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Procedures of polar scattering angle simulation for electron scattering on ionized impurities are examined for

Brooks–Herring, Conwell–Weisskopf and Ridley models as the most frequently used in Monte Carlo simulation

of charge carrier transport in semiconductors. A more correct procedure for polar scattering angle simulation is

proposed for Ridley model. Peculiarities of scattering angle distribution densities calculated in the framework of

regarded models are analyzed taking silicon as an example. Comparison of electron mobility calculated by ensemble

Monte Carlo method using considered models has been done for doped silicon at 300K and for constant electric

field strength F = 7 · 104 V/m.
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1. Introduction

One of the widely known methods of numerical modeling

of electrophysical properties and electrical characteristics of

semiconductors and semiconductor devices is the Monte

Carlo method [1–4]. The most important advantages of this

method are the possibility of using precise matrix elements

of the charge carrier transition during its interaction with

the scatterer for all the main scattering mechanisms in

a semiconductor and taking into account the real band

structure of the latter [4].

Ionized impurity scattering [5–9] deserves special atten-

tion when modeling kinetic phenomena in semiconductors,

especially at low temperatures and when highly doped

regions of a semiconductor are included in the modeling

process. At the same time, despite the rather large

number of well-known models of impurity scattering in

bulk semiconductors, the Monte Carlo simulation algorithms

most often use the Brooks–Herring and Conwell–Weisskopf

models, and somewhat less often — the third body

exclusion model or the Ridley [6].

This is primarily due to the fact that when modeling the

interaction of an electron with an impurity ion by the Monte

Carlo method, the issue of determining the state of the

charge carrier after the scattering act plays an important role.

Considering the interaction of an electron and an impurity

ion as absolutely elastic, in the Monte Carlo procedure

this process must be characterized by the most important

random variable — the polar scattering angle θ, which in

each scattering model has its own, different from the others,

distribution. In this case, the azimuthal angle ϕ is usually

considered to be a uniformly distributed random variable in

the range of values from 0 to 2π [1–4]. In this connection,

we should also mention the work [9], in which an isotropic

scattering model on a charged impurity center was proposed

for transport calculations using the Monte Carlo method.

The formula that can be used to determine the angular

distribution for the polar scattering angle in the Brooks–

Herring model can be obtained from a general expression

for the scattering rate of charge carriers (scattering prob-

ability per unit time) on a charged impurity in the first

Born approximation for the screened Coulomb potential

using the inverse function method [2–4]. At the same time,

the act of interaction itself is assumed to be a purely two-

particle process. The formula for finding the angle θ for

the Conwell–Weiskopf model, as a special case, can also

be obtained from the general formula for the probability of

scattering per unit time [2,3].

For the Ridley model in the work [10], a two-stage

procedure for finding the angle θ was proposed, according

to which the impact parameter b is simulated first, and then

from the expression for the full scattering cross section —

angle θ. In this article, taking into account the screening

of the Coulomb field and the results of [10], a more

correct procedure (technique) for determining the angular

distribution for the polar scattering angle θ in the Ridley

model is proposed.

2. Determination of the scattering angle
in Brooks−Herring and
Conwell−Weiskopf models

According to the classical problem of electron scattering

on the Coulomb potential as a purely two-particle interac-

tion, the total scattering cross section σ (k) has the following
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form [4,11]:

σ (k) = πb2 = 2π

π
∫

θ

σd(k, θ) sin θdθ, (1)

where σd(k, θ) is the differential scattering cross section,

k is the modulus of the electron wave vector.

The Brooks–Herring approach, as is known, takes into

account the screening of the Coulomb potential of the two-

particle interaction by replacing it with the Yukawa potential

V (R):

V (R) =
Ze2

4πεε0R
exp(−Rβs), (2)

where the inverse radius of the Debye screening is

βs =

(

e2n0

εε0kBT

)1/2

. (3)

In (2) and (3) R — distance to the impurity center,

e — electron charge, Ze — ion charge, ε0 — dielectric

constant, ε — relative permittivity of a semiconductor, kB —
Boltzmann constant, T — temperature, n0 — concentration

of free charge carriers. Next, for certainty, we will consider

a donor semiconductor and assume that the doping impurity

is completely ionized. In this case, it is possible to assume

that n0 = NI , where NI is the concentration of the ionized

impurity.

Then the equation (1) for the Brooks–Herring model, it

is written as

σBH(k) = πb2
max = 2π

π
∫

θmin

σdBH(k, θ) sin θdθ, (4)

where θmin — the minimum value of the scattering angle θ

corresponding to the maximum value of the bmax of the

impact parameter b.
It is easy to show that the density of the distribution of

the polar angle when scattering by impurities for the non-

parabolic dispersion law in the first Born approximation in

the case of the Yukawa potential and the overlap integral

equal to one [12] can be represented as

f (θ) = A
sin θ

(

4(1− cos θ)
h2 m∗

d E(1 + αE) + β2
s

)2
, (5)

where A — normalization constant, E — electron energy,

m∗

d — the mass of the density of states, ~ — reduced Planck

constant.

Then, based on the method of inverse functions, we have

the following expression for determining the angle θ using

the Monte Carlo method:

r1 =

cos θmin
∫

cos θ

f (θ)dθ

cos θmin
∫

−1

f (θ)dθ

, (6)

where r1 — a random number evenly distributed over the

interval [0,1]. Solving (6), we proceed to the expression for

explicit simulation of the angle θ [2,3]:

cos θ = 1−
2(1− r1)

1 + 4r1
E(1+ αE)

Eβ

, (7)

where α — the coefficient of nonparabolicity,

Eβ = ~
2β2

s /2m∗

d .

For the Conwell–Weiskopf model, in accordance with the

remark made above in the Introduction, it is possible to

obtain [2,3]:

cos θ =

(

E(1+αE)
Eβ(1+ 2αE)

)2

r1 − 1

(

E(1+αE)
Eβ(1+ 2αE)

)2

r1 + 1

. (8)

Formulas (7) and (8) were used by many authors to

determine the angle θ in the Monte Carlo procedure for

the Brooks–Herring and Conwell–Weiskopf models.

3. Determination of the scattering angle
and the impact parameter
in the Ridley model

Since the Brooks–Herring model is obtained under the

assumption that a two-particle interaction takes place at the

nearest impurity center during scattering, it does not take

into account the possible participation of some other, more

distant, third center of impurity scattering in the electron

scattering act. To eliminate this disadvantage, Ridley [6]
introduced a weighting factor, which can be considered

as the probability that this scattering act is a purely

two-particle scattering process at the nearest scattering

center.

According to Ridley, the probability of the absence of

scattering centers with a parameter less than b is equal to

P(b) = exp
(

−πaNIb
2
)

, (9)

where a is the average distance between the ions.

Then, if the differential cross section σdBH calculated by

the Brooks–Herring model is multiplied by the probabil-

ity (9), then a simple formula is obtained for determining

the corresponding differential cross section in the Ridley

model [6]:

σdR(k, θ, b) = P(b)σdBH(k, θ). (10)

A procedure was described for calculation of the parame-

ters θ and b in the work [10] that allows for determining

these parameters in the Ridley model by generating one

random number using the Monte Carlo method. According

to this procedure the impact parameter b is simulated first,

and then the parameter θ is simulated using
”
inversion“
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equation (4) (i.e., its solutions). The method of inverse

functions was used to determine the parameter b in [10]:

r2 =
exp(−πaNIb2) − exp(−πaNIb2

max)

1− exp(−πaNIb2
max)

, (11)

where r2, as well as r1, — a random number with a uniform

distribution over the interval [0, 1].

Thus, in [10] it was assumed that the parameter b
is initially the only random variable with a normalized

distribution density equal to

f (b) = 2πbaNI exp(−πaNIb
2), (12)

and the parameter θ is a random function of the param-

eter b, the explicit form of which is determined by the

solution of the equation (1). In [12], the solution of this

equation is given with respect to cos θ:

cos θ = 1−
1

2k2

[(

2k2πb2

K2
+

1

4k2 + β2
s

)

−1

− β2
s

]

, (13)

where

K2 =
Z2e4(1 + 2αE)m∗

d k

4πh2ε2ε20ν(k)
, (14)

where ν(k) is the group velocity of electrons.

It can be noted that the distribution density (12) is the

Rayleigh distribution density with a constant density of

impurity centers in the plane λ = aNI .

It is known that the distribution of the distance l can be

described using this density from any point of the plane

to the nearest neighboring point for the Poisson field of

points on the plane with constant density λ [13]. It follows
from this that the random behavior of the parameter b
with a density of the form (12) is determined only by the

geometric arrangement of impurities in the plane and does

not take into account the features of the random character

of the parameter θ, which has a distribution density

of (5) in the two-particle quantum mechanical interaction

in the Brooks–Herring model. In this case, the type of

density (5) is directly determined by the type of matrix

element, which is calculated in the first Born approximation

for the electron scattering process on a charged impurity

center.

Taking into account the above, in the framework of the

Ridley model, for a more correct and accurate Monte Carlo

simulation of the parameters θ and b, it is proposed to

consider the process of electron scattering on an impurity

atom as a two-particle interaction in which the electron is

scattered by a certain angle θ, which is a random variable

with a distribution density (5) taking into account the

probability P(b) that there is no third nearest scattering

center. The probability of such a process will depend on two

random variables θ and b, each of which is characterized

by its own probability density. Assuming that the random

parameters θ and b are statistically independent, and using

the method of inverse functions, based on (5) and (12) for

two joint random events:

r1r2 =

1
∫

cos θ

d cos θ′

(

4(1− cos θ)
h2 m∗

d E(1+ αE) + β2s

)2

1
∫

−1

d cos θ′
(

4(1− cos θ)
h2 m∗

d E(1+ αE) + β2s

)2

×
exp(−πaNIb2) − exp(−πaNIb2

max BH)

1− exp(−πaNIb2
max BH)

. (15)

Thus, it is possible to connect two random parameters θ

and b in a probabilistic way using the formula (15). Note

that, in a deterministic (non-random) way, analytically these

two parameters remain connected using the formula (13).
In this case, the Ridley differential section σdR(k, θ, b) is a

function of two independent random parameters θ and b.
Indeed, using the classical connection between the impact

parameter b and the differential cross section σdBH(θ) in the

form (see, for example, [14])

σdBH(θ)d� = 2πbdb, (16)

where d� = 2π sin θdθ is the element of the solid angle

into which the electron is scattered, the formula (10) for the
Ridley differential cross section can be rewritten as follows:

σdR(k, θ, b) =
P(b)bdb
sin θdθ

, (17)

which confirms the validity of the above.

Thus, considering formulas (13) and (15) as a system of

two equations with two unknowns θ and b, it is possible to

calculate the distributions of f (θ) and f (b) by simulating

the product of two pseudorandom numbers r1 and r2. In

this case, the equation (15) is solved numerically.

4. Results of modelling and discussion

Figure 1 shows as an example the results of calculating

the density of angular distributions of f (θ) in silicon with

a concentration of donor impurity NI = 1023 m−3 for the

electron energy E = 10−2 eV for the Brooks–Herring and

Ridley models with the procedure of simulating the angle θ

described in [10] and proposed in this paper. It can be seen

from this figure that all three density curves differ markedly

in their shape and the value of the angle θ corresponding to

the maximum of the functions f (θ).
Figure 2 shows similar dependences for the electron

energy E = 10−1 eV. It follows from the figure that these

distributions were subject to significant changes compared

to the distributions shown in Fig. 1. In particular, it can

be seen that the maximum value of f max(θ) for this energy

corresponds to the Ridley model with the procedure we

proposed.
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Figure 1. Distribution densities of the polar scattering angle θ

for the concentration of ionized impurity NI = 1023 m−3 and

electron energies E = 0.01 eV. Solid curve — Brooks–Herring
model, dashed — Ridley model [10], dotted — Ridley model with

our proposed procedure.
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Figure 2. Distribution densities of the polar scattering angle

for the concentration of ionized impurity NI = 1023 m−3 and

electron energies E = 0.1 eV. Solid curve — Brooks–Herring
model, dashed — Ridley model [10], dotted — Ridley model with

our proposed procedure.

To verify the adequacy of the Conwell–Weisskopf,

Brooks–Herring and Ridley models (taking into account the

simulation of the angle θ according to the work [10] and

using our proposed methodology), the mobility of µ elec-

trons in silicon doped with a single-charge donor impurity in

a constant electric field with a strength of F = 7 · 104 V/m

at 300K, was calculated using the ensemble Monte Carlo

method [1] taking into account all the main mechanisms

of electron scattering: phonon acoustic intra-valley and

intervalley scattering (all g- and f -phonons were taken into

account), as well as plasmon and impurity scattering. In

this case, a nonparabolic model of the band structure with

a nonparabolicity coefficient α = 0.5 eV−1 was used. Mo-

bility was determined according to the formula µ = νdr/F ,

where νdr is the drift velocity, the average value of which

was calculated using ensemble Monte Carlo method.

Figure 3 shows the results of calculating electron mo-

bility using the Monte Carlo method for three impurity

scattering models (Conwell–Weiskopf, Brooks–Herring and

Ridley) in the concentration range of ionized impurity

NI = 1021−1024 m−3. The same figure shows the experi-

mental data obtained in [15] corresponding to the modeling

conditions.

An analysis of the behavior of the curves provided in

this figure allows drawing the following conclusions. First,

it can be seen that for the concentration of impurities

of NI < 1022 m−3 the best match of the simulation and

experimental results is provided by the Ridley model, in

which the polar angle θ was simulated using the method

proposed in this article. Secondly, for the doping levels of

a semiconductor NI > 3 · 1023 m−3, the Conwell–Weiskopf

model provides the best match with the experimental

model, which, as is known, rather roughly describes the

process of two-particle interaction and the impurity center

without taking into account the screening effect. Thirdly,

it can be noted that the curves corresponding to the

Brooks–Herring model and the Ridley model, for which

the polar angle θ is simulated according to [10] in the

entire range of concentration changes NI , differ slightly.

In addition, the discrepancy of all models under consid-

eration with the experiment increases with an increase

in the concentration of impurity ions up to the value of

NI = 1024 m−3.

To further analyze the results of the calculation and

experiment on the mobility of µ, Fig. 4 shows the results

of calculating the angular distributions we made for the

Brooks–Herring and Ridley models for the electron energy
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Figure 3. Dependences of electron mobility on the concentration

of ionized donor impurity in silicon for various models of scattering

on ionized impurity at a temperature of 300K. Curve 1 is an

interpolation of experimental data [15], 2 is Conwell–Weiskopf

model, 3 is Brooks–Herring model, 4 is Ridley model [10], 5 is

Ridley model with our proposed procedure.
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Calculated average values of the polar scattering angle θ at different concentrations of ionized impurity for three scattering models

Concentration
Average angle value θ

impurities, m−3 Model Model [10], Proposed by us

Brooks–Herring, π π model, π

1022 0.0199 0.0460 0.0242

1023 0.0610 0.0967 0.0572

1024 0.1680 0.2080 0.1460

E = 4 · 10−2 eV. This energy in the numerical experiment

is close to the energy of an electron in a weak field, in

which the value of the low-field mobility of electrons at a

temperature of 300K [15] was experimentally determined.

At the same time, since the results of calculating the drift

velocity by the Monte Carlo method presented in Fig. 3,

in addition to angular distributions, largely depend on the

scattering rate for this mechanism, it is also necessary to

refer to the dependences of the impurity scattering rate on

the energies shown in Fig. 5 for a correct explanation of

the behavior of the curves shown in Fig. 3. The intensities

are calculated for silicon doped with a single-charge donor

impurity according to the formulas taken from [1–3,10].
A comparison of the results presented in Figs. 3, 4 and 5

allows explaining rather close arrangement of the curves

µ(NI) corresponding to the Brooks–Herring and Ridley

models [10] by a formal coincidence of the mobility values

obtained due to large scattering angles θ (see fig. 4), but
at the same time a lower scattering rate for the electron

energy E = 4 · 10−2 eV in the Ridley model [10] compared

to the Brooks–Herring model. The slightly higher mobility,

which was determined by calculations using our method

for concentrations of NI > 5 · 1022 m−3, can be explained

by smaller scattering angles that fall out when they are

simulated according to this method. The above is confirmed

by the average values of the angles θ calculated according

to the formula for the average value of the angle:

θ̄ =

π
∫

0

θ f (θ)dθ, (18)

which are given in the table.

Regarding the procedure [10], it should be noted that,

compared to the Brooks–Herring model and our model,

it is characterized by a higher probability of scattering to

more obtuse angles for all three values of the impurity

concentration (see the table). This can be explained by

the fact that, as already noted above, the form of the

distribution of f (θ) for this procedure depends primarily on

the nature of the distribution of f (b), which describes the

random nature of the location of impurities in the lattice

cross-section plane and does not take into account the

quantum mechanical sharp-angle nature of the interaction

of the charge carrier with a separate impurity center. The

importance of this latter fact was, in particular, pointed out

in the work [9], in which critical comments were reasoned

regarding the description of the process of two-particle

interaction using
”
static screening“ by impurity ions in the

Ridley model. In this connection, it should be noted that the
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Figure 4. Distribution densities of the polar scattering angle for

the concentration of ionized donor impurity NI = 1022 m−3 and

electron energies E = 0.04 eV. Solid curve is the Brooks–Herring
model, dashed curve is the Ridley model [10], dotted curve is the

Ridley model with our proposed procedure.

1
2

E, eV
0 0.02 0.04 0.06 0.08 0.10

S
ca

tt
er

in
g
 r

at
e,

 s
–
1

1011

1012

1013

1014

1015

10 m23 –3 10 m24 –3

10 m22 –3

10 m24 –3

10 m23 –3

10 m22 –3

Figure 5. Electron scattering intensities on an ionized donor

impurity in silicon at a temperature of 300K. Curves 1 — the

Brooks–Herring model, 2 — the Ridley’s third body exclusion

model. The scattering intensities are given for three values of the

ionized impurity concentration (NI = 1022, 1023 and 1024 m−3).
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increase in popularity of the latter is primarily attributable

to the publication of the work [10], in which, a fairly good

match was obtained using the example of GaAs with the

results of the mobility experiment and, of course, taking

into account the fact that this model provides much lower

values of the scattering rate than the Brooks–Herring model

at low energy values (see Fig. 5), which is very important

when modeling transfer processes using the Monte Carlo

method. At the same time, calculations for silicon using

the Ridley model, taking into account the more correct

procedure developed by us for the simulation of the polar

scattering angle θ for values NI > 5 · 1022 m−3, showed the

worse match of the calculation results with the experiment,

than for the Brooks–Herring model.

Thus, in this paper, the procedures for simulation of

the polar angle of electron scattering on impurity ions

were considered and analyzed within the framework of

the Brooks-Herring, Conwell–Weiskopf and Ridley models

most often used in the Monte Carlo method. An original

technique for simulation of this angle was proposed and

tested for the Ridley model. Taking into account the fact

that, unlike the method described in the work [10], it takes
into account both the features of the quantum-mechanical

two-particle interaction of an electron with an impurity ion,

and the probability of the absence of another nearby ion

during this interaction, it is more correct compared to the

method described in the work [10].

5. Conclusion

A comparative analysis of the results of the calculation

and experiment for determining the low-field mobility of

electrons in silicon at a temperature of T = 300K for the

three models considered was performed: Brooks–Herring,
Conwell–Weiskopf and Ridley. The calculation results

showed that the Ridley model with the procedure we

developed for simulation of the angle θ provided the best

match with the experimental data for the concentration of

impurity ions of NI < 1022 m−3 and the Conwell–Weiskopf

model — for concentrations NI > 3 · 1023 m−3 The Brooks–
Herring model and the Ridley model with the procedure

described in [10] provided similar results in the entire range

of concentrations studied 1021 m−3 ≤ NI ≤ 1025 m−3.

Calculations performed using the procedure developed by

us for the Ridley model with an impurity concentration of

NI ≥ 5 · 1022 m−3 demonstrated a less good match with the

experiment than for the same model with the procedure

described in the paper [10]. This indicates that the use of

the Ridley model for the accurate calculations of electron

mobility using the Monte Carlo method in semiconductors,

in particular in silicon, at its doping level NI ≥ 1023 m−3

requires caution and further critical analysis.
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