¹⁰ Особенности люминесценции керамики на основе кубического (ZR_{0.82-x}HF_xY_{0.17}Eu_{0.01})O_{1.91}

© А.А. Шакирова, Е.В. Дементьева, Т.Б. Попова, М.В. Заморянская

ФТИ им. А. Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: azaliya.s@inbox.ru

Поступила в редакцию 23.11.2022 г.

В окончательной редакции 20.03.2023 г. Принята к публикации 21.03.2023 г.

Исследована керамика на основе кубического $(Zr_{0.82-x}Hf_xY_{0.17}Eu_{0.01})O_{1.91}$ с различным содержанием гафния. В ходе работы был получен элементный состав образцов, исследованы спектры катодолюминесценции (КЛ) и кинетика затухания интенсивности люминесценции перехода европия ${}^{5}D_{0}-{}^{7}F_{1}$. Исследования показали, что увеличение содержания гафния не влияет на положение и количество наблюдаемых полос в спектре люминесценции. Однако изменение соотношения интенсивностей электродипольного и магнитодипольного излучательных переходов говорит о снижении локальной симметрии иона европия при увеличении содержания гафния. Показано, что время затухания перехода ${}^{5}D_{0}-{}^{7}F_{1}$ в Eu^{3+} не зависит от содержания гафния, но существенно меняется в различных областях образца, что можно связать с влиянием межзеренных границ.

Ключевые слова: твердый раствор (Zr,Hf,Y,Eu)O₂, катодолюминесценция, коэффициент асимметрии, кинетика затухания люминесценции.

DOI: 10.21883/OS.2023.05.55713.76-22

Введение

В последнее время важные задачи дозиметрии связаны с захоронением и иммобилизацией ядерных отходов, анализом последствий крупномасштабных радиационных аварий и экологических катастроф. Для этих целей широко используются термолюминесцентные дозиметры. Необходимым шагом является разработка радиационно-стойких термолюминесцентных дозиметров, способных измерять большие дозы ионизирующего излучения [1].

Одним из возможных материалов для создания радиационно-химически стойких дозиметров является керамика на основе кубического стабилизированного оксида циркония. Такой материал обладает высокой механической, химической и радиационной стойкостью [2], однако кубическая фаза f-ZrO₂ нестабильна при комнатной температуре, чтобы ее стабилизировать, в матрицу оксида циркония вводят оксид редкоземельного иона R_2O_3 , например Y_2O_3 [3].

Одним из недостатков диоксида циркония является то, что он прозрачен для нейтронов, что может приводить к значительной потере энергии при детектировании высокоэнергетического излучения. Химический аналог циркония — гафний — в свою очередь, хорошо поглощает нейтроны, и его добавление позволит получить материал, способный поглощать нейтроны и обладающий высокой радиационной стойкостью [4].

Для активации оксидных матриц часто используются ионы трехвалентного европия [5]. Кроме того что Eu³⁺ обладает яркой люминесценцией в красной области

спектра, он также позволяет исследовать структурные особенности широкозонных материалов. В некоторых случаях анализ формы его спектра излучения позволяет судить об локальном окружении этого иона и, следовательно, о симметрии матрицы, в которую он внесен [6].

Цель настоящей работы — исследовать влияние содержания гафния на катодолюминесцентные свойства.

Образцы и методы исследования

В настоящей работе была исследована концентрационная серия образцов керамики на основе кубического диоксида циркония $(Zr_{0.82-x}Hf_xY_{0.17}Eu_{0.01})O_{1.91}$ с различным содержанием гафния (x = 0, 0.41, 0.62 и 0.82):

образец 0-Нf (Zr_{0.82}Y_{0.17}Eu_{0.01})О_{1.91};

образец 0.41-Нf (Zr_{0.41}Нf_{0.41}Y_{0.17}Eu_{0.01})О_{1.91};

образец 0.62-Нf (Zr_{0.2}Нf_{0.62}Y_{0.17}Eu_{0.01})O_{1.91};

образец 0.82-Нf (Нf_{0.82}Y_{0.17}Eu_{0.01})O_{1.91}.

По литературным данным содержание иттрия 0.17 form. units является достаточным для стабилизации кубической фазы оксида циркония [3], а при содержании европия 0.01 form. units наблюдается наиболее яркая люминесценция [7].

Образцы были синтезированы методом соосаждения из общего водного раствора с последующим холодным прессованием и отжигом на воздухе при температуре 1500°С в течение 3 h (подробно синтез описан в работах [8,9]). Характерный размер зерен для данной керамики составляет $2-6\,\mu$ m. Образцы были отшлифованы

Образец	Содержание элементов, form. un								
	Hf	Zr	Y	Eu					
0-Hf	0	0.80 ± 0.02	0.185 ± 0.004	0.012 ± 0.001					
0.41-Hf	0.40 ± 0.01	0.40 ± 0.01	0.187 ± 0.004	0.013 ± 0.001					
0.62-Hf	0.61 ± 0.01	0.186 ± 0.004	0.194 ± 0.004	0.014 ± 0.001					
0.82-Hf	0.78 ± 0.02	0	0.207 ± 0.004	0.012 ± 0.001					

Таблица 1. Элементный состав образцов

и отполированы, на их поверхность наносилась углеродная пленка для обеспечения электропроводимости.

Элементный состав исследуемых образцов был определен методом рентгеноспектрального микроанализа (РСМА). Исследование состава проводилось на электронно-зондовом микроанализаторе САМЕВАХ, оснащенным четырьмя рентгеновскими спектрометрами, при следующих параметрах электронного пучка: энергия U = 20 keV, поглощенный ток I = 15 nA, диаметр пучка $d = 2 \mu$ m. Для анализа была выбрана аналитическая линия L α для всех элементов. В качестве эталонов были выбраны металлический цирконий (для Zr), металлический гафний (для Hf), соединения Y₃Al₅O₁₂ (для Y) и EuPO₄ (для Eu). Содержание кислорода было рассчитано по стехиометрии. Элементный состав измерялся в нескольких (не менее пяти) случайно выбранный областях образцов и затем усреднялся.

Люминесцентные свойства концентрационной серии образцов были исследованы методом катодолюминесценции (КЛ) на той же установке САМЕВАХ, дополнительно оборудованной спектрометром оптического диапазона [10]. Спектры КЛ и кинетика затухания КЛ полос были получены при энергии электронного пучка U = 20 keV, поглощенном токе I = 15 nA и диаметре пучка $d = 2 \mu$ m. Спектры КЛ образцов были зарегистрированы при одинаковых условиях в диапазоне длин волн $\lambda = 400-750$ nm, измерения кинетики затухания проводились в режиме отклонения электронного пучка также при одинаковых условиях для всех образцов. КЛ изображения образцов были получены при следующих условиях: энергия электронного пучка U = 20 keV, поглощенный ток I = 15 nA и диаметр пучка $d = 100 \mu$ m.

Результаты и обсуждение

Элементный состав образцов

Был определен средний элементный состав образцов методом РСМА, результаты представлены в табл. 1. Полученные значения содержания элементов соответствовали запланированным, отклонение от запланированного состава не превышает пределы ошибки метода измерения для всех образцов (10% для европия, 2% для остальных элементов в образцах [11]).

Рис. 1. (*a*) КЛ изображение образца; (*b*) изображение образца в оптическом микроскопе.

Таблица 2. Коэффициент асимметрии max $I_{(ED)}/I_{(MD)}$ исследованных образцов

Образец	$\max I_{(ED)}/I_{(MD)}$	Среднее отклонение
0-Hf	1.33	0.08
0.41-Hf	1.4	0.02
0.62-Hf	1.41	0.02
0.82-Hf	1.46	0.04

КЛ изображения

Для всех образцов были получены изображения в оптическом микроскопе и КЛ изображения. На оптических изображениях всех образцов наблюдается контраст, связанный с топографией поверхности. Темные области на КЛ изображениях совпадают с контрастом на оптических изображениях, что говорит о том, что контраст КЛ изображений также связан с топографией поверхности образцов. Этот вывод подтверждается тем, что по данным PCMA образцы однородны.

В качестве примера на рис. 1, a представлено КЛ изображение образца 0-Hf, на рис. 1, b — изображение этой же области данного образца в оптическом микроскопе.

Спектры КЛ

Измеренные спектры КЛ показаны на рис. 2. Наблюдаемые полосы излучения интерпретированы на основании работы К. Binnemans [5], благодаря которой было

Рис. 2. (a) Спектры КЛ образцов; (b) схема энергетических переходов иона европия в $(ZR_{0.82-x}HF_xY_{0.17}Eu_{0.01})O_{1.91}$.

определено, что все полосы люминесценции связаны с переходами в ионе Eu^{3+} . В частности, в спектрах КЛ всех образцов наблюдались переходы с уровня ${}^{5}D_{1}$ на ${}^{7}F_{1}$, с ${}^{5}D_{2}$ на ${}^{7}F_{1}$ и с уровня ${}^{5}D_{0}$ на ${}^{7}F_{0,1,2,3,4}$. Видно, что содержание гафния не влияет на положение и количество наблюдаемых полос. Анализ спектров люминесценции подтвердил, что керамика действительно стабилизировалась в кубической фазе. Об этом свидетельствует отсутствие расщепления полосы перехода ${}^{5}D_{0} - {}^{7}F_{2} Eu^{3+}$ [8].

По методике, предложенной в работе [6], был рассчитан коэффициент асимметрии для всех образцов (табл. 2). В данной работе было показано, что коэффициент асимметрии max $I_{(ED)}/I_{(MD)}$ (отношение максимумов интенсивностей полос ${}^{5}D_{0} - {}^{7}F_{1}$ и ${}^{5}D_{0} - {}^{7}F_{2}$) очень чувствителен к изменению локальной симметрии иона Eu³⁺.

Коэффициент асимметрии $\max I_{(ED)}/I_{(MD)}$ является отношением максимумов интенсивностей электродипольного перехода ${}^5D_0 - {}^7F_2$, который сильно зависит от окружения иона-активатора, и магнитодипольного перехода ${}^5D_0 - {}^7F_1$, слабо зависящего от окружения. Сравнивая $\max I_{(ED)}/I_{(MD)}$ концентрационной серии образцов, можно судить об изменении локального окружения иона Eu^{3+} .

Результаты исследования показывают увеличение коэффициента асимметрии с увеличением содержания гаф-

Рис. 3. Кинетика интенсивности КЛ образца 0.41-Нf (черная кривая) в полулогарифмическом масштабе, аппроксимированная моно- (*a*) и биэкспоненциальной функциями (красные кривые) (*b*).

Образец	Образец 0.41-Нf						
Параметры номер области	1	2	3		1	2	3
A_1 $ au_1, ms$ A_2 $ au_2, ms$ $ au_{aver}, ms$	0.59 0.12 0.41 0.78 0.66	0.54 0.21 0.46 1.17 1.00	0.46 0.16 0.54 0.94 0.84	$\begin{array}{c} A_1 \\ \tau_1, \mathrm{ms} \\ A_2 \\ \tau_2, \mathrm{ms} \\ \tau_{\mathrm{aver}} \end{array}$	0.49 0.16 0.51 0.89 0.78	0.14 0.09 0.86 0.75 0.74	0.56 0.23 0.44 1.24 1.04
Образец	Образец 0.82-Нf						
Aı	$1 \\ 0.50$	2 0.53	3 0.55	A1	1 0.38	2 0.51	3 0.52
$ au_1, ext{ms}$ $ ext{A_2}$	0.19 0.50	0.24 0.47	0.22 0.45	$ au_1, \mathrm{ms}$ A_2	0.11 0.62	0.17 0.49	0.22 0.48
$ au_2, \mathrm{ms}$ $ au_{\mathrm{aver}}, \mathrm{ms}$	1.09 0.96	1.25 1.07	1.22 1.04	$ au_2, \mathrm{ms}$ $ au_\mathrm{aver}$	0.83 0.78	1.06 0.93	1.14 0.98

Таблица 3. Параметры затухания люминесценции для перехода ${}^{5}D_{0} - {}^{7}F_{1}$ Eu $^{3+}$

ния. Это говорит о снижении симметрии окружения европия с увеличением содержания гафния.

Исследование кинетики затухания перехода ${}^5\!D_0 - {}^7F_1$ Eu ${}^{3+}$

В ходе работы также была исследована кинетика затухания интенсивности люминесценции перехода ${}^{5}D_{0} - {}^{7}F_{1}$ ($\lambda = 590$ nm) европия для всех образцов. Методика измерения кинетики затухания описана в работах [11,12]. Для каждого образца были получены кинетические зависимости в различных областях образца. Пример зависимости интенсивности КЛ от времени представлен рис. 3, *b* в полулогарифмическом масштабе. Как видно на рис. 3, *b*, данная зависимость не может быть аппроксимирована одной экспонентой, поэтому каждая полученная кинетика затухания для всех образцов была аппроксимирована суммой двух экспонент (1):

$$I = I_0 + A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right).$$
(1)

Присутствие короткого времени затухания может быть связано с влиянием границ зерен, из которых состоит керамика [4]. В случае описания кинетики затухания биэкспоненциальной функцией может быть рассчитано среднее время затухания люминесценции $\tau_{\rm aver}$, которое определяется выражением (2) [13]

$$\tau_{\text{aver}} = \frac{A_1 \cdot \tau_1^2 + A_2 \cdot \tau_2^2}{A_1 \cdot \tau_1 + A_2 \cdot \tau_2}.$$
 (2)

Результаты аппроксимации кинетики затухания для образцов в различных областях представлены в табл. З $(A_1, A_2 -$ вклады соответственно первой и второй экспонент). Ошибка измерения составляет 2% для τ_2 и 6% для τ_1 .

Из представленной таблицы видно, что в каждом образце для различных областей меняется как значение вклада экспонент (например, для 0-Hf A_1 меняется от 0.6 до 0.45), так и времена затухания. Особенно сильно (до 2 раз) меняется короткое время затухания. Также для всей концентрационной серии образцов значение $\tau_{\rm aver}$ варьирует от 0.66 до 1.07 ms. Значение $\tau_{\rm aver}$ не коррелирует с концентрацией гафния.

В работе [12] было продемонстрировано, что в кинетику затухания редкоземельного иона существенный вклад вносят межзеренные границы и интерфейсы. Вблизи межзеренных границ и интерфейсов присутствуют центры люминесценции с коротким временем затухания. Так как в исследуемой керамике размеры зерен сопоставимы с размером области генерации КЛ (порядка

625

единиц микрон), то в разных случайных областях может существенно меняться соотношение люминесцентных центров с длинным и коротким временами жизни, и, как следствие, меняется вклад экспонент и τ_{aver} .

Выводы

В работе была исследована серия керамических образцов с различным содержанием гафния следующего состава: $(Zr_{0.82-x}Hf_xY_{0.17}Eu_{0.01})O_{1.91}$ (x = 0, 0.41, 0.62 и 0.82).

Было показано, что КЛ изображение поверхности неоднородно. Это связано с особенностями топографии и пробоподготовкой образцов, а не с неоднородностью состава. Также при анализе спектров было показано, что керамические образцы представлены кубической фазой, увеличение содержания гафния приводит к снижению локальной симметрии европия. При исследовании кинетики затухания перехода ${}^5D_0 - {}^7F_1$ в Eu³⁺ было обнаружено, что за счет наличия границ зерен керамики и образования центров с коротким временем затухания в случайных областях образцов сильно меняются времена затухания и вклад экспонент, описывающих кинетику КЛ европия. Содержание гафния явным образом не влияет на времена затухания КЛ европия и вклад экспонент, описывающих длинные и более короткие времена затухания.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] S. Chand, R. Mehra, V. Chopra. V. Lumin., **36** (8), 1808 (2021). DOI:10.1002/bio.3960
- [2] K. Yuan, X. Jin, Z. Yu, X. Gan, X. Wang, G. Zhang, L. Zhu, D. Xu, K. Yuan, X. Jin, Z. Yu, X. Gan, X. Wang, G. Zhang, L. Zhu, D. Xu. Ceram. Int., 44 (1), 282 (2018). DOI: 10.1016/j.ceramint.2017.09.171
- [3] J. Dexpert-Ghys, M. Faucher, P. Caro. J. Solid State Chem., 54 (2), 179 (1984). DOI: 10.1016/0022-4596(84)90145-2
- [4] H. Yu, C. Liu, Zh. Zhang, Sh. Huang, Y. Yang, R. Mao, He Feng, J. Zhao. Chem. Phys. Lett., 738 (2020). DOI: 10.1016/j.cplett.2019.136916
- [5] K. Binnemans. Coord. Chem. Rev., **295**, 1 (2015). DOI: 10.1016/j.ccr.2015.02.015
- [6] В.А. Кравец, К.Н. Орехова, М.А. Яговкина, Е.В. Иванова, М.В. Заморянская. Опт. и спектр., **125** (2), 180 (2018). DOI: 10.21883/OS.2023.05.55713.76-22
- K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis,
 A. Opalinska, J. D. Fidelus, W. Lojkowski. Opt. Mater., 32 (8), 827 (2010). DOI: 10.1016/j.optmat.2010.03.002
- [8] E.V. Ivanova, V.A. Kravets, K.N. Orekhova, G.A. Gusev, T.B. Popova, M.A. Yagovkina, O.G. Bogdanova, B.E. Burakov, M.V. Zamoryanskaya. J. Alloys Compd., 808, 151778 (2019). DOI: 10.1016/j.jallcom.2019.151778

- [9] А.А. Шакирова, Г.А. Гусев, Е.В. Дементьева, А.А. Аверин, Т.Б. Попова, М.В. Заморянская. Опт. и спектр., 130, 10 (2022). DOI: 10.21883/OS.2023.05.55713.76-22
- M.V. Zamoryanskaya, S.G. Konnikov, A.N. Zamoryanskii. Instrum. Exp. Tech., 47 (4), 447 (2004).
 DOI: 10.1023/B:INET.0000038392.08043.d6
- [11] Г.А. Гусев, С.М. Маслобоева, М.А. Яговкина, М.В. Заморянская. Опт. и спектр., **130** (2), 294 (2022). DOI: 10.21883/OS.2023.05.55713.76-22
- [12] K. Orekhova, M. Zamoryanskaya. J. Lumin., 251, 119228 (2022).
- [13] I.E. Kolesnikov, D.S. Kolokolov, M.A. Kurochkin, M.A. Voznesenskiy, M.G. Osmolowsky, E. Lähderanta, O.M. Osmolovskaya. J. Alloys Compd., 822, 153640 (2020). DOI: 10.1016/j.jallcom.2020.153640