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Multilevel model of multiphoton processes in a helium atom in a strong

laser field: ionization description
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A multilevel model that makes it possible to describe multiphoton processes taking into account ionization in a

multielectron atom irradiated by an intense laser field is proposed. Using the He atom as an example, it is shown

that this model reproduces the main regularities of multiphoton ionization of an atom by an intense high-frequency

laser field.
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Introduction

The appearance of sources of coherent radiation in

vacuum ultraviolet and X-ray ranges based on high-order

harmonic generation (HHG) of the laser field in gas media

in tunnel ionization regime results in the emergence of

attosecond physics — a field of science dedicated to

the investigation and control of physical and chemical

processes in atoms, molecules, nanostructures and solids

on attosecond time scales [1].

The first HHG experiments were performed on noble

gases and established the main properties of this process [2].
A three-step semiclassical rescattering model [3] became

the basis of a qualitative understanding and theoretical

description of the HHG process on a microscopic scale.

Quantum-mechanical analogs of this model [4,5] made it

possible to provide an analytical description of the process

in the tunnel and above-barrier ionization regimes. One of

the distinguishing features of these HHG regimes is that

in these regimes the dynamics of the released electron in

the continuum plays a leading role. At the same time,

since, in terms of quantum mechanics, the high-frequency

nonlinear polarization responsible for HHG is induced

due to the interference of the wave function components

corresponding to the released and bound electrons, the

wave function features of the bound valence electron play

an important role, which is used in HHG spectroscopy

of atoms and molecules [6]. Moreover, it was found that

the efficiency of HHG in a moderate-intensity laser pulse

can increase dramatically in the presence of resonances of

the generated harmonics with transitions between certain

excited atomic states and the ground state [7]. However,

HHG description in multiphoton and intermediate ionization

regimes is a complicated task, since the approximations

used for the HHG description in tunnel and above-barrier

regimes become inapplicable. In this case, it is important to

accurately take into account the real structure and properties

of atomic states which differ greatly for different atoms.

In the present paper, we propose a multilevel model

allowing to describe multiphoton processes in an atom

taking into account ionization of its bound states.

Theoretical model

Consider a He atom irradiated by an intense laser pulse

linearly polarized along the z axis, whose electric field has

the form

E(t) = z0E(t) = z0EL f (t) sin(�Lt), (1)

where EL and �L are the amplitude and carrier frequency

of the laser pulse, f (t) is the laser pulse envelope. The

evolution of the electron state in a He atom, |9〉, in

the external laser field is described by the time-dependent

Schrödinger equation (hereinafter, atomic units are used):

i
∂

∂t
|9〉 = [Ĥ0 + V̂ ]|9〉, (2)

where Ĥ0 is the He atom Hamiltonian in the absence of

interaction with the laser field (1), V̂ is the operator of

interaction between the atom and laser field, which in the

electric dipole approximation has the form

V̂ = d̂z EL f (t) sin(�Lt),
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where d̂z is the projection of the atomic dipole moment

operator on the z axis. The electron wave function in He

can be represented as an expansion in a finite number of

bound two-electron states |k〉 with energies Ek and two-

electron continuum states |ε, l〉 characterized by energy

ε > 0 and orbital quantum number l :

|9〉 =

K
∑

k=1

ak(t)|k〉 +

∞
∑

l=0

∞
∫

0

dεbl(ε, t)|ε, l〉, (3)

where ak(t) and bl(ε, t) are the excitation amplitudes of the

states |k〉 and |ε, l〉, respectively, K is the number of bound

states taken into account. In this case, the set of bound

states is determined by the necessity to take into account

the most probable paths of multiphoton atom excitation,

while the continuum states allow to take into account the

atom ionization. It should be noted that, since He atom

experiences a dipole interaction with the linearly polarized

field (1), the magnetic quantum number of atom states M
does not change. Thus, if at the initial moment of time the

atom was in a state with zero magnetic quantum number,

for example, in the ground state of He atom |1s2〉, then

the magnetic quantum number of each state in (3) will be

equal to zero. It is worth noting that the number of bound

states in (3) can be arbitrary and, in certain calculations,

is determined by the existing data on the energy structure

of an atom (generally, a multielectron one), as well as

by the available computational capabilities. However, the

number of bound states taken into account determines the

maximum order of multiphoton processes that can be cor-

rectly described within the model: generally, the maximum

order does not exceed K − 1. As an example below, we

will consider the first six bound states of the He atom

(K = 6) with M = 0, namely |1〉 = |1s2〉, |2〉 = |1s2s〉,
|3〉 = |1s2p〉, |4〉 = |1s3s〉, |5〉 = |1s3p〉, |6〉 = |1s3d〉, us-
ing the spectroscopy data on the He atom (energies Ek and

dipole moments of transitions between the bound states, as

well as between the bound and continuum states) obtained

using MCHF software package based on the solution of the

stationary Schrödinger equation by the multiconfiguration

Hartree-Fock method [8]. In this case, only states with

energies below 1 a. u., that correspond to the detachment

of one electron, are taken into account in the continuum.

Thus, the set of two-electron states of an atom used in the

calculations below allows to correctly describe the processes

with excitation and/or ionization of one electron.

By substituting (3) into (2) and calculating scalar prod-

ucts of the derived expression and vectors of states |k〉 and
|ε, l〉 step by step, one can obtain a system of equations

for the amplitudes ak(t) and bl(ε, t), which fully describes

the dynamics of the atomic state in an external field.

When describing multiphoton processes primarily caused

by transitions between the bound atomic states, this system

can be simplified using the approximation of adiabatic

elimination of the continuum states [9]. This allows to switch

from the complete system of equations for ak(t) and bl(ε, t)

to a closed system of equations for Fourier components of

excitation amplitudes ak,n(t), which are defined as follows

ak(t) =

∞
∑

n=−∞

ak,n(t)e
in�Lt .

By neglecting additionally the connection between the

bound states through the continuum states, in other words,

by neglecting the influence of bound-free-bound transitions

(i.e., recombination) on the wave function evolution, the

following system of equations for ak,n(t) can be obtained:

dak,n

dt
= −i[Ek + n�L − iwk,n(t)]ak,n

−
∑

k′

[

ELdz ,k′k

2
f (t)ak′,n−1 −

ELdz ,k′k

2
f (t)ak′,n+1

]

, (4)

where dz ,k′k = 〈k|d̂z |k ′〉, wk,n(t) is the ionization rate of the

nth Fourier component of the state |k〉:

wk,n(t) =
π

4
E2

L f 2(t)
[

Dkk(Ek− (n−1)�L)θ(Ek− (n−1)�L)

+Dkk(Ek − (n + 1)�L)θ(Ek − (n + 1)�L)
]

, (5)

where θ(x) is the Heaviside step function,

Dkk(ε) =
∑

l

∣

∣〈ε, l|d̂z |k〉
∣

∣

2
.

In (4) summation over k ′ is performed over the entire set K
of bound states into which dipole transition is allowed, and

n = [−∞;∞]. In addition, when calculating the ionization

rate (5), principal value integrals over energy ε were

calculated due to which Heaviside step functions occurred.

To solve system (4), it is necessary to determine the

initial conditions for ak,n. Since initially only excitation

amplitudes of bound states ak(t = 0) = a (0)
k are determined,

there is uncertainty in the choice of initial conditions for the

Fourier components. Below, we assume, that only Fourier

components of amplitudes with n = 0 are non-zero in the

initial moment of time:

ak,n(t = 0) = a (0)
k δn0, (6)

where δn0 is the Kronecker symbol. The system (4)
together with the initial conditions (6) allows to describe

intraatomic dynamics excited by the laser field (1) taking

into account the atom ionization. Ionization in this model is

taken into account by the appearance of decay rates wk,n(t)
of the Fourier components of the bound state excitation

amplitudes. In this case, ionization may be represented as

an
”
irreversible flow“ of an electron wave packet during

the multiphoton excitation into some
”
reservoir“ (into the

continuum).
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Comparison with numerical solution of the
Schrödinger equation

To test the method of ionization accounting in the above

model, we have performed calculations for the He atom on

the basis of the numerical solution of the time-dependent

Schrödinger equation:

i
∂

∂t
|9(x , z , t)〉 =

[

−1

2

∂2

∂x2
− 1

2

∂2

∂z 2

+
i
c

Az (t)
∂

∂z
+ U(x , z )

]

|9(x , z , t)〉, (7)

where

Az (t) = c

t
∫

−∞

E(t′)dt′

is the vector potential of the field (1), c is the speed of

light. In these calculations, the He atom was described

by means of a 2D single-electron model with the effective

potential allowing to reproduce the energies of the first three

states of real He atom with zero magnetic quantum number

(|1〉, |2〉, |3〉):

U(x , z ) = U(r) = −1+(1+8.125r)e−8.125r

√
r2 + 0.01

+
0.6r6

r8+10−4
.

(8)
Equation (7) with potential (8) was solved by the split-step

method with fast Fourier transform [10].
In order to exclude the influence of multiphoton resonant

excitation of an atom during its ionization and, thus, to carry

out direct comparative study of atom ionization from the

selected bound state, we consider the case of a nonresonant

laser field whose frequency is not in resonance of any mul-

tiplicity with the transitions between the ground and excited

states of the He atom: �L = 0.33 a. u. (λL = 138 nm). As a
field envelope (1), f (t), we consider a trapezoidal envelope

with full duration of 36 field periods TL = 2π/�L and with

uniform turn on and turn off during 3TL (Figure 1, right

y-axis).
Figure 1 (left y-axis) shows a typical time dependence

of the average number of electrons N(t) in a He atom

irradiated by the laser field (1) with the peak intensity

IL = 2.86 · 10−3 a. u. (1014 W/cm2, the Keldysh parameter

γ = 16.8). It was assumed that at the initial moment of

time the atom was in |2〉 state. In the quantum-mechanical

calculation based on (7), (8) N(t) is calculated as follows:

N(t) =
x

R

dxdz |9(x , z , t)|2 + 1 ≡ N2D(t), (9)

where integration is performed inside the circle with

R = 20 a. u. around the He atom. In this case, the wave

functions of the first three stationary states of an active

electron in problem (7), (8) fall within the integration circle.

Therefore, the first term in (9) corresponds to the atoms

whose active electron is not detached when interacting with
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Figure 1. Time dependence of the average number of electrons

in He atom (left y-axis, solid and dotted lines), as well as the

shape of the field envelope (1) (right y-axis, dash-dotted line). The
solid line corresponds to the numerical solution of equation (7)
with potential (8) and the initial condition |9(x, z , t = 0)〉 = |2〉,
the dashed line corresponds to the solution of the system (4), (5)

with initial conditions (6) with a(0)
2 = 1 and a(0)

k = 0 for k 6= 2.

The figure is plotted with �L = 0.33 a. u. (λL = 138 nm)
and IL = 2.86 · 10−3 a. u. (1014 W/cm2, the Keldysh parameter

γ = 16.8).

the field (1) at time t, while the second term corresponds

to the second
”
frozen“ electron that produces an effective

potential (8) together with the nucleus. In the proposed

model (4), (5) N(t) corresponds to the following value:

N(t) = 2

K
∑

k=1

|ak(t)|2 +

∞
∑

l=0

∞
∫

0

dε|bl(ε, t)|2

=

K
∑

k=1

|ak(t)|2 + 1 ≡ NML(t), (10)

where the first term in the first equality corresponds to the

probability of detecting two electrons in the He atom and

the second term corresponds to the probability of detecting

one electron in the He atom; condition of normalization of

wave function (3) is also taken into account in the second

equality:

K
∑

k=1

|ak(t)|2 +
∞
∑

l=0

∞
∫

0

dε|bl(ε, t)|2 = 1. (11)

Figure 1 shows that the time dependence NML(t) (dotted
line) is qualitatively and quantitatively close to N2D(t) (solid
line): at the initial moments of time at the leading edge

of the pulse (1), the average number of electrons in the He

atom is close to two; then in the time interval with a constant

field intensity (1), a smooth decrease in N(t) is observed

due to multiphoton ionization of the atom (the Keldysh

parameter γ = 16.8); after the end of the pulse, the average

number of electrons in the atom remains constant. At the

same time, at the leading edge of the laser pulse, NML(t)
decreases slightly faster than N2D(t), which is caused by a
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Figure 2. Dependence of the average number of electrons in

He atom after the impact of the pulse (1) (at time t = 50TL)
on its peak intensity. The cases, when initially the atom is

in the state |1〉 (red line), |2〉 (black line) or |3〉 (blue line),
are shown. Dotted lines correspond to the data obtained on

the basis of the solution of the system (4), (5), and markers

(asterisks, crosses and circles) — on the basis of the numerical

solution of the Schrödinger equation (7) with potential (8) with

the appropriate initial conditions. The Keldysh parameter varies

from 168 (at 1012 W/cm2) to 5.31 (at 1015 W/cm2).

delay in numerical calculations required for the free part of

the wave packet to leave the integration circle. With further

increase in t, the decay rate of N2D(t) tends to the decay

rate of NML(t), and then exceeds it. As a result, for a

sufficiently long field pulse (1), starting from a certain

moment of time in a range of constant intensity, NML(t)
becomes greater than N2D(t), and with further increase t
the difference between NML(t) and N2D(t) will increase.

Such behavior of the dependences NML(t) and N2D(t) is

caused both by the approximations used in the derivation

of the system (4), (5) and by the approximations made in

the numerical solution of the Schrödinger equation (7), (8).

However, for the pulse width shown in Figure 1, the initial

difference between NML(t) and N2D(t) and their decay rates

is so small that after the end of the field pulse (1), for

example, at t = 50TL, N2D(t) ≃ NML(t).

Figure 2 shows the dependences of the average number

of electrons in the He atom after the end of the pulse (at

t = 50TL) on the intensity of the field (1) with frequency

�L = 0.33 a. u. for different initial states of the atom calcu-

lated on the basis of the numerical solution of equation (7)

with potential (8) (colored markers), as well as on the basis

of the proposed model (4), (5) (dotted lines). As it can be

seen, in the considered range of laser field intensities, in

which one electron participates in the process of ionization

of the He atom [11], a good quantitative agreement is ob-

served between solutions obtained from the model (4), (5)

and numerical solution of the Schrödinger equation, which

indicates the reasonableness of the assumptions used in the

derivation of the system (4), (5).

Conclusion

In the present work, we proposed a multilevel model

allowing to describe multiphoton processes, including res-

onant ones (for example, HHG with photon energies less

than or on the order of the ionization potential) in an

atom irradiated by a strong laser field taking into account

the depletion of bound states in the multiphoton ionization

regime. The description of multiphoton processes in this

model is reduced to solving a linear system of equations

for the Fourier components of the bound state excitation

amplitudes, each of which is characterized by its own

ionization rate. In this case, ionization can be represented

as a process of
”
irreversible flow“ of an electron wave

packet into continuum during multiphoton excitation. Using

a He atom as an example, by comparing with the numer-

ical solution of the time-dependent Schrödinger equation

with an effective potential, which allows to reproduce

the structure of low-lying atom states, it is shown that

the proposed model describes the main regularities of

the multiphoton ionization of an atom in a strong laser

field. An important feature of the proposed model is the

possibility of its application for calculations of the internal

dynamic of multielectron atoms (provided that the bound

state properties are known — binding energies and dipole

moments of transitions), which is a computationally difficult

task when using other approaches..
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