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In this paper we propose a method to estimate the coefficient of spin Hall effect for polycrystalline samples of

pure nonmagnetic metals. The transverse resistivities characterizing the spin Hall effect were calculated for different

metals of the 5th and 6th periods. It is shown that the result within a statistical error agrees with the experimental

data.
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The spin Hall effect (SHE) consists in the emergence of

a measurable transverse spin current [1] under the influence

of a charge current in nonmagnetic metals with a strong

spin-orbit interaction. The current state of experimental

techniques and theoretical research into SHE has been

reviewed in detail in several papers (see, e.g., [1–3]).
Particular attention has been paid in recent studies to the

influence of the structure of epitaxial metal films on spin-

dependent transport properties. Specifically, it has been

demonstrated that the SHE angle in certain polycrystalline

samples increases relative to the corresponding angle in

single-crystalline ones [4].
In order to determine the SHE magnitude in a uniform

and isotropic polycrystal, we write down the spin-orbit

addition to the energy of an electron in an electric field

with potential 8(r):

V̂ = −
~e

2m2c2
εαβγ ŝα

∂8

∂rβ
p̂γ . (1)

Here, m is the mass of an electron with charge −e
and εαβγ is a unit antisymmetric Levi-Civita tensor. The

electron momentum dynamics induced by perturbation (1)
is characterized by the following equation for averages:

d pδ
dt

=
i
~

〈[

V̂ , p̂δ

]〉

=
~eεαβγ
2m2c2

〈

ŝα
∂28

∂rβ∂r δ
p̂γ

〉

. (2)

The potential of a conduction electron in the crystalline field

of ion cores with effective charge Ze and coordinates Rk is

written as 8(r) = eZ
4πε0

N
∑

k=1

1
|r−Rk | .

The value of Z may be estimated by equating the

coordinate of the maximum of the radial component of a

hydrogen-like wave function to atom radius Ra . For exam-

ple, platinum has Ra = 1.39 · 10−10 m, which corresponds

to Z ≈ 22.45 for shell 6s . Table 1 lists the properties

of atoms of the studied metals, the configurations of their

electron shells, and the parameters of their crystal lattices.

In any given spin state of an electron, one may choose

such a direction of axis z that the projection of its

spin onto this axis assumes a specific value s z ; i.e.,

ψ(r, σ ) = ψ(r)δ(σ, s z ). Let us write the wave function of

a collective conduction electron in the form of an expansion

in Wannier functions: ψ(r) = 1√
N

N
∑

n=1

9(r− Rn) exp(ikRn),

where 9(r) is the hydrogen-like function of an electron,

Rn is the translation vector, and N is the number of nodes

in a crystallite. Assuming that 〈s〉 = s and substituting

variables r− Rk → r, we then obtain the following after

summing over spin variables in (2):

d pδ
dt

=
~
2e2Zsα

8πε0m2c2N

N
∑

n,m,k=1

exp
(

ik(Rn − Rm)
)

×

〈

9(r + Rk − Rm)

∣

∣

∣

∣

3
r δ
r5

l̂α −
εαδγ

~r3
p̂γ

∣

∣

∣

∣

9(r+Rk−Rn)

〉

.

(3)

Hydrogen-like functions are small at r > naB/Z, where

aB = 5.29 · 10−11 m is the Bohr radius and n is the principal

quantum number. Therefore, the average on the right-hand

side of (3) is nonzero only at Rn − Rk = 0 or ±aν and

Rm − Rk = 0 or ±aν , where aν is a vector to the nearest

neighbor. With the Hermitian nature and odd parity of the

operator taken into account, we then obtain

d pδ
dt

= −
~
2e2Zsα

4πε0m2c2
sin(kaν)Im

〈

9ν

∣

∣

∣

∣

3
r δ
r5

l̂α −
εαδγ

~r3
p̂γ

∣

∣

∣

∣

9

〉

.

(4)
Here, 9ν(r) = 9(r + aν) − 9(r− aν) is a function with

its parity being opposite to the one of function 9(r), and
summing over ν is implied.

The right-hand side of relation (4) is equal to the force

acting on an electron. It may be presented as the result of

influence of Hall electric field ESH on an electron. Setting

k = jmRH/~ in (4), where j is the charge current density,
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Table 1. Lattice parameters and electronic configurations of metals of periods 5 and 6

Metal
Lattice Electronic

Ra , pm Z b1 b2 b3
structure configuration

Pt FCC 5d96s1 139 22.45 117 166 204

α-W BCC 5d46s2 137 22.77 118 136 193

β-W A15 5d46s2 137 22.77 121 187 195

Ta BCC 5d36s2 149 21 113 131 185

Au FCC 5d106s1 144 21.7 118 167 205

Mo BCC 4d45s1 139 15.22 78.6 90.4 128

Pd FCC 4d105s0 137 15.4 80.1 113 138

Nb BCC 4d55s1 146 14.4 78.47 90.49 128

RH = 1/(ene) is the Hall constant, and ne is the density of

conduction electrons, we find the following in the first order

of smallness in kaν :

ESHα =
~ZeRHsβ jµ
4πε0mc2

aνµIm

〈

9ν

∣

∣

∣

∣

εαβγ

~r3
p̂γ − 3

rα
r5

l̂β

∣

∣

∣

∣

9

〉

.

(5)
Relation (5) is written in the reference frame tied to crystal

axes. Let us introduce a laboratory frame tied to the

instruments that set the conduction current and measure

the spin components. Components of vectors and tensors

in the laboratory frame and in the reference frame tied to

crystallite axes are denoted by primed indices and indices

without prime marks, respectively. Let us convert the vector

of the density of current and spin of conduction electrons

from the laboratory frame to the frame of crystal axes

jµ = pµµ′ jµ′ , sβ = pββ′sβ′ and convert the Hall electric

field vector from the frame of crystal axes to the laboratory

one ESHα′ = p−1
α′αESHα , where pα′α is a unit rotation matrix,

which is easy to present in terms of Euler angles. We then

insert this conversion into Eq. (5) and average vector ESH

in a macroscopic region over random crystallite orientations

ESHα′ =
~ZeRHsβ′ jµ′ p−1

α′α pββ′ pµµ′

4πε0mc2

× aνµIm

〈

9ν

∣

∣

∣

∣

εαβγ

~r3
p̂γ − 3

rα
r5

l̂β

∣

∣

∣

∣

9

〉

. (6)

The overbar denotes averaging over random uniformly

distributed Euler angles. Analytical averaging of Eq. (6)
yields

ESH =
RS

ne
[j× P],

RS =
~RHeZ

48πε0mc2
Re

〈

9ν

∣

∣

∣

∣

3r(raν) − aνr2

r5
∂

∂r

∣

∣

∣

∣

9

〉

. (7)

where P = 2sne is the vector of spin polarization density.

Aligning the polar axis with vector aν , we obtain the

following for an s conduction electron for each pair of

nearest neighbors:

〈

9ν

∣

∣

∣

∣

3r(raν) − aνr2

r5
∂

∂r

∣

∣

∣

∣

9

〉

=
4bZ3

a3
B

∞
∫

0

dR(x)/dx
x

dx

1
∫

0

y
{

R(x1) − R(x2)
}

dy, (8)

where R(x) is the radial part of a wave function, x = Zr/aB,

x1 =
√

x2 + b2 + 2xby , x2 =
√

x2 + b2 − 2xby , and

b = Za/aB. In the face-centered lattice of platinum,

each atom has six pairs of nearest neighbors at

distance a = 2.77 · 10−10 m, three pairs at a distance of

3.92 · 10−10m, and 12 pairs at a distance of 4.48 · 10−10 m.

The following dimensionless parameters, which are

used to calculate (8), are then obtained for these three

groups of atoms: b1 = 117, b2 = 166, and b3 = 204.

These parameters for different metals are also listed

in Table 1. It should be noted that the nearest atoms

produce the greatest contribution to RS ; the contribution

of other atoms is an order of magnitude smaller. Setting

RH = −2 · 10−11 m3/(A · s) for platinum at 80K, we find

Rs
S = 3.48 · 10−9� ·m for s electrons. Spin Hall angle

θSH = σRe
S [1,3] is normally determined in experiments.

Here, σ (often denoted as σxx) is the conductivity of a metal

in the case of zero spin-orbit interaction. In platinum at

10K, σ = 8.1 · 106 (� ·m)−1 and θSH = 0.021 ± 0.005 [5].
Therefore, Re

S = (2.6± 0.7) · 10−9� ·m.

Theoretical and experimental values of parameter RS for

different metals are listed in Table 2. Tungsten in its

metastable β modification has an A15 crystal lattice (just
as SiCr3). Atoms at the center and corners have six pairs

of nearest neighbors at a distance of 2.81 · 10−10 m, while

atoms on the faces have one pair of nearest neighbors at a

distance of 2.51 · 10−10 m. Calculated data reveal that atoms

of two sublattices produce equal contributions to SHE.

When formula (8) is used to analyze elements of period

5, the obtained values for s conduction electrons do not

agree with experimental ones. At the same time, it is

known that conduction bands overlap in transition metals,

and a significant fraction of conduction electrons may be

produced via collectivization of 5p electrons. Apparently,
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Table 2. Experimental values of the SHE resistance (Re
S) and values calculated using formulae (8) and (9) for s (Rs

S) and p electrons

(R p
S)

Metal
σ , 105

θSH ,%
Ref. RH , 10

−11

Re
S , 10

−9� ·m
Rs

S , 10
−9 R p

S , 10
−9

(� ·m)−1 m3/(A · s) � ·m � ·m

Pt 81 2.1± 0.5 [5] −2 2.6± 0.7 3.48 −

Ta 3 −0.37± 0.10 [5] 9.75 −13± 4 −15.38 −

Au 200 0.25± 0.05 [6] −7.3 12± 3 7.1 −

α-W 47.6 ∼ −7 [7] 11.1 −14.7 −13.96 −

β-W 20.4 −35± 4 [8] −162 (7.4± 0.8) · 102 1.66 · 103 −

Mo 28 −0.8± 0.18 [5] 18 −2.8± 0.7 25.4 −4.41

Nb 11 −0.87± 0.20 [5] 8.88 −7.9± 2.0 10.1 −11.9

Pd 40 0.64± 0.10 [9] −8.45 1.6± 0.3 −13.4 1.64

this is especially true for palladium, since it has no 5s
electrons. Let us align the polar axis for a p conduction

electron with vector aν and measure angle ϕ from plane

aνr. Unit vector eϕ in spherical coordinates is orthogonal to

plane aνr, and unit vector eθ makes angle π/2 + θ with

the polar axis. The normalized wave function of a 5p
electron oriented along the polar axis takes the form of

9 = i
√

3/(4π)R5,1(x) cos θ.
The following is then obtained for each pair of nearest

neighbors:
〈

9ν

∣

∣

∣

∣

3r(raν) − aνr2

r5
∂

∂r

∣

∣

∣

∣

9

〉

=
3bZ3

2πa3
B

×

∞
∫

0

(

2ydR5,1(x)/dx
x

−
1− y2

x2
R5,1(x)

)

dx

×

1
∫

0

y
{

R5,1(x1) − R5,1(x2)
}

dy. (9)

The values of SHE resistance calculated using formulae (8)
and (9) for metals of period 5 are given in Table 2. A

fine agreement with experimental data is obtained if we

assume that 95% of conduction electrons in molybdenum

are collective p electrons and the remaining 5% are s
electrons; in the case of niobium, 85% and 15% of electrons

are p and s ones.

The results of theoretical analysis revealed that the spin

current does not vanish in the case of a random orientation

of crystallites, and calculated data agree with experimental

observations. Contributions of the spin-orbit interaction and

the band structure of metals to the equivalent electric field

are introduced separately into formula (6). The contribution

of band structure is expressed using the electron Hall effect

constant.
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