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Introduction

In many modern technical applications, it becomes

necessary to analyze electromagnetic fields and heat transfer

in plane-layered structures. In problems of heat conduc-

tion in plane-layered media, the matrix method [1–4] is

used, which, as a rule, is used to solve two-dimensional

problems. Such matrix methods are successfully used in

solving problems related to the emission and propagation of

electromagnetic waves in plane layered media [5]. In the

paper [6] an original option of the rigorous electromagnetic

theory of the radiation of an elementary dipole located at the

boundary or inside a plane-layered structure was proposed

being a development of the papers [7,8]. In particular,

in [6] a method of analytical solution simplification was

demonstrated, which has a potentially important general

theoretical value. The generalization of this method for

the case of an arbitrary number of films in a plane-layered

structure allowed to reduce the formulas for radiated fields

to one-dimensional integrals, which significantly simplified

the analysis of the problem and accelerated numerical

calculations. So, in [9] developed mathematical approaches

were applied to finding a three-dimensional fundamental

solution of electrostatics (quasi-electrostatics) in flat-layered

media, i.e. to finding the field of a point charge in plane-

layered media. On the basis of the results obtained, a

formulation of the generalized method of mirror reflections

for a point charge located next to the plane-layered structure

consisting of one film in a half-space was proposed. This

result was generalized in the paper [9] for the case of an

arbitrary charges distribution near plane-layered structure

and an arbitrary number of films. However, in the

generalized method of mirror reflections developed in [9],

one has to perform double integration, which limits the

computational speed.

In this paper, the generalized method of mirror reflections

is modified in relation to an important particular problem —
a point charge located next to the plane-layered medium

consisting of a single film on a dielectric half-space. The

new modified formulation of the reflection method makes it

possible to exclude double integration, simplify and speed

up calculations.

Below, based on the proposed method, the problems of

finding the distribution of the electrostatic potential near a

conducting sphere, an ellipsoid of revolution, and a drop-

shaped body located near a dielectric film in a dielectric

half-space are solved. Based on the analogy between

electrostatics and stationary thermal conductivity, similar

problems of finding the distribution of temperature fields

are discussed.

1. Problem formulation. Electric field of
point charge located inside a
plane-layered structure

Consider the problem of finding the electrostatic field

from point charge q located inside the plane-layered struc-

ture. Let, for generality, this charge be located inside a flat

layered structure consisting of several films and two half-

spaces surrounding the layered structure. For definiteness

we will first assume that the charge is located in one of

the films, and then we generalize this problem to the case

when the charge is located at their boundary or in one of

the half-spaces.
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Let the total number of films be N f , the thickness of

m-th film be dm, and the total thickness of the layered

structure be dtot =
N f
∑

m=1

dm. The total number of boundaries

between films will be denoted as N = N f + 1. Let us

number the regions of the space j = 1, . . . , (N + 1). Let

us assume that the films have absolute permittivities equal

to ε j , and in front of and behind the layered structure

there are homogeneous half-spaces with permittivities ε1
and εN+1. Also denote by z j -the coordinates N of the film

boundaries along the axis Z — as follows: z 1 = 0, z j =
j−1
∑

m=1

for j = 2, . . . , N.

The equations of electrostatics (or quasi-electrostatics) in

the region with number j can be written in terms of the

electric potential ϕ j in the form: 1ϕ j = −ρ/ε j , where 1 —
Laplace operator, ρ — volumetric charge density, ε j —
absolute permittivity of the j-th region. Solving the Laplace

equations in each region, taking into account the boundary

conditions, we find the electric field in all regions. Consider

first the following auxiliary problem.

2. Electric field in layer free of charges

Let there be no extraneous charges between the bound-

aries z j−1 and z j in the region with the number j . The

permittivity of the medium in this film is ε j .

The electric potential can be represented as a Fourier

expansion:

ϕ j(x , y, z ) = (2π)−2

+∞
∫

−∞

+∞
∫

−∞

eiξx+iηy ϕ̃(ξ, η, z )dξdη.

Let us substitute the potential in the form of a Fourier

expansion into the in the Laplace equation, then in the

region under consideration for ϕ̂ j we obtain equation

d2ϕ̃ j/dz 2 − γ2ϕ̃ j = 0, (1)

where γ =
√

ξ2 + η2. The equations (1) for fixed values of

ξ and η are ordinary differential equations with respect to

the variable z . We write the general solution of equation (1)
in the region [z j−1, z j ] in the form [9]:

ϕ j(x , y, z ) = (2π)−2

+∞
∫

−∞

+∞
∫

−∞

ϕ̂+
j e−γ(z−z j−1)ei(ξx+ηy)dξdη

+ (2π)−2

+∞
∫

−∞

+∞
∫

−∞

ϕ̂−
j eγ(z−z j)ei(ξx+ηy)dξdη, (2)

where ϕ̂+
j and ϕ̂−

j are the functions of only ξ and η. The

first term (on the right from equal sign) in the formula (2) is
the field from sources located to the left of the left boundary

of the layer. The second term on the right in the formula (2)

is the field from sources located to the right of the right

boundary of the layer.

From (2) we write the Fourier transforms of the electric

potential and the normal component of the electric field

induction at the boundaries of the region j :

(

ϕ̃ j

D̃ j,z

)

∣

∣

∣

∣

z=z j−1

= L j × F̂ j ,

(

ϕ̃ j

D̃ j,z

)

∣

∣

∣

∣

z=z j

= R j × F̂ j,

(3)
where the column vector F̂ j = (ϕ̂+

j ; ϕ̂
−
j )T is introduced.

Matrices L j and R j have the form

L j=

(

1 e−γd j−1

ε jγ −ε jγe−γd j−1

)

, R j=

(

e−γd j−1 1

ε jγe−γd j−1 −ε jγ

)

,

(4)
where d j−1 = z j−z j−1.

3. Electric field in multilayer structure
free from external charges

Let us now consider a multilayer structure, inside which

there are no extraneous charges. Let us consider the bound-

ary z = z j between regions with numbers j and j + 1.

Continuity of the tangential components of the electric field

strengths E j,x , E j+1,x , E j,y , E j+1,y , and of normal electric

induction components D j,z and D j+1,z on this boundary can

be written in terms of the corresponding electric potentials

ϕ j and ϕ j+1 as follows:

ϕ j

∣

∣

(x ,y,z j )
− ϕ j+1

∣

∣

(x ,y,z j )
= 0,

ε j∂ϕ j/∂z
∣

∣

(x ,y,z j )
− ε j+1∂ϕ j+1/∂z |(x ,y,z j ) = 0,

where the electric potential ϕ j+1 in the region j + 1

is expressed by the formula (2), in which the indices

j → j + 1 are changed. Since the equations of electrostatics

(quasi-statics) are linear equations, the boundary conditions

must be satisfied for each term of the Fourier expansion,i.e.

boundary conditions are satisfied for the Fourier transforms

of the corresponding quantities:

ϕ̃ j

∣

∣

(ξ,η,z j )
− ϕ̃ j+1

∣

∣

(ξ,η,z j )
= 0,

D̃ j,z

∣

∣

(ξ,η,z j )
− D̃ j+1,z

∣

∣

(ξ,η,z j )
= 0. (5)

Writing (5) using (3) and (4), we obtain a matrix

equation on the boundary z = z j :

R j × F̂ j = L j+1 × F̂ j+1. (6)

Equation (6) can be written for j = 2, . . . , (N−1),
where (N + 1) — the total number of regions, N – the

number of boundaries, i.e. for all boundaries except the

first ( j = 1) and last ( j = N) boundaries, i.e. excluding the

boundaries z 1 and z N = dtot =
N−1
∑

m=1

dm.
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The general solution for the electric potential in the region

j = 1, i.e. in the interval (−∞, z 1], we write it as

ϕ j(x , y, z ) = (2π)−2

+∞
∫

−∞

+∞
∫

−∞

(

ϕ̂+
1 e−γ(z−z 1) + ϕ̂−

1 eγ(z−z 1)
)

× ei(ξx+ηy)dξdη. (7)

Then, introducing the vector F̂1 = (ϕ̂+
1 , ϕ̂

−
1 )T , we write

the boundary condition (5) for z = z 1:

(

1 1

ε1γ −ε1γ

)

× F̂1 = L2 × F̂2. (8)

Similarly, the general solution for the potential in the

region j = N + 1, i.e. in the interval [z N + ∞), we write

as

ϕN+1(x , y, z ) = (2π)−2

+∞
∫

−∞

+∞
∫

−∞

(

ϕ̂+
N+1e

−γ(z−z N)

+ ϕ̂−
N+1e

γ(z−z N)
)

ei(ξx+ηy)dξdη. (9)

Then, introducing the vector F̂N+1 = (ϕ̂+
N+1, ϕ̂

−
N+1)

T , we

write the boundary condition (5) for z = z N :

RN × F̂N =

(

1 1

εN+1γ −εN+1γ

)

× F̂N+1. (10)

Equations (6), (8) and (10) allow us to relate the column

vectors F̂1 and F̂N+1 in the first and last domains of

the problem (i.e. in half-spaces) by the following matrix

equation:

F̂1 =

(

T1 ×
N
∏

m=2

Tm × TN+1

)

× F̂N+1,

where

T1 =

(

1 1

ε1γ −ε1γ

)−1

, Tm = Lm × (Rm)−1,

TN+1 =

(

1 1

εN+1γ −εN+1γ

)

. (11)

It is easy to show that the column vectors in regions with

arbitrary numbers S and P, where 1 ≤ S < P ≤ (N + 1)
and S + 2 ≤ P , will be connected by formula

F̂S = R−1
S ×

( P−1
∏

m=S+1

Tm

)

× LP × F̂P . (12)

4. Electric field in multilayer structure
from point charge located in one of
the films

Let there be the point charge q located in the

point (0, 0, z q) in the region with number s . Let

this charge be determined by the density distribution

ρ(x , y, z ) = qδ(x)δ(y)δ(z−z q), where δ(x) — Dirac delta

function. The Fourier transform of this distribution is given

by the following expression:

ρ̃(ξ, η, z ) = q

+∞
∫

−∞

+∞
∫

−∞

δ(x)δ(y)δ(z − z q)e
−i(ξx+ηy)dxdy

= qδ(z − z q).

Let this point charge be in an infinitely thin layer

(z q−1z/2, z q + 1z/2). Then from the equations of electro-

statics rotE = 0 and divD = ρ for the Fourier transforms of

the fields at 1z → 0 we can write

iηẼs ,z −
1Ẽs ,y

1z
=0,

1Ẽs ,x

1z
−iξ Ẽs ,z =0, iξ Ẽs ,y −iηẼs ,x =0,

iξD̃s ,x + iηD̃s ,y +
1D̃s ,z

1z
= qδ(z − z q).

From the equations obtained, we find the field increments

in the layer

1Ẽs ,y = iηẼs ,z1z , 1Ẽs ,x = iξ Ẽs ,z1z ,

1D̃s ,z = −(iξD̃s ,x + iηD̃s ,y)1z + qδ(z − z q)1z .

Whence it follows that in the limit 1z → 0, the jumps

of the tangential components of the electric field strengths

and the normal component of the electric field induction

upon passing through an infinitely thin layer with a charge

are equal to 1Ẽs .y → 0, 1Ẽs ,x → 0, 1D̃s ,z → q. In matrix

form, these limit equations can be written in terms of the

electric potential in an equivalent form as follows:

(

ϕ̃s

D̃s ,z

)

∣

∣

∣

∣

z=z q+0

−

(

ϕ̃s

D̃s ,z

)

∣

∣

∣

∣

z=z q−0

=

(

0

q

)

. (13)

Let us now express the left side of the boundary condition

(13) in terms of the column vectors F̂1 and F̂N+1 of half-

spaces outside the plane-layered structure. To do this, let’s

divide the region with number s into two regions and denote

them by indices l and r (left and right, if you look at Fig. 3).
Let us introduce the column vectors F̂l and F̂r in these

regions. Then the terms to the left of the equal sign in (13)
can be expressed as

(

ϕ̃s

D̃s ,z

)

∣

∣

∣

∣

z=z d−0

= Rl × F̂l and

(

ϕ̃s

D̃s ,z

)

∣

∣

∣

∣

z=z d+0

=Lr × F̂r .

(14)
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It follows from (6) and (12) that

F̂l =

(s−1
∏

m=1

Tm

)

LlF̂l, and F̂r =(Rr )
−1

( N+1
∏

m=s+1

Tm

)

F̂N+1,

(15)
where

Ll =

(

1 e−γ(z q−z s−1)

εsγ −εsγe−γ(z q−z s−1)

)

,

Rr =

(

e−γ(z s−z q) 1

εsγe−γ(z s−z q) −εsγ

)

.

Substituting (15) into (14) and then the resulting expres-

sions into (13), we obtain

HR × F̂N+1 = HL × F̂1 + V, (16)

where V = (0, q)T is a column vector characterizing the

exciting action on the plane-layered structure of the point

charge, and the matrices HR and HL characterize the

response to external excitation of the layered structure to

the right and left of the charge and are expressed as follows:

HR = TR

( N+1
∏

m=s+1

Tm

)

, HL =

((s−1
∏

m=1

Tm

)

TL

)−1

,

where the matrices Tm are defined by (11), and the

matrices TL and TR — by the formulas TL = Ll(Rl)
−1,

TR = Lr (Rr )
−1.

In the problem under consideration, the point charge

(source of fields) is located exclusively inside the plane-

layered structure. Therefore, F̂1 and F̂N+1 columns contain

only the components that determine the waves coming from

the flat-layered structure.

To obtain the remaining non-zero components F̂1

and F̂N+1, we split the matrices into HR and HL into

elements HRA, HRB , HRC , HRD and HLA, HLB , HLC , HLD ,

then equation (16) takes the form

(

HRA HRB

HRC HRD

)(

ϕ̂+
N+1

0

)

=

(

HLA HLB

HLC HLD

)(

0

ϕ̂−
1

)

+

(

0

q

)

.

(17)
Equation (17) can be represented by the following

system of two matrix equations: HRAϕ̂
+
N+1 = HLB ϕ̂

−
1 ,

HRC ϕ̂
+
N+1 = HLDϕ̂

−
1 + q. The resulting equations can be

combined again into a single matrix 2× 2 equation:

(

−HLB HRA

−HLD HRC

)

F̂out =

(

0

q

)

, (18)

where the column vector F̂out = (ϕ̂−
1 , ϕ̂+

N+1)
T is introduced.

Solving this equation, we find ϕ̂−
1 and ϕ̂+

N+1, which means

that the fields decrease with distance from the flat-layered

structure:

ϕ̂−
1 = qHRA/(HRCHLB − HRAHLD)

and

ϕ̂+
N+1 = HLBq/(HRCHLB − HRAHLD). (19)

The field decreasing to the left in the half-space j = 1 is

found by the formula

ϕ1(x , y, z ) = (2π)−2

+∞
∫

−∞

+∞
∫

−∞

ϕ̂−
1 eγ(z−z 1)ei(ξx+ηy)dξdη,

(20)
and the field decreasing to the right in the half-space

j = N + 1 by the formula

ϕN+1(x , y, z )=(2π)−2

+∞
∫

−∞

+∞
∫

−∞

ϕ̂+
N+1e

−γ(z−z N)ei(ξx+ηy)dξdη.

(21)

Finally, if necessary, knowing F̂1 and F̂N+1, one

can find the column vector of potentials in any internal

region F̂ j , since they are uniquely determined by the

boundary conditions. After that, the electric potential in

any of these areas can be found using the formula (2).
This way the fields will be defined throughout the

space.

5. Electric field of a point charge located
at some distance from the film
boundary

Let us consider the problem of finding the electric

potential from point charge q located in half-space with

permittivity ε f (Fig. 1). The charge is located at some

distance from the film with permittivity εp deposited on

the half-space with permittivity εd .

In the coordinate system of Fig. 1, the charge is located

at a point with radius vector rq = (0; 0; z q) at distance

d = (z b−z q) along the axis Z from film h thick.

This problem can be considered as a problem of

finding the electric potential from a point charge lo-

cated on the surface of an auxiliary film of thick-

ness d = (z b−z q), and the dielectric constants of this

auxiliary film and the half-space on the left are

equal ε f .

In this formulation, there are four regions. Let us

introduce the following enumeration of regions: the in-

dex j = 1 corresponds to the half-space c ε f , j = 2 —
auxiliary film with ε2 = ε f and thickness d, j = 3 —
real film with ε3 = εp with thickness h, and the in-

dex j = 4 corresponds to the half-space with ε4 = εd

(Fig. 1).

Then N = 3, z 1 = z q, z 2 = z b, z 3 = h + z b,

HR = T2 × T3 × T4, HL = (T1)
−1 and equation (16)

becomes

(T2 × T3 × T4)F̂4 = (T1)
−1

F̂1 + V, (22)
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X

ZO

j = 1 j = 2 j = 3 j = 4

q

e e1 = f e e2 = f e e3 = p e e4 = d

z z1 = q z z2 = b z h z3 = + b

Figure 1. Point charge q located in free space with permittivity ε f

at a point with coordinate z q at a distance of (z b−z q) from film

with thickness of h and permittivity εp located on the boundary of

the half-space with permittivity εd .

where the matrices are expressed by the following formulas:

T1 =

(

1 1

ε f γ −ε f γ

)−1

,

T2 = L2(R2)
−1 =

(

1 e−γd

ε f γ −ε f γe−γd

)

×

(

e−γd 1

ε f γe−γd −ε f γ

)−1

,

T3 = L3(R3)
−1 =

(

1 e−γh

εpγ −εpγe−γh

)

×

(

e−γh 1

εpγe−γh −εpγ

)−1

,

T4 =

(

1 1

εdγ −εdγ

)

,

and the column vector of the point charge is equal to

V = (0; q)T . Then

HL = (T1)
−1 =

(

1 1

ε f γ −ε f γ

)

,

HR =

(

1 e−γd

ε f γ −ε f γe−γd

)(

e−γd 1

ε f γe−γd −ε f γ

)−1

×

(

1 e−γh

εpγ −εpγe−γh

)(

e−γh 1

εpγe−γh −εpγ

)−1

×

(

1 1

εdγ −εdγ

)

.

Let us introduce the column vector F̂out = (ϕ̂−
1 , ϕ̂+

4 )T

then equation (18) for the given objective will take the form

(

−1 HRA

ε f γ HRC

)(

ϕ̂−
1

ϕ̂+
4

)

=

(

0

q

)

. (23)

From (23) we have

ϕ̂−
1 =qHRA/(HRC +ε f γHRA) and ϕ̂+

4 =q/(HRC +ε f γHRA).
(24)

We can explicitly express HRA and HRC in terms of

hyperbolic sines and cosines

HRA = ch(γd) ch(γh) +
εp

ε f
sh(γd) sh(γh)

+
εd

εp
ch(γd) sh(γh) +

εd

ε f
sh(γd) ch(γh), (25)

HRC = γε f

[

sh(γd) ch(γh) +
εp

ε f
ch(γd) sh(γh)

+
εd

εp
sh(γd) sh(γh) +

εd

ε f
ch(γd) ch(γh)

]

. (26)

Let us find the potential ϕ1 in the half-space ( j = 1) for

z ≤ z q . Substituting the expressions (25) and (26) for HRA

and HRC into (24) for ϕ̂−
1 , after simple transformations we

obtain the expression

ϕ̂−
1 =qHRA/(HRC +ε f γHRA)=

q
2γε f

+
q

2γε f
e−2γd

R(γ, h),

(27)

where

R(γ, h) =
ε f − εp

εp + ε f
+

4εpε f

(εp + ε f )

×
(εp − εd)

[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
] . (28)

From the expression for the potential (20) we have

ϕ1(x , y, z ) =
1

(2π)2

+∞
∫

−∞

+∞
∫

−∞

(

q
2γε f

eγ(z−z q) +
q

2γε f

× eγ
(

z−(2z b−z q)
)

R(γ, h)

)

ei(ξx+ηy)dξdη. (29)
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Taking into account that γ =
√

ξ2 + η2, we use the

mathematical identity

q
(2π)2

+∞
∫

−∞

+∞
∫

−∞

e−γ|z−z q|

2ε f γ
ei
(

ξ(x−xq)+η(y−yq)
)

dξdη

=
q

4πε f

√

(x − xq)2 + (y − yq)2 + (z − z q)2
. (30)

Then (29) can be rewritten:

ϕ1(x , y, z ) =
q

4πε f

√

x2 + y2 + (z − z q)2

+
ε f − εp

εp + ε f

q

4πε f

√

x2 + y2 +
(

z − (2z b − z q)
)2

+
q

(2π)2

+∞
∫

−∞

+∞
∫

−∞

(

2εp

γ(εp + ε f )

×
(εp − εd)e

γ

(

z−(2z b−z q)
)

[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
]

)

× ei(ξx+ηy)dξdη. (31)

Let us find the potential ϕ4 in half-space ( j = 4) at

z ≥ h + z b . Substituting expressions (25) and (26) for HRA

and HRC into expression for ϕ̂+
4 , we obtain

ϕ̂+
4 =

q
HRC + ε f γHRA

=
2qεqe−γdeγh

γ
[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
] . (32)

From the expression (21) substituting (32) we have

ϕ4(x , y, z ) =
q

(2π)2

×

+∞
∫

−∞

+∞
∫

−∞

2εpe2γh

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)

×
e−γ(z−z q)

γ
ei(ξx+ηy)dξdη. (33)

Let us now find the potential for z b ≤ z ≤ (h + z b), i.e.
in the layer j = 3. Boundary conditions (6) on the plane

z = z 3 = h + z b can be written as
(

e−γh 1

εpγe−γh −εpγ

)(

ϕ̂+
3

ϕ̂−
3

)

=

(

1 1

εdγ −εdγ

)(

ϕ̂+
4

0

)

.

Then, solving this equation and using (32), we obtain the

solution

ϕ̂+
3 =

εp + εd

2εp
eγhϕ̂+

4 =
εp + εd

2εp

×
2qεpe−γ(d−2h)

γ
[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
] ,

ϕ̂−
3 =

εp − εd

2εp
ϕ̂+
4 =

εp − εd

2εp

×
2qεpe−γ(d−h)

γ
[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
] .

The total potential of the field inside the layer j = 3 is

expressed by the formula (2):

ϕ3(x , y, z )=(2π)−2

+∞
∫

−∞

+∞
∫

−∞

(

ϕ̂+
3 e−γ(z−z b)+ϕ̂−

3 eγ(z−(z b+h))
)

× ei(ξx+ηy)dξdη.

Substituting here the obtained expressions for ϕ̂+
3 and ϕ̂−

3 ,

we obtain

ϕ3(x , y, z ) =
q(εp + εd)

(2π)2

×

+∞
∫

−∞

+∞
∫

−∞

e−γ

(

z−(z q+2h)
)

γ
[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
]

× ei(ξx+ηy)dξdη +
q(εp − εd)

(2π)2

×

+∞
∫

−∞

+∞
∫

−∞

eγ
(

z−(2z b−z q)
)

γ
[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
]

× ei(ξx+ηy)dξdη. (34)

Let us now find the potential for z q ≤ z ≤ z b, i.e. in

the layer j = 2. Boundary conditions (6) on the plane

z = z 2 = z b can be written as

(

e−γd 1

ε f γe−γd −ε f γ

)(

ϕ̂+
2

ϕ̂−
2

)

=

(

1 e−γh

εpγ −εpγe−γh

)(

ϕ̂+
3

ϕ̂−
3

)

.

Then after simple calculations we get

ϕ̂+
2 =

ε f + εp

2ε f
eγdϕ̂+

3 +
ε f − εp

2ε f
eγ(d−h)ϕ̂−

3 =
q

2γε f
, (35)

ϕ̂−
2 =

ε f − εp

2ε f
ϕ̂+
3 +

ε f + εp

2ε f
e−γhϕ̂−

3 = R(γ, h)
q

2γε f
e−γd,

(36)
where R(γ, h), as before, is expressed by formula (28).

Then the total potential of the field inside the layer j = 2

(see (2)):

ϕ2(x , y, z ) = (2π)−2

+∞
∫

−∞

+∞
∫

−∞

(

q
2γε f

e−γ(z−z q) + R(γ, h)

×
q

2γε f
eγ(z−(2z b−z q))

)

ei(ξx+ηy)dξdη.
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Substituting here the expression for R(γ, h) and using

identity (30), we obtain

ϕ2(x , y, z ) =
q

4πε f

√

x2 + y2 + (z − z q)2

+
ε f − εp

εp + ε f

q

4πε f

√

x2 + y2 +
(

z − (2z b − z q)
)2

+
q

(2π)2

+∞
∫

−∞

+∞
∫

−∞

(

2εp

γ(εp + ε f )

×
(εp − εd)eγ(z−(2z b−z q))

[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
]

)

× ei(ξx+ηy)dξdη. (37)

Note that this is the same expression (31) as for

ϕ1(x , y, z ) in the half-space j = 1. The first term of this

expression is the potential of point charge q located at the

point rq = (0, 0, z q). The second term — the potential

of a point charge of magnitude q(ε f −εp)/(εp + ε f ) in a

medium with permittivity ε f , which is mirrored relative to

the z = z b plane, at the point rre f = (0, 0, 2z b−z q). The

third term — the potential of the charge distributed over

the plane z = z b with some surface density (below it will

be calculated explicitly).
To find ϕind — the potential of the charges induced in the

plane-layered structure under consideration, it is necessary

in the region z < z b to subtract the potential of the initial

charge from the total potential in this region. Then denoting

z re f = 2z b−z q from (37) we will receive

ϕind(x , y, z ) =
ε f − εp

εp + ε f

q

4πε f

√

x2 + y2 + (z − z re f )2

+
qεp(εp − εd)

2π2(εp + ε f )

×

+∞
∫

−∞

+∞
∫

−∞

eγ(z−z re f )ei(ξx+ηy)

γ
[

(εp+ε f )(εp+εd)e2γh + (εp−εd)(ε f −εp)
]dξdη.

(38)
It can be seen from (38) that for h → +∞ the integral

vanishes, and we obtain the well-known formula for the

charge at the boundary of two half-spaces with the appro-

priate change of the permittivity symbols [10].

6. Generalization of the method of mirror
reflections to the case of point charge
located near plane-layered medium

For the first time, the method of mirror reflections for the

case of point charge located near the plane-layered medium,

as applied to the particular case of single film, was proposed

in [11]. A further generalization of the method, including to

multifilm structure, was given in [9]. Below we consider a

new formulation of the reflection method.

If we introduce a function

U(x , y, z ) = q/4πε f

√

x2 + y2 + z 2, (39)

that determines the potential of the point charge q located

at the origin of coordinates in space with permittivity ε f ,

then expression (38) can be represented as

ϕind(x , y, z ) =
ε f − εp

εp + ε f
U(x , y, z − z re f ) +

q
(2π)2

×

+∞
∫

−∞

+∞
∫

−∞

χ(γ, h)
eγ(z−z re f )ei(ξx+ηy)

2ε f γ
dξdη, (40)

where z re f = 2z b−z q, and function

χ(γ, h) = R(γ, h) − (ε f − εp)/(εp + ε f )

is determined by formula

χ(γ, h) =
4εpε f

(εp + ε f )

×
(εp − εd)

[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
] . (41)

For further generalizations, it is easy to obtain formulas

of the form (31), (33), (34), (37) and (38) for the

field potential of the point charge q at arbitrary point

rq = (xq, yq, z q):

ϕ1(x , y, z ) = ϕ2(x , y, z )

=
q

4πε f

√

(x − xq)2 + (y − yq)2 + (z − z q)2

+
q(ε f − εp)/(εp + ε f )

4πε f

√

(x−xq)2 + (y−yq)2 + (z−(2z b−z q))2
+

q
(2π)2

×

+∞
∫

−∞

+∞
∫

−∞

χ(γ, h)

2γε f
eγ(z−(2z b−z q))ei(ξ(x−xq)+η(y−yq))dξdη,

(42)

where z re f = 2z b−z q, and χ(γ, h) is expressed by for-

mula (41). In the region of the film ( j = 3), the potential
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can be written as

ϕ3(x , y, z ) =
2ε f

(εp + ε f )
U(x − xq, y − yq, z − z q)

−
(ε f − εp)

2εp

q
(2π)2

+∞
∫

−∞

+∞
∫

−∞

χ(γ, h)

×
e−γ(z−z q)ei(ξ(x−xq)+η(y−yq))

2γε f
dξdη +

2ε f (εp − εd)

(εp + ε f )(εp + εd)

×U(x − xq, y − yq, z − [2(z b + h) − z q])

−
(εp − εd)(ε f − εp)

2εp(εp + εd)

q
(2π)2

×

+∞
∫

−∞

+∞
∫

−∞

χ(γ, h)
eγ(z−[2(z b+h)−z q])ei(ξ(x−xq)+η(y−yq))

2γε f
dξdη.

(43)

And then in the half-space behind the film ( j = 4) for

ϕ4(x , y, z ) we obtain the expression

ϕ4(x , y, z ) =
4ε f εpU(x − xq, y − yq, z − z q)

(εp + ε f )(εp + εd)

−
(ε f − εp)

(εp + εd)

q
(2π)2

+∞
∫

−∞

+∞
∫

−∞

χ(γ, h)

2γε f
exp
(

−γ(z − z q)
)

× exp
(

i
(

ξ(x − xq) +
(

η(y − yq)
)))

dξdη. (44)

Let us represent the expression for χ(γ, h) in (41) by a

series in powers e−2γh:

χ(γ, h) =
4εp + ε f

(εp + ε f )

×
(εp − εd)

[

(εp + ε f )(εp + εd)e2γh + (εp − εd)(ε f − εp)
]

=
ae−2γh

1 + be−2γh
= a

∞
∑

m=1

(−1)m−1bm−1e−2γmh, (45)

where the following notations are introduced

a =
4εpε f (εp − εd)

(εp + εd)(εp + ε f )2
, b =

(εp − εd)(ε f − εp)

(εp + ε f )(εp + εd)
. (46)

Note that series (45) converges at |b| < 1, i.e. at

−1 <
(εp − εd)(ε f − εp)

(εp + ε f )(εp + εd)
< 1.

Further discussion will assume that the permittivities of

the problem satisfy this convergence condition. Obviously,

for positive values of permittivities, the convergence condi-

tion is always satisfied. Then the expression (42) takes the

form

ϕ1(x , y, z ) = U(x − xq, y − yq, z − z q) +
ε f − εp

εp + ε f

×U(x − xq, y − yq, z − z re f ) +

∞
∑

m=1

a(−1)m−1bm−1

×
q

(2π)2

+∞
∫

−∞

+∞
∫

−∞

eγ(z−z re f −2mh)ei(ξ(x−xq)+η(y−yq))

2ε f γ
dξdη.

Taking into account the mathematical identity (30), we
obtain

ϕ1(x , y, z ) = U(x − xq, y − yq, z − z q) +
ε f − εp

εp + ε f

×U(x − xq, y − yq, z − z re f ) +
∞
∑

m=1

a(−1)m−1bm−1

×U(x − xq, y − yq, z − z re f − 2mh). (47)

Thus, the generalized method of mirror reflections can

be formulated as follows: if the point charge q is located in

half-space next to the film h thick located on the boundary

of another half-space, then the potential in half-space, in

which the charge is located, is infinite sum of the potentials

of the following charges:

— the first term of the sum — is the potential of the

initial point charge q (source of the field) located at the

point z q,

— the second term of the sum — this is the potential

of the virtual charge q(ε f −εp)/(εp + ε f ) located at the

point z re f , mirrored with respect to the nearest film

boundary z = z b, and the remaining members of the sum is

infinite sum of potentials of virtual charges located at

the points z = z re f + 2mh,and the value qa(−1)m−1bm−1,

where m = 1, 2, 3, . . . ,∞, and the values a and b are

expressed in terms of the permittivities of the problem

media using formulas (46).
Thus, in the expressions for the potential ϕ1(x , y, z ), one

can exclude double integration, as in [9], and replace it

by summing a rather rapidly convergent series in virtual

charges.

Similarly, substituting expression (45) into (43) and (44),
we obtain

ϕ3(x , y, z ) =
2ε f

(εp + ε f )
U(x−xq, y−yq, z−z q) −

(ε f −εp)

2εp

×
∞
∑

m=1

a(−1)m−1bm−1U
(

x − xq, y − yq, z − (z q − 2mh)
)

×
2ε f (εp − εd)

(εp+ε f )(εp+εd)
U(x−xq, y−yq, z −[2(z b+h)−z q])

−
(εp − εd)(ε f − εp)

2εp(εp + εd)

∞
∑

m=1

a(−1)m−1bm−1

×U
(

x − xq, y − yq, z − [2(z b + (m + 1)h) − z q]
)

,

(48)
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ϕ4(x , y, z ) =
4ε f εpU(x−xq, y−yq, z−z q)

(εp + ε f )(εp + εd)
−

(ε f − εp)

(εp + εd)

×

∞
∑

m=1

a(−1)m−1bm−1U
(

x − xq, y − yq, z − (z q − 2mh)
)

.

(49)

7. Generalization of mirror reflection
method to the case of system of
charges

Let us now generalize the obtained method of mirror re-

flections and find the potential of the total field 8tot(x , y, z )

in the region z < z b in front of the film (Fig. 2) of an

arbitrary compact system Nq of source charges qk located

at points with radius vectors rq,k = (xq,k , yq,k , z q,k), where

k = 1, 2, . . . , Nq .

If there were no plane-layered structure, then the potential

of this system of charges-sources would be represented by

the formula

8s(x , y, z ) =

Nq
∑

k=1

qk

/

4πε f

×
√

(x − xq,k)2 + (y − yq,k)2 + (z − z q,k)2. (50)

X

ZO

j = 1, 2 j = 3 j = 4

ef

zb z hb +

ep ed

zq k,

xq k, qk

Figure 2. System of point charges qk for film located on the

boundary of half-space.

Summing expressions (47) for each charge qk over all Nq

charges of the system and noticing that

Nq
∑

k=1

qk

/

4πε f

×

√

(x−xq,k)2 + (y−yq,k)2 +
(

z −(2z b + 2mh − z q,k)
)2

=

Nq
∑

k=1

qk

/

4πε f

×

√

(x − xq,k)2 + (y−yq,k)2 +
(

(2z b + 2mh − z )−z q,k
)2

= 8s(x , y, 2z b + 2mh − z ),

we obtain a generalization of the method of mirror reflec-

tions in electrostatics for arbitrary charge distributions for

the total potential of the system of charges in the half-space

in front of the film in the form

8tot(x , y, z ) = 8s(x , y, z ) +
(ε f − εp)

(εp + ε f )
8s (x , y, 2z b − z )

+

∞
∑

m=1

a(−1)m−1bm−18s(x , y, 2z b + 2mh − z ).

(51)
It follows from the derivation of formula (51) that the

potential of induced charges 8tot , which is generated by the

potential 8s of distributions of charge-sources of the field,

is represented by the formula

8ind(x , y, z ) =
(ε f − εp)

(εp + ε f )
8s(x , y, 2z b − z )

+

∞
∑

m=1

a(−1)m−1bm−18s(x , y, 2z b + 2mh − z ). (52)

Similarly, considering that

Nq
∑

k=1

qk

/

4πε f

√

(x−xq,k)2 + (y−yq,k)2+
(

z −(z q,k−2mh)
)2

=

Nq
∑

k=1

qk

/

4πε f

√

(x−xq,k)2+(y−yq,k)2+
(

(z+2mh)−z q,k
)2

= 8s(x , y, z + 2mh),

Nq
∑

k=1

qk

/

4πε f

×

√

(x−xq,k)2+(y−yq,k)2+
(

z−[2(z b+(m + 1)h)−z q,k ]
)2

=

Nq
∑

k=1

qk

/

4πε f

×

√

(x−xq,k)2+(y−yq,k)2+
(

[2(z b+(m+1)h)−z ]−z q,k

)2

= 8s
(

x , y, 2(z b + (m + 1)h) − z
)

,
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Figure 3. Metal sphere at film located on the boundary of half-

space. Geometry of the problem.

we obtain, taking into account (48), for the potential 83 of

the system of charges in the film at z b ≤ z ≤ (z b + h):

83(x , y, z )=
2ε f 8s(x , y, z )

(εp+ε f )
−

(ε f −εp)

2εp

∞
∑

m=1

a(−1)m−1bm−1

× 8s(x , y, z+2mh) +
2ε f (εp−εd)8s (x , y, 2(z b + h)−z )

(εp + ε f )(εp + εd)

−
(εp − εd)(ε f − εp)

2εp(εp + εd)

∞
∑

m=1

a(−1)m−1bm−1

× 8s
(

x , y, 2(z b + (m + 1)h) − z
)

.

(53)
Taking into account (49), the charges potential 84 in the

half-space at z ≥ (z b + h) ( j = 4) is equal to

84(x , y, z ) =
4ε f εp

(εp + ε f )(εp + εd)
8s (x , y, z )

−
(ε f − εp)

(εp + εd)

∞
∑

m=1

a(−1)m−1bm−18s (x , y, z + 2mh). (54)

Note that generalization of the method of mirror reflec-

tions was obtained earlier in the paper [9] in a different

formulation, which was successfully applied to the problem

of nanofocusing of a surface plasmon wave at the top of

a metal tip. The proposed method of this paper avoids

double integration and has an advantage during numerical

implementation.

8. Potential distribution around metal
body located near flat boundary of
film on dielectric half-space

Let us consider the metal body, for certainty a sphere

with a radius R is considered first. The surface of the

sphere is represented by the formula x2 + y2 + (z z 2
0) = R2,

where R — the radius of the sphere, and the coordinates

of the center are x c = 0, y c = 0 and z c = z 0 (Fig. 3).
Let a film of thickness h with boundaries z = z b and

z = (z b + h) be located near the sphere. The permittivities

of the external homogeneous medium, the film, and the

semi-infinite medium behind the film are denoted by ε f ,

εp and εd and εd , respectively (in the general case of

quasistatics — these are complex quantities).
Let us consider the distribution of the electric potential,

which will be established in space. As it is known, the

electrostatic field potential 8 satisfies the Laplace equation

18 = 0. Moreover, at the boundary of the metal sphere the

potential Us will be constant. Then the boundary conditions

can be written as:

on tip surface : 8 = Us , (55)

on film boundary z=z b : εpE3,n = ε f E f ,n andE3,τ = E f ,τ ,

(56)
on film boundary z=z b+h : εdE4,n=εpE3,n andE4,τ =E3,τ .

(57)
The problem under consideration has axial symmetry

with respect to the axis Z. Therefore, the solution of the

Laplace equation will have the same symmetry. Let the

potential of charges located on the equipotential metallic

sphere in space with permeability ε f be described by the

function 8s (x , y, z ). Then the total potential 8tot(x , y, z )
in the region filled with dielectric with ε f can be expressed

in terms of 8s(x , y, z ) by formula (51), and in the film

and in the dielectric space behind it — by formulas (53)
and (54). In this case, the boundary conditions (56)
and (57) will be satisfied automatically. Thus, the problem

of determining the potential in the entire space is to

find the potential 8s (x , y, z ) such that the total potential

8tot(x , y, z ) satisfies the boundary condition (55). This can
be done by expanding the potential 8s(x , y, z ) in suitable

harmonic functions, and the expansion coefficients can be

determined from the condition (55) for 8tot(x , y, z ) on the

equipotential boundary of metal.

Bearing in mind the generality of the further presen-

tation, we pass to dimensionless coordinates: x̃ = x/R,
ỹ = y/R, z̃ = z/R, where R — radius of sphere. The

Laplace equation in dimensionless coordinates will not

change. In addition, we normalize the potential to its

value Us on the surface of the sphere, then we can

pass from the dimensional to the dimensionless potential

8̃(x̃ , ỹ , z̃ ) = 8/Us in dimensionless coordinates. Then the

boundary condition (55) on the sphere can be written in

the form 8̃tot = 1.

In the considered axisymmetric case, to fulfill the bound-

ary condition on the surface of the sphere, it is sufficient

to satisfy its on the line of intersection of the tip surface

with any plane of symmetry passing through the Z axis. As

such a plane we choose the plane (x̃ , z̃ ) at ỹ = 0. More

specifically, it suffices to satisfy the boundary condition

8̃tot(x̃ , 0, z̃ ) = 1 only on the boundary of the intersection

of the half-plane ỹ = 0 at x̃ ≥ 0 and the surface of the
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sphere. In dimensionless coordinates, this will be the curve

x̃2 + (z̃−z̃ 0) = 1 at ỹ = 0 and x̃ ≥ 0.

We will look for the solution, assuming that the potential

outside the sphere 8̃s has the form

8̃s =

N
∑

j=1

A jP j−1(cos θ)/r̃ j , (58)

where A j — constant expansion coefficients, P j(cos θ) —
Legendre polynomials of degree j , angle θ is measured from

the axis Z from the sphere center, r̃ — dimensionless radius-

vector of the observation point drawn from the center of the

sphere. In the coordinates (x̃ , ỹ , z̃ ), expression (58) can be

represented as

8̃s(x̃ , ỹ , z̃ ) =

N
∑

j=1

A jF j(x̃ , ỹ , z̃ ), (59)

where

F j(x̃ , ỹ , z̃ ) = P j−1

(

(z̃ − z̃ 0)
/

√

x̃2 + ỹ2 + (z̃ − z̃ 0)2
)

/ (

√

x̃2 + ỹ2 + (z̃ − z̃ 0)2
) j

.

Note that the choice of functional dependences (58) from
the general solution of the Laplace equation is determined

by the fact that the field potential outside the sphere must

tend to zero with increase in distance from its surface and be

finite. Then, the potential of induced charges 8̃ind(x̃ , ỹ , z̃ )
can be represented, taking into account (52), in the form

8̃ind(x̃ , ỹ , z̃ ) =

N
∑

j=1

A jP j(x̃ , ỹ , z̃ ), (60)

where

P j(x̃ , ỹ , z̃ ) =
(

(ε f − εp)/(εp + ε f )
)

F j(x̃ , ỹ , 2z̃ b − z̃ )

+
∞
∑

m=1

a(−1)m−1bm−1
F j(x̃ , ỹ , 2z̃ b + 2mh̃ − z̃ ).

Then we obtain the total potential in the medium with ε f

(between the sphere and the film):

8̃tot(x̃ , ỹ , z̃ ) =

∞
∑

m=1

A j
(

F j(x̃ , ỹ , z̃ ) + P j(x̃ , ỹ , z̃ )
)

. (61)

The boundary condition on the sphere 8̃tot(x̃ , ỹ , z̃ ) = 1

was satisfied in this paper approximately, by the collocation

method [12]. These equations were written at uniformly

distributed N points of the semicircle x̃2 + (z̃−z̃ 0)
2 = 1 at

ỹ = 0 and x̃ > 0 on the surface of the sphere, and N linear

algebraic equations with N unknown coefficients A j were

obtained. As a result of solving the obtained system A j were

found, and by the formulas (61) of the potential distribution

in the region between the sphere and the front surface of

the film.

Taking into account (59), the potential distribution in the

film and behind it, taking into account (53) and 54), was
determined by the formulas

8̃3(x̃ , ỹ , z̃ ) =

N
∑

j=1

A j

(

2ε f

(εp + ε f )
F j(x̃ , ỹ , z̃ ) −

(ε f − εp)

2εp

×

∞
∑

m=1

a(−1)m−1bm−1
F j(x̃ , ỹ , z̃ + 2mh̃)

×
2ε f (εp−εd)F j(x̃ , ỹ , 2(z̃ b+h̃)−z̃ )

(εp + ε f )(εp + εd)
−

(εp−εd)(ε f −εp)

2εp(εp + εd)

×

∞
∑

m=1

a(−1)m−1bm−1
F j
(

x̃ , ỹ , 2(z̃ b + (m + 1)h̃) − z̃
)

)

,

(62)

8̃4(x̃ , ỹ , z̃ ) =

N
∑

j=1

A j

(

4ε f εp

(εp + ε f )(εp + εd)
F j(x̃ , ỹ , z̃ )

−
(ε f − εp)

(εp + εd)

∞
∑

m=1

a(−1)m−1bm−1
F j(x̃ , ỹ , z̃ + 2mh̃)

)

.

(63)
As a result, formulas (61), (62) and (63) solve the

problem of finding the normalized potential in normalized

coordinates outside the sphere and in the entire layered

structure using known values A j .

The obtained solutions for the normalized potential have

an important property: they depend on the ratios of permit-

tivities, i.e. if all permittivities are increased by k times, then

the distribution of the normalized potential will not change.

9. Potential distribution around
some bodies located near the film
on half-space

First, as an example of the above theory application

we performed numerical calculations of the normalized

potential distribution of the charged metal sphere near plane-

layered structure of single film. The sphere with center

at the point (x̃0, ỹ0, z̃ 0) = (0, 0,−0.5) was in vacuum

with ε f = 1 near with film with thickness equal to h̃ = 1 (in
units normalized to the radius of curvature of the sphere)
with a permittivity εp = 2. The half-space behind the film

had permittivity εd = 4. The film boundaries were deter-

mined by the equations z̃ = z̃ b = 1 and z̃ = z̃ b + h̃ = 2

(Fig. 3). The shortest distance from the sphere to the film

was 1z̃ = 0.5.

Fig. 4, a shows the normalized potential distribution in

the (x̃ , z̃ ) plane for the indicated parameters. One can see

increase in the distance between the equipotentials in the

transition from free space to the dielectric film and further to

the dielectric half-space. This is due to the natural screening

0 Technical Physics, 2023, Vol. 68, No. 3



306 A.B. Petrin

–3 –1–2 31 2
–3.0

–2.5

– .02

0

0.5

1.5

3.0

–0.5

–1.0

–1.5

1 0.

2.5

2.0

0

a

–3 –1–2 31 2
–4

–3

–2

0

1

4

–1

3

2

0

b

0.98

0.90

0.82

0.74

0.66

0.58

0.50

0.42

0.34

0.26

0.18

0.10

–3 –1–2 31 2
–4

–3

–2

0

1

4

–1

3

2

0

c

0.97

0.89

0.73

0.65

0.57

0.41

0.33

0.25

0.09

0.05

0.81

0.17

0.49

0.97
0.89

0.73
0.65
0.57

0.41
0.33
0.25

0.09
0.05

0.81

0.17

0.49

0.2

0.3

0.4

0.5
0.6

0.7

0
.8

0.
9

0.2
0
.3

0
.4

0
.5

0
.6

0
.7
0
.8

0.3

0.4

0
.5

0
.6

0.9
0.8

0.7

0.6

0
.4

0
.3

0.50.4
0
.3

0.1
5

0.35

0.45

0
.5

5

0.95

0.25

0
.3

5
0
.4

5

0
.6

5 0.7
5
0.8

5

0.95
0.850.750.65

0.55

0.45
0.35

0.2
5

0.15

0.55

0
.6

5

0
.4

5
0
.3

5

0.950.85

0.1
5

0.35

0.45

0
.5

5

0.25

0
.3

5

0
.4

5

0
.6

5 0.7
5

0.950.85
0.75
0.65
0.55

0.45

0.35

0.2
5

0.15

0.55

0
.6

5

0
.3

5

Figure 4. Distributions of the normalized potential around metal charged bodies: sphere (a), ellipsoid of revolution elongated along Z (b)
and drop-shaped body of revolution (c) in normalized coordinates. Permittivities: ε f = 1, εp = 2, εd = 4. The film thickness is h̃ = 1, its

boundaries are z̃ = 1 and z̃ = 2. The distance between the bodies and the film is 1z̃ = 0.5.

of the electric field in the dielectric, which occurs due to

the induced charges. The greater the dielectric constant

is, the stronger the shielding is. An important property

of the resulting distribution is that its characteristic size is

approximately equal to the size of the sphere.

The question arises: can the obtained method be used

to solve other charged metal bodies? It turned out that it

is possible. Thus, the problem was considered of finding

the normalized potential of metal charged ellipsoid near the

same plane-layered structure of one film as in the previous

example. The elongated ellipsoid with the axis of symmetry

along the axis Z was considered. Normalization of

coordinates was carried out with respect to the minor semi-

axis in a plane perpendicular to the axis. The normalized

length of the major semi-axis was 1.25. The center of the

ellipse was at the point (x̃0, ỹ0, z̃ 0) = (0, 0,−0.75). The

shortest distance from the ellipse to the film was 1z̃ = 0.5.

Fig. 4, b shows the normalized potential distribution in the

(x̃ , z̃ ) plane. The expansion 8̃s was carried out in the same

functions as in the previous case (59).

Similarly, the problem of finding the normalized potential

of metal charged body of drop-type shape was considered,

this body is semi-ellipsoid superimposed on hemisphere. As

in the previous example, the body was located near the

same plane-layered structure of one film. Normalization of

coordinates was carried out with respect to the radius of

the hemisphere. The normalized length of the hemisphere

major semi-axis was 1.3. The center of the hemisphere

curvature was at the point (x̃0, ỹ0, z̃ 0) = (0, 0,−0.8). The

shortest distance from the body to the film was 1z̃ = 0.5.

Fig. 4, c shows the normalized potential distribution in the
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(x̃ , z̃ ) plane. The expansion 8̃s was carried out in the same

functions as in the previous case (59).

Note that as the ellipsoid eccentricity increases, the

convergence of the numerical method decreases; for large

eccentricities the potential should be expanded into a series

in solutions of the Laplace equation in the elliptic system

of coordinates of rotation [13]. The best approximation

problem 8̃s requires additional study.

10. Application of results obtained
to problems of thermal conductivity
of plane-layered media

As it is known, there is an analogy between the prob-

lems of electrostatics and stationary problems of thermal

conductivity [14]. Not only the corresponding equations are

similar, but also the boundary conditions [15,16]. If, in the

problems discussed in the previous Sections, simultaneously

the following are replaced: 1) potential ϕ — by the

temperature (T−T0), where T0 — temperature at infinity;

2) permittivity ε — by thermal conductivity K; 3) electric

induction vector D = εE = −ε∇ϕ — by heat flux density

h = −K∇T ; 4) point charge q — by the heat release power

of point source Qh, then similar problems can be solved by

the same method.

For example, to solve the problem of temperature

distribution around the body heated to a constant tempera-

ture Tm, one can first solve the corresponding electrostatic

problem of potential distribution in the vicinity of the body

with constant surface potential. The normalized solution

of the electrostatic problem will also be the solution of

the similar normalized problem of thermal conductivity in

normalized coordinates (with the specified change of values

and notations). The result of calculating the temperature

distribution (more precisely, the temperature rise over the

external temperature T0, expressed in units (Tm−T0))in the

problems of heated sphere, ellipsoid, and drop-type body

will be identical to the distributions shown in Fig. 4.

The normalized temperature distribution, just as in the

case of the distribution of normalized electrostatic potentials

has the following property. The distribution depends on the

ratios of the thermal conductivity coefficients of the regions.

That is, if we increase all the coefficients by k times, then

the normalized temperature distribution will not change in

the normalized coordinates. Thus, Fig. 4 shows the temper-

ature distributions for the thermal conductivity coefficients

K f = k, Kp = 2k, Kd = 4k, where k is arbitrary number.

Especially note that the analogy between the electrostatic

and thermal conductivity problems does not mean that the

electric potential distribution in vacuum is similar to the

temperature distribution in vacuum. In the considered case,

the analogue of vacuum is a medium with some finite

thermal conductivity coefficient K f , and the coefficients

Kp and Kd correlate with K f in the same way as the

permittivities of similar electrostatic problem.

Conclusion

In this paper, a new formulation of the generalized mirror

reflection method for single film located on half-space is

proposed, it eliminates the double integration used in the

previous formulation of the method [9].
The method application for finding electrostatic fields

from symmetric bodies of revolution located next to one

film is demonstrated. The applicability of the proposed

theoretical method to similar problems of stationary thermal

conductivity is shown. This was done using the example of

solving the problem of finding the temperature field around

a uniformly heated body located near thermal conducting

film and half-space.
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