditions using the scalar wave field model.

Consider the scattering of a monochromatic field (mul-

tiplier e−iωt , where ω — angular frequency, and t —
time is omitted everywhere) with a complex amplitude

ut = ut(r) on scatterer located in free space and limited by

a finite volume Vsc with an effective scattering potential

ν = ν(r). In electrodynamic problems, when describing

scattering by heterogeneities of the permittivity ε(r), the

value −k2
0δε(r) usually acts as ν , where δε(r) = ε(r)−1 —

difference of ε(r) from the permittivity of the medium

(see, for example, [4]).
Let us assume that the field is generated by given

distributed (currents) sources q0 = q0(r) occupying a finite

volume V0 and located outside the scatterer volume Vsc ,

so that q0(r)ν(r) ≡ 0 (see Figure). The case of the point

source corresponds to
”
contracting“ q0(r) to a delta function

localized at some point r0, q0(r) ∼ δ(r− r0). The total

field ut in the case under consideration is expressed as the

sum ut = u0 + us of the field of the incident u0 ≡ G0q0 and

scattered us ≡ G0νut waves, where G0 = (1 + k2
0)

−1 —
Green’s operator for free propagation corresponding to the

scalar wave equation (the explicit form of the operator G0

and the corresponding integral expressions for u0 and us is

given, for example, in [14]).
It can be seen from the definition of us = G0νut that

the scattered wave can be considered as generated by the

induced source qs ≡ νut , i.e. us = G0qs . In this case, the

total field is represented as ut = G0qt , where the total source

corresponds to the sum of the given q0 and induced qs

sources, qt = q0 + qs . Each of the fields ut, u0 and us

satisfies the same wave equation of the form (1 + k2
0)u = q,

but with different sources qt, q0 and qs , and, generally

speaking, with different boundary conditions that ensure the

uniqueness of the problem solution.

In accordance with the total field division into incident

and scattered waves, ut = u0 + us , the quadratic in field

time-averaged energy flux density vector

st ≡ Im(u∗

t ∇ut) = Im[(u0 + us)
∗∇(u0 + us)]

is represented as sum of three flows:

st = s0 + ss + se. (1)
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Balance of energy flows in the scattering problem. Solid lines

represent
”
energy“, wavy —

”
interference“ energy flows.

Here s0 = Im(u∗

0∇u0) and ss = Im(u∗

s ∇us) correspond

to the incident u0 and scattered us waves separately,

and the vector se = Im(u∗

0∇us + u∗

0∇us ) can be called an

interference flow. This vector has no independent energy

meaning and is associated with the overlap of the incident u0

and scattered us waves. Also note that the directly measured

value in the problem under consideration is only the flow st
associated with the total observed field ut , while

”
partial

flows“ s0, ss and se play auxiliary role.

Each of the flows st, s0 and ss corresponds respectively

to the fields ut, u0 and us of the sources qt, q0 and qs and

satisfies the local laws of energy conservation following from

the wave equation

∇s j = w j , (2)

where j = t, 0, s . The values here on the right

w j = Im(u∗

j q j) (3)

have the meaning of local power values describing the

energy exchange between the corresponding fields u j and

sources q j . These values can be both positive and negative,

which corresponds to the presence of either sources or

drains of field energy (the latter occurs in the case of an

absorbing scatterer). Then, all sources q j are considered as

given, although finding the explicit form qs and qt requires

solving the scattering problem.

It follows from (1)−(3) that the interference flow density

se = st−ss−s0 also satisfies equation (2), but with a different

form of the right side

we = Im(u∗

0qs + u∗

s q0). (4)

In this case, the total power w j at each point in space is

represented as a sum

w t = w0 + ws + we, (5)

where each of the values w j corresponds to the correspond-

ing flow s j from (1). Thus, all densities of time-averaged

flows s j ( j = 0, s, t, e) satisfy the laws of conservation (2)

of the same form, but with different values of volume

”
sources of flows“ w j . Local conservation conditions (2)
contain the entire physics of the energy balance.

For the energy flows st, s0 and ss , the fulfillment of local

laws of conservation (2) seems to be physically obvious,

since they reflect the generation (or drain) of the divergence
of the corresponding flows at each point where the work of

sources (qt, q0 and qs) is performed on the corresponding

distinguished part of the field (ut, u0 and us). In the case

of interference flow se , the fulfillment of (2) looks less

trivial, since the flow se has no direct energy meaning. The

corresponding
”
interference power“ is distributed between

the source q0 and the scatterer qs . In this case, according

to (3), for the flow s0 the source w0 is concentrated in

the area V0 of the field source q0, the source ws of the

flow ss — inside the scatterer in the region Vsc , while for st
and se the corresponding sources are w t and we , according

to (4) and (5), differ from zero both inside the source (in
the region V0) and inside the scatterer (in region Vsc).
Local conservation laws of the form (1) and (2) are

also preserved for the electromagnetic problem. In this

case, the energy flow is expressed by the Poynting vector

s = 1
2
ReE×H∗, and the scalar field u transforms into

the electric field strength vector E, u = E [15,20,21],
which for a bianisotropic scatterer is supplemented by

the magnetic field strength H, u = (E,H) [22]. In this

case, Maxwell’s equations are used instead of the original

scalar wave equation. An explicit form of sources w j for

the electromagnetic problem (without introducing induced

currents) is given in [20].

2. Integral conservation laws and optical
theorem

Integrating local conservation laws (2) over an arbitrary

volume V and using the Gauss−Ostrogradsky theorem, it is

easy to obtain various integral forms of balance equations.

Such equations relate the total energy flows leaving outside

through the surface 6V of volume V with the work of

sources W inside V :

S j ≡

∮

6V

s jd6 =

∫

V

∇s j dr =

∫

V

w jdr ≡ W j (6)

(here j = t, 0, s, e). In this case, the negative values of the

integral flows S j will correspond to the predominance of

the time-averaged local values of the flows flowing inside V
through the surface 6V . The corresponding negative power

values W j describe the work of the field performed on the

sources inside the volume V , i.e., losses of the field energy

(
”
drains“).
From this obvious consequences follow. If the considered

volume V does not contain sources w j , then the total

energy flow S j through the surface V corresponding to the

power w j will be equal to zero, i.e., flow entering inside V
is equal to outgoing. If the volume V completely covers the

Technical Physics, 2023, Vol. 68, No. 3



On a
”
paradox“ in the scattering theory 311

sources w j , then further increase in V does not change the

total flow S j through the surface V until this increase affects

other sources or drains of energy.

Integrating both sides (2) over an arbitrary volume V
according to the left side (6) gives

St = S0 + Ss + Se. (7)

Here, each of the total flows S j is expressed as powers W j

corresponding right-hand side in (6), and

Wt = W0 + Ws + We. (8)

According to (6), relations (7) and (8) are formally

equivalent. However, they focus attention on different

physical aspects of the problem. Equality (7) relates to

flows propagating in space, while (8) relates powers W j

determined by local densities w j . The latter correspond to

the interaction of the field with given or induced sources at

certain points in space.

Choosing different volumes of integration for (7) and (8)
it is easy to obtain the results of papers [18,20] related to

the energy balance conditions. Let’s consider this approach

in more details.

2.1. Radiation losses

If we subtract from an arbitrary large volume V
containing the sources together with the scatterer the

volumes of the sources and the scatterer, i.e., consider

V1 = V/(V0 ∪Vsc) (inside V1 all powers w j = 0, i.e. there

is no dissipation or inflow of field energy), then the total

flow St through the surface V1 goes to zero, St = 0. The

surface V1 consists of the outer surface 6V of the volume V
and two inner surfaces V0 and Vsc , the perpendiculars to

which are opposite to the perpendiculars to the surfaces V0

and Vsc . Keeping this in mind, the condition St = 0 takes

the form

St =

∮

6V

st d
∑

−

∮

6V0

st d
∑

−

∮

6Vsc

st d
∑

= 0,

so
∮

6V

st d
∑

=

∮

6V0

st d
∑

+

∮

6Vsc

st d
∑

. (9a)

This condition leads to a physically obvious energy

conservation law relating the total flows of radiated Sem and

absorbed Sabs powers with the flow of radiative losses Srad.

Let us write this condition for the case of the absorbing

scatterer as:

Srad = Sem − Sabs . (9b)

Here, the radiation loss flow Srad going to infinity, the

radiation flow of sources Sem, and the flow absorbed by the

scatterer Sabs are expressed as

Srad =

∮

6V

std
∑

, Sem =

∮

6V0

std
∑

, Sabs = −

∮

6Vsc

std
∑

.

(10)

The sign
”
minus“ in the definition Sabs corresponds to

the flow going to the scatterer, so that in the presence

of absorption Sabs > 0. The corresponding Sabs power

absorbed by the scatterer is

Wabs ≡ −

∫

Vsc

Im(u∗

t qs )dr. (11)

Relation (9) can be considered as the additivity condition

of the corresponding st total fluxes leaving the volumes V0

and Vsc , which are simply summed on the surface enclosing

these volumes. It is also met, if we replace in (9a) the

flow st by any of the partial flows s0, ss or se , because

inside V1 there are also no sources of each of them. When

st in (9a) is replaced by s0, the integral over the surface

6Vsc , inside which there are no sources w0 corresponding

to s0, goes to zero, so (9a) becomes

∮

6V

s0 d
∑

=

∮

6V0

s0 d
∑

.

This relation expresses a physically obvious condition

for the conservation of the total flow created by given

sources q0 when radiation propagates from the surface 6V0

to any enclosing V0 surface 6V in free space. A similar

relation is also valid for the flow of scattered radiation ss .

se substitution in (9a) gives the additivity condition for

interference flows that is less obvious than the law of

conservation of energy (9b)

∮

6V

se d
∑

=

∮

6V0

se d
∑

+

∮

6Vsc

se d
∑

, (12)

which is met for any volume V containing both sources

(i.e. volume V0) and scatterer (volume Vsc). In the case of

an absorbing scatterer playing the role of a drain, it is natural

to take the second term in (12) with minus sign, introducing

the extinction flow entering the scatterer (see Section 2.2).

It follows from (12) that far from the scatterer and source

the total interference flow is equal to the simple sum of

similar flows from given and induced sources. This flow,

like the total flow Srad, remains unchanged as the volume V
increases, i.e., when moving away at arbitrary distances from

the system under consideration. In this case, relations (9a)
and (12) are also met for fields in the near zone, when the

chosen surface V approaches the surface of the source V0 or

the scatterer Vsc .

2.2. Scatterer and optical theorem

For the arbitrary volume V covering only the scatterer but

not the sources (Vsc ⊂ V but V0 6⊂ V , so q0 = 0 inside V )
in (7) and (8) W0 = S0 = 0. With this choice of V in the

case of the absorbing scatterer the total outgoing flow St

is equal with minus sign to the absorbed energy flow
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Sabs (10). Let’s introduce notations

Sext ≡ −Se = −

∮

6V

sed
∑

, Wext ≡ −We = −

∫

Vsc

Im(u∗

0qs)dr

(13)
for the flow entering Vsc and the corresponding power. As

a result, from (7) and (8) we obtain

Wext = Ws + Wabs , Sext = Ss + Sabs . (14)

Here, the power and flow of the scattered field are

expressed as

Ws =

∫

Vsc

Im(u∗

s qs )dr, Ss =

∮

6V

ss d
∑

. (15)

Relations (14) are equivalent to the optical theorem

expressing the extinction power as the sum of the absorption

and scattering powers, which can also be expressed in terms

of flows. In the literature, the term
”
optical theorem“ is

often used directly in relation to balance relations (14)
without going over to the scattering amplitude. Most

recently, the optical theorem in the form of integral rela-

tions (14) found wide application in obtaining fundamental

physical boundaries of absorption and scattering (see, for
example, [22–24], as well as the literature referenced there).
Note that the optical theorem (14) for powers also follows

directly from the representations Wabs ,Wext and Ws in the

form (11), (13) and (15), and representation of the field as

the sum of the incident and scattered waves: ut = u0 + us .

Such a generalized form of the optical theorem is also valid

for the case of near fields, when the considered volume V
approaches the scattering volume Vsc .

2.3. Source radiation and amplification factor

Another choice of V , also considered in [18,20], relates
to the description of the Purcell effect, which describes the

influence of the scattering object presence on the radiation

power of given currents q0. In this case, volume covering

only the region V0 of the source q0, but not the scatterer is

chosen as V . Then qs = 0 inside V and in (7) and (8) the

terms corresponding to the scatterer are zero, Ws = Ss = 0.

In this case (7) and (8) take the form

Wem ≡

∫

V0

Im(u∗

t q0)dr = W0 + We,

Sem ≡

∮

6V

st d
∑

= S0 + Se . (16)

Here the notation Wem is introduced for the radiation

power of the source, leaving it through the surface V0. At

that, in (16) the values

W0 =

∫

V0

w0dr =

∫

V0

Im(u∗

0q0)dr, S0 =

∮

6V

s0 d
∑

(17)

correspond to the source q0 radiation if the scatterer is

absent. The last terms in (16) describe the interference

and are equal to

We =

∫

V0

wedr =

∫

V0

Im(u∗

s q0)dr, Se =

∮

6V

se d
∑

. (18)

The interference power We describes the radiation power

change of the given source Wem due to the scatterer

presence, i.e., it represents the Purcell effect. The expres-

sion We (18) is usually associated with the amplification

factor, although the scatterer presence can also lead to

decrease in the power of radiation losses due to energy

absorption by the scatterer. In the expression (16) for the

emitted flow Sem, the flows S0 and Se are preserved, i.e., do

not depend on the choice of volume V enclosing the source,

but not affecting the scatterer. Note that, in accordance

with the definitions introduced the interference flow going

to infinity, which is on the right side of (12), is written

as Se−Sext.

The Figure illustrates the general picture of the balance of

energy flows in the scattering problem. This Figure is similar

to those given in the papers [18,20], where powers W j for

the electromagnetic problem were considered. In contrast,

the Figure gives a more detailed picture of the formation of

flows S j and allows a better understanding of the dynamics

of the scattering process.

The flow balance shown in the Figure can be described

as follows. The source q0, on average over time, creates a

total power flow Sem, leaving it through the arbitrary surface

enclosing the source (but not the scatterer). This flux is

divided into the radiation flux S0, which
”
does not see“ the

scatterer and goes to infinity, and the interference flow Se

associated with the scattered field, since, according to (16),
Sem = S0 + Se . A part of the interference flow Se , equal to

the extinction flow Sext, interacts with the scatterer, being

partially absorbed in it in the form of the power of the

absorbed flow Sabs and partially going to infinity in the

form of field scattered by particle Ss , whereby in accordance

with the optical theorem (14), Sext = Ss + Sabs . Finally,

the remaining part Se−Sext of the interference flow goes to

infinity in accordance with (12), so that the total radiation

losses (9a) are Srad = Sem−Sabs = S0 + Ss + Se−Sext.

The picture shown in Figure is rather conditional, since

here we are talking not about local, but about total flows

averaged over time and integrated over surfaces. Besides,

since interference flows have no independent energy mean-

ing, the value Sext may exceed Se , so that the corresponding

to (12) flow Se−Sext can be negative.

There is a new element in the described picture of the

energy balance, which earlier was not considered in the

literature. Namely, in it, as the energy flow, that excites

the scatterer, the incomplete average flow incident on the

particle (which, according to (10), is equal to the absorbed

flow Sabs) is used, as one might expect a priori, and the

extinction flow is used as part of the interference flow.

In this case, the extinction source Wext, in accordance

Technical Physics, 2023, Vol. 68, No. 3
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with (13), is due to the work of the incident wave u0 on the

currents qs induced by it in the scatterer. This is the physical

meaning of the optical theorem describing the total energy

losses of the incident wave due to scattering and absorption

in the scatterer.

When describing the Purcell effect, expressions equivalent

to the relation (16) for the power Wem with We (18) were

used in the monograph [13], as well as in many other papers.

In the expression (18) for the amplification factor We , the

value u∗

s q0 appears, which contains the scattered field us at

the points of the source q0, i.e., determined by
”
backward“

scattering to source. However, if the optical theorem (14)
refers to the properties of the scatterer, then the balance

relation (16) refers to the sources q0 and does not directly

depend on the optical theorem.

3. Optical theorem and amplification
factor

The erroneous interpretation of the optical theorem indi-

cated in the Introduction for the case of point source [18] is
caused by the incorrect identification of the optical theorem

with the balance condition (16), which refers not to the

scatterer, but to the radiation source. Let us discuss this case

in more detail, since the specificity of the optical theorem

for the point source can lead to difficulties in its use.

The generalization of the optical theorem to the case of

the point source, as noted above, was first obtained for a

particular case and in a rather awkward form in [12]. It also
follows from the general operator form of the generalized

optical theorem proposed in [14,15]. Let us compare the

results of the operator approach [14,15] with the results [12],
and, following [14], consider the case of arbitrary shape of

the incident wave u0, which, in particular, can correspond

to the point source of radiation.

To simplify this comparison, we will use the abbreviated

operator notation described in more detail in [14,15] (see
also Appendix E from [21]). These notations are quite

similar to the abbreviations used in quantum mechanics: for

the vector corresponding to the field u ≡ |u〉 the Hermitian

conjugate vector u+ = 〈u|, so that the scalar product of

the vectors |a〉 and |b〉 is written as 〈a |b〉 = a+b, for

the operators A and B the Hermitian conjugation gives

(AB)+ = B+A+, and (Au)+ = u+A+.

In these notations, the extinction power (13) included in

the optical theorem is expressed as

Wext = − Im

∫

(u∗

0qs)dr ≡ − Im u+
0 qs ≡ − Im q+

0 G+
0 qs .

(19)
Here the relation u0 = G0q0 is taken into account, so that

u+
0 = q+

0 G+
0 , and formally unlimited integration is actually

performed over the volume of the scatterer Vsc , where the

source qs is nonzero.

The right side (19) includes the value G+
0 qs , which differs

from the scattered field us = G0qs by the presence of the

Hermitian conjugation sign for G0. At the same time, in the

paper [12] the similar expression given for the extinction

power contained scattered field us . For comparison with the

results [15], let us discriminate in (13) the part containing

the scattered field. For this we write Wext (13) as

Wext = − Im q+
0

(

us + (G+
0 − G0)qs

)

. (20)

This expression, in addition to the scattered field us ,

corresponding to backscattering to the source q0, also

contains integral term related to the induced source qs . The

equivalent term was introduced into [12] when describing

the field of the point source using some auxiliary function

(the so-called
”
spherical far-field pattern generator“ [12]).

The presence of the additional integral term in (20)
complicates the physical interpretation and the use of

the optical theorem for the point source. In fact, the

mistake made in [18] in the formulation of the optical

theorem for the point source is equivalent to discarding the

term containing qs in (20). Such discarding is equivalent

to identifying the extinction factor Wext (20) with the

amplification factor We (18).

Expression (20) with distinguished backscattering field

looks like some complication of formula (19). Such

a distinction seems redundant, since it simultaneously

complicates the correct physical interpretation of the optical

theorem. Indeed, relation (19) can be interpreted as the

work of the incident wave u0 on induced sources qs . This

work does not coincide with the work of the backscattered

field us on the given source q0, which corresponds to the

expression for the amplification factor We (18).

Conclusion

The paper traces the causes and gives a visual refutation

of the widespread misconception that the total attenuation

(extinction) of the radiation incident on the scatterer in the

case of the point source is determined by backscattering, i.e.,

by the field scattered towards the source. It is shown that the

cause of extinction is not backscattering, but the interaction

of the incident wave with secondary currents excited by it in

the scatterer. In accordance with the field division into the

incident and the scattered wave, the easy-to-use scheme of

balances of average power flows is made, which describes

the energy exchange between the field sources and the

scatterer, taking into account radiation losses. This scheme

details the results on the energy balance known from the

literature [18,20], focusing on the interference nature of the

excitation of the scatterer, and thereby avoiding errors when

using the optical theorem and other similar relationships

related to the description of the energy exchange between

the field and matter in problems of scattering theory.
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