12

Трехмерная ловушка с возбуждением колебаний ионов на границе устойчивости диаграммы Матье

© Е.В. Мамонтов, Р.Н. Дятлов

Рязанский государственный радиотехнический университет им. В.Ф. Уткина, 390005 Рязань, Россия e-mail: kaitp@list.ru

Поступило в Редакцию 15 февраля 2023 г. В окончательной редакции 19 апреля 2023 г. Принято к публикации 20 апреля 2023 г.

> Исследованы колебания заряженных частиц в композициях трехмерных высокочастотных квадрупольных и статических однородных электрических полей в устойчивой области и в окрестностях границы стабильности диаграммы Матье. С использованием псевдопотенциальной модели быстроосциллирующего поля показано, что движение заряженных частиц при линейном сканировании секулярной частоты описано дифференциальным уравнением Эйри. На основе свойств решений уравнения Эйри разработан метод масс-сепарации ионов с резонансным возбуждением колебаний на границе устойчивости диаграммы Матье. Для реализации метода ионно-оптическая система трехмерной ловушки дополнена корректирующим электродами. Компьютерным моделированием определены оптимальные потенциалы корректирующих электродов, при которых погрешности распределений квадрупольного и однородного полей не превышают 10^{-4} и $2 \cdot 10^{-3}$.

> Ключевые слова: суперпозиция квадрупольных и однородных полей, дифференциальное уравнение Эйри, режим резонансного возбуждения колебаний, трехмерная ионная ловушка с корректирующими электродами.

DOI: 10.21883/JTF.2023.06.55608.25-23

Введение

Селективные свойства высокочастотных (ВЧ) квадрупольных электрических полей широко используются в масс-спектрометрии для разделения ионов по удельному заряду [1]. Но возможности собственно быстроосциллирующих полей для увеличения разрешающей способности и чувствительности квадрупольных масс-анализаторов ионов практически исчерпаны. Для усовершенствования аналитических параметров массспектрометров этого класса разработаны методы селекции ионов в квадрупольных ВЧ полях при наложении на них возбуждающих однородных полей [2]. В этом случае движение ионов описывается неоднородным дифференциальным уравнением Матье. Одним из независимых решений уравнения является функция возбуждения, не связанная с начальными параметрами (координатами и скоростями) частиц. При этом возникает возможность существенно улучшить аналитические параметры квадрупольных масс-спектрометров путем оптимизации функции возбуждения.

Рассмотренные в [2] методы предполагают возбуждение колебаний ионов гармоническим однородным полем в глубине первой зоны диаграммы устойчивости. Но изза малой скорости нарастания и нерегулярности функции возбуждения аналитические возможности метода оказались ограниченными.

Развитием метода является возбуждение колебаний ионов на одной из границ устойчивости диаграмм Матье, где функция возбуждения неограниченно нарастает. Метод реализуется в суперпозиции квадрупольного и однородного полей при медленном сканировании параметра Матье a из глубины зоны устойчивости от a = 0до граничного значения $a = a_{\text{bound}}$. При пересечении границ устойчивости диаграммы Матье колебания ионов приобретают регулярный с высокой скоростью нарастающий характер, что способствует достижению высокой разрешающей способности квадрупольных массанализаторов.

Задачей исследования является анализ движения заряженных частиц в комбинации статического однородного и квадрупольного радиочастотного полей при массселективном резонансном возбуждении колебаний ионов на границе диаграммы Матье.

Движение заряженных частиц в квадрупольных ВЧ полях с возбуждением колебаний на границе устойчивости

Режим резонансного возбуждения колебаний может быть создан в трехмерной ионной ловушке при наложении на квадрупольное поле однородного возбуждающего поля. Распределение потенциала в рабочей области анализатора для этого случая описывается функцией

$$\varphi(r, z, t) = \frac{[U(t) + V\cos\omega t][z^2 - \frac{r^2}{2} + \frac{r_0^2}{2}]}{z_{01}^2 + \frac{r_{01}^2}{2}} + \frac{U_{\text{exc}}(t)}{2z_{01}}Z,$$
(1)

где z₀₁ и r₀₁ — минимальные расстояния от центра ионно-оптической системы (ИОС) гиперболических тор-

цевых и кольцевых электродов; V, ω и U(t) — амплитуда, частота и медленно изменяющаяся в процессе развертки масс постоянная составляющая питающих напряжений; $U_{\text{exc}}(t)$ — возбуждающее напряжение. Под действием напряжения $U_{\text{exc}}(t)$ между торцевыми электродами образуется однородное по оси Z возбуждающее поле.

Движение заряженных частиц в поле потенциала (1) описывается дифференциальными уравнениями [3]:

$$\frac{d^2z}{dt^2} + \frac{\omega^2}{4} \left[a_z(t) - 2q_z \cos \omega t \right] z = f_{\text{exc}}(t), \qquad (2)$$

$$\frac{d^2r}{dt^2} - \frac{\omega^2}{4} [a_r(t) - 2q_r \cos \omega t]r = 0,$$
(3)

где

$$a_{z}(t) = 2a_{r}(t) = 8eU(t)/(z_{01}^{2} + r_{01}^{2}/2)\omega^{2}m,$$

$$q_{z}(t) = 2q_{r}(t) = 4eV(t)/(z_{01}^{2} + r_{01}^{2}/2)\omega^{2}m$$

— параметры Матье; е и m — заряд и масса ионов; $f_{\text{exc}}(t) = eU_{\text{exc}}(t)/2z_{01}m$ — ускорение частиц под действием однородного поля.

В отсутствие возбуждения (2) и (3) является уравнениями Матье [4]. Устойчивые и неустойчивые решения z(t) и r(t) уравнений разделены границами $am(q_z)$ и $b_{m+1}(q_z)$, где m = 0, 1, 2, ... При пересечении границ из устойчивой области в неустойчивую решения дифференциальных уравнений неограниченно нарастают. На этом свойстве решений уравнений Матье основан метод осевого вывода ионов из трехмерной ловушки [5]. Метод реализуется при $a_z = 0$ путем сканирования параметра $q_z(t)$ через границу $b_1(q_z)$. Проблема осевого вывода состоит в зависимости времени вывода ионов из анализатора от начальных координат z_0 и скоростей v_{0z} частиц. При этом даже при наличии буферного газа разрешение оказывается невысоким.

Разрешающая способность квадрупольных анализаторов с последовательным выводом ионов через границы устойчивости может быть повышена наложением на квадрупольное поле однородного по оси Z возбуждающего поля. В этом случае общее решение z(t) дифференциального уравнения (2) является суммой свободной $z_1(t)$ и принужденной $z_2(t)$ составляющих. Частное решение $z_2(t)$ неоднородного уравнения (2) определяется действием $f_{exc}(t)$ однородного возбуждающего поля и может рассматриваться как функция возбуждения. Так как $z_2(t)$ не зависит от случайных значений начальных параметров частиц z₀ и v_{0z}, разрешение метода будет определяться соотношением в момент возбуждения texc (вывода ионов из анализатора) значений функций $z_1(t_{exc})$ и $z_2(t_{exc})$. Выбором способов развертки масс и оптимизацией режима может быть реализовано условие $z_2(t_{\rm exc}) \gg z_1(t_{\rm exc})$ повышения разрешения квадрупольных масс-анализаторов с резонансным выводом ионов.

Анализ колебаний заряженных частиц в суперпозиции быстроосциллирующих квадрупольных и однородных

Рис. 1. Схема сканирования параметра $a_z(t)$ к границе стабильности $a_{0z}(q_z)$.

возбуждающих полей показал эффективность метода резонансного вывода при сканировании параметров $a_z(t)$ и $q_z(t)$ из первой области устойчивости до пересечения границы $a_{0z}(q_z)$ диаграммы Матье. В этом случае реализуется режим монополярных колебаний $z_2(t) > 0$ заряженных частиц, что способствует улучшению аналитических параметров метода и упрощает его реализацию.

При резонансном выводе ионов возбуждение колебаний осуществляется на секулярной чистоте, зависящей от параметра стабильности $\Omega_s = \beta \omega/2$. На границе $a_{0z}(q_z)$ параметр стабильности $\beta_z = 0$ и секулярная частота $\Omega_s = 0$. Поэтому для возбуждения колебаний на границе $a_{0z}(q_z)$ следует использовать статическое однородное поле, образуемое под действием дипольного напряжения $U_{\rm exc}(t) = U_{0\rm exc}$. При этом $f_{\rm exc}(t) = f_0 = eU_{\rm exc}/2z_{01}m$.

Возможны три варианта сканирования параметров $a_z(t)$ и $q_z(t)$ к границе $a_{0z}(q_z)$: 1 — изменением $a_z(t)$ при $q_z(t) = \text{const}$, 2 — изменением $q_z(t)$ при $a_z(t) = \text{const}$, 3 — изменением $a_z(t)$ и $q_z(t)$. Во всех случаях по координате r параметры a_r и q_r находятся в устойчивой области и на процесс масс-сепарации частиц не оказывают существенного влияния. Рассмотрим случай развертки масс сканированием по линейному закону постоянной составляющей питающего напряжения U(t) при постоянных параметрах V и ω [3]:

$$U(t) = v_U t, \tag{4}$$

где $v_U = U_m/T$ и T — скорость и длительность развертки масс. В этом случае параметр $a_z(t)$ также изменяется по линейному закону

$$a_{z}(t) = \frac{8ev_{U}}{(z_{01}^{2} + \frac{z_{01}^{2}}{2})\omega^{2}m}t.$$
 (5)

Схема возбуждения колебаний при сканировании параметра $a_z(t)$ к границе $a_{0z}(q_z)$ показана на рис. 1.

При q < 0.5 справедливо $a_{0z}(q_z) \approx q_z^2/2$ и с учетом (4) для зависимости времени возбуждения, описы-

вающей закон развертки масс, получаем

$$t_{\rm exc} \approx \frac{eV^2}{(z_0^2 + r_0^2/2)\omega^2 v_U} \frac{1}{m}.$$
 (6)

Из-за изменения в процессе развертки параметра $a_z(t)$ дифференциальные уравнения (2) и (3) являются нестационарными. Учитывая инерционный характер развертки масс при $T \gg 2\pi/\omega$, решение уравнения движения ионов по оси Z можно представить суммой свободной $z_1(t)$ и вынужденной $z_2(t)$ составляющих [3]. Функция $z_1(t)$ зависит от случайных параметров частиц z_0 и v_{0z} , а функция возбуждения $z_2(t)$ при заданной $f_{exc}(t)$ является детерминированной.

Для решения дифференциального уравнения (2) и нахождения функций $z_1(t)$ и $z_2(t)$ используем модель быстроосциллирующего квадрупольного поля в форме статического поля псевдопотенциала [6]:

$$\varphi_p(z,t) = \frac{U(t) - U_p}{z_0^2 + \frac{r_0^2}{2}} z^2 - \frac{U_{\text{exc}}}{2z_0} z = 0,$$
(7)

где $U_p = eV^2/(z_{01}^2 + r_{01}^2/2)\omega m$ — псевдопотенциал квадрупольного ВЧ поля по оси *Z*. Используя (7), преобразуем (2) к дифференциальному уравнению гармонического осциллятора

$$\frac{d^2z}{dt^2} + \Omega_s^2(t)z = f_0, \tag{8}$$

где

$$\Omega_s(t) \cong \sqrt{2e[U_{\text{exc}} - U(t)]/(z_0^2 + r_0^2/2)m}$$

— секулярная частота колебаний. Уравнение (8) является нестационарным из-за изменения во времени собственной частоты $\Omega_s(t) = \beta(t)\omega/2$, где β — параметр стабильности.

В первой зоне устойчивости для *q* < 0.5 справедливо приближение [7]:

$$\beta \approx \sqrt{a_z(t) - a_{0z}(q_z)}.$$
(9)

Точность приближения (9) возрастает с приближением параметра $a_z(t)$ к границе стабильности $a_{0z} \approx q^2/2$. Тогда с учетом (5) для собственной частоты колебаний получаем

$$\Omega_c(t) \simeq \Omega_0 \sqrt{1 - t/t_{\rm exc}},\tag{10}$$

где $\Omega_0 \approx q\omega/2\sqrt{2}$ — начальное значение секулярной частоты.

Подставляя (10) в (8), получаем

$$\frac{d^2z}{dt^2} + \Omega_0^2 \left(1 - \frac{t}{t_{\text{exc}}}\right) z = f_0.$$
⁽¹¹⁾

Введением безразмерных времени $\eta = (t/t_{exc} - 1)\varphi_0^{2/3}$ и координаты $W = z/z_m$, где $\varphi_0 = \Omega_0 t_{exc}$, $z_m = e\pi U_{exc} \sqrt[3]{t_{exc}^2/\Omega_0^4/2z_0m}$, уравнение (11) преобразуется в дифференциальное уравнение Эйри [8]:

$$\frac{d^2W}{d\eta^2} - Wy = \frac{1}{\pi}.$$
 (12)

Пара независимых решений уравнения (12) выражается через функции Эйри $Ai(\eta)$ и $Bi(\eta)$:

$$W_{1}(\eta) = C_{1}[Ai(\eta) + Bi(\eta)] + C_{2}[Ai(\eta) - Bi(\eta)],$$

$$W_{2}(\eta) = \frac{2}{3}Bi(\eta) + \int_{0}^{\eta} [Ai(\xi)Bi(\eta) - Ai(\eta)Bi(\xi)]d\xi, \quad (13)$$

где С1, С2 определяется начальными условиями.

После приближенного вычисления интеграла в (13) и обратной замены переменных решение дифференциального уравнения (8) принимает вид: в области устойчивости 0 < t < t₁:

$$z_{1}(t) = \frac{1}{\sqrt[4]{1 - t/t_{0}}} \left[z_{0} \cos \varphi(t) + \frac{\nu_{0z}}{\Omega_{0}} \sin \varphi(t) \right],$$

$$z_{2}(t) = \frac{z_{m}}{\pi \varphi_{0}^{2/3}} \left[\frac{1}{1 - t/t_{0}} = \frac{1}{\sqrt[4]{1 - t/t_{0}}} \cos \varphi(t) \right], \quad (14)$$

в области возбуждения $t_1 < t \le 2t_{\text{exc}} - t_1$:

$$z_1(t) \simeq z_1(t_1) + z_1'(t_1)(t-t_1),$$

$$z_{2}(t) \simeq z_{2}(t_{1}) \left[c_{1} + c_{2} \frac{t - t_{1}}{t_{1}} + \frac{3}{2} c_{1} c_{2} \left(\frac{t - t_{1}}{t_{1}} \right)^{2} \right], \quad (15)$$

где $\varphi(t) = \frac{2}{3} \varphi_0 \left[1 - \sqrt{(1 - t/t_{\text{exc}})^3} \right], t_1 = (1 - 1/\varphi_0^{2/3}) t_{\text{exc}}, c_1 \approx 0.355, c_2 \approx 0.259.$

Приближенность выражений (14), (15) обусловлена использованием при составлении дифференциального уравнения (8) псевдопотенциальной модели (7) быстроосциллирующего квадрупольного поля, не учитывающей ВЧ составляющие колебаний заряженных частиц. Уровень погрешности оценивается величиной

$$z_{\rm HF}(t) = \frac{q_z}{2} [z_1(t) + z_2(t)] \sin \omega t.$$
 (16)

Высокочастотная составляющая (16) в свободных и вынужденных колебаниях ионов может быть причиной многозначности с периодом $2\pi/\omega$ массовых пиков анализатора, которая минимизируется с уменьшением параметра q.

Результаты численного решения дифференциального уравнения (2) — движение ионов в трехмерной квадрупольной ловушке с параметрами $z_{01} = r_{01} = 60 \text{ mm}, V = 3000 \text{ V}, f = 0.4 \text{ MHz}, v_U = 3 \cdot 10^5 \text{ V/s}, U_{\text{exc}} = -5 \text{ V}$ — представлены на рис. 2 и 3. Результаты численного моделирования и расчетов по формулам (14), (15) совпадают с точностью до ВЧ составляющей колебаний $z_{\text{HF}}(t)$.

Как видно из рис. 2, наложение однородного возбуждающего поля на быстроосциллирующее квадрупольное поле позволяет реализовать условие $z_2(t_{\rm exc}) \gg z_1(t_{\rm exc})$ достижения высокого разрешения метода резонансного вывода ионов. Соотношение $z_2(t_{\rm exc}) \gg z_1(t_{\rm exc})$ может быть максимизировано оптимизацией параметров режима. Траектории движения ионов с массами M = 200 и 100 Da показаны на рис. 3. Время возбуждения в соответствии с (6) обратно пропорционально массе ионов.

Рис. 2. Траектории движения ионов с массой M = 200 Da в трехмерной ионной ловушке: I - c возбуждающим однородным полем; 2 - c начальной энергией W = 0.1 eV; 3 - c начальной координатой $z_0 = 1$ mm.

2

2. Ионная ловушка с суперпозицией линейных и однородных электрических полей

Метод масс-селективного разделения ионов с возбуждением колебаний на границе устойчивости $a_{0z}(q_z)$ может быть реализован в ИОС с двумерными или трехмерными квадрупольными быстроосциллирующими полями при наложении на них однородных статических возбуждающих полей. Для образования полей с распределением потенциала (1) в качестве ИОС используем трехмерную ионную ловушку. Схема ИОС ловушки приведена на рис. 4. Особенностью ионной ловушки по сравнению с известными вариантами ее использования [1,5] является система питания и наличие корректирующих электродов 4, 5. Использование корректирующих электродов позволяет при ограниченных размерах d_r и d_{ed} повысить точность распределений квадратичного по осям Z и r и линейного по оси Z потенциалов.

Для образования поля с квадратичным распределением потенциала по координатам z и r между торцевыми l, 2 и кольцевым 3 электродами прикладывается напряжение $u_r(t) = U(t) + V \cos \omega t$. Однородное статическое поле образуется под действием возбуждающих потенциалов на торцевых электродах $U_{\rm exc_ed1} = -U_{\rm ex_ed2} = U_{\rm exc}$. При этом $u_{\rm ed1} = u_r(t) + U_{\rm exc}$, а $u_{\rm ed2} = u_r(t) - U_{\rm exc}$.

В трехмерной ионной ловушке из гиперболических электродов распределение потенциала возбуждающего поля по оси Z сильно отличается от линейного, а точность квадратичного распределения зависит от размеров $d_{\rm ed}$ и d_r торцевых и кольцевого электродов. Для повышения точности распределений потенциалов однородного и квадрупольного полей при ограниченных параметрах ded и d_r по границам ИОС трехмерной ловушки устанавливаются корректирующие электроды 4,5 в форме усеченных конусов с потенциалами $u_{c1} = a u_r(t) + b U_{exc}$ и $u_{c2} = au_r(t) - bU_{exc}$ (рис. 4). При фиксированных параметрах $z_{01} = r_{01}, d_{ed} = 1.48 z_{01}, d_r = 1.82 z_{01}$ путем компьютерного моделирования определены оптимальные значения коэффициентов $a_{\text{opt}} = 0.55$ и $b_{\text{opt}} = 30.8$. При оптимальных параметрах а и b относительные погрешности $\delta = \Delta \phi / \phi$ распределений потенциалов (рис. 5) квадрупольного и однородного полей не превысили величин $|\delta_{sq}| < 10^{-4}$ и $|\delta_l| < 2 \cdot 10^{-3}$, которые соответ-

Рис. 4. Схема ИОС трехмерной ионной ловушки с суперпозицией линейного и однородного электрических полей: *1, 2* торцевые; *3* — кольцевой гиперболический электрод; *4, 5* корректирующие электроды в форме усеченных конусов.

Coordinate z, mm

40

20

Рис. 5. Зависимости относительных погрешностей: *а* — квадратичного распределения потенциала *1, 2, 3* при *a* = 0.50; 0.55; 0.60 и *b* — линейного распределения потенциала *1, 2, 3* при *b* = 29.8; 30.8; 31.8.

ствуют достижимой разрешающей способности анализатора $R = M/\Delta M > 10^3$.

Заключение

Для исследования колебаний заряженных частиц в композициях нестационарных квадрупольных и однородных статических полей применима псевдопотенциальная модель быстроосциллирующего поля. В первой области устойчивости диаграммы Матье при постоянном q и линейном изменении параметра a(t) движение ионов описывается дифференциальными уравнениями Эйри. Независимые решения $z_1(t)$ и $z_2(t)$ уравнения являются колебательными функциями с медленно изменяющимися секулярной частотой и амплитудой в устойчивой области и неограниченным изменением в окрестностях границы $a_0(q)$. Свободная составляющая $z_1(t)$ — функция со случайными параметрами z_0 и v_{0z} , а детерминированная функция возбуждения $z_2(t)$, кроме колебательной, содержит монотонно нарастающую составляющую и является монополярной функцией. Свойства решения $z(t) = z_1(t) + z_2(t)$ уравнения Эйри положены в основу метода разделения ионов по удельному заряду с резонансным возбуждением колебаний на границе устойчивости $a_0(q)$ под воздействием однородных статических полей. Эффективность метода определяется различиями функций $z_1(t)$ и $z_2(t)$ в устойчивой области и области возбуждения. Анализ решений уравнения Эйри и результаты численного моделирования показывают, что оптимизацией параметров режима в момент возбуждения texc колебаний достигается соотношение $z_2(t_{\text{exc}}) \gg z_1(t_{\text{exc}})$, обеспечивающее высокое разрешение анализатора. Проблема многозначности массовых пиков из-за наложения на секулярное колебание ВЧ составляющей $z_{\rm HF}(t)$ решается минимизацией параметра q и выбором оптимального способа развертки масс. Монополярность функции возбуждения $z_2(t) > 0$ упрощает конструкцию ИОС и систему регистрации ионов массанализатора.

Для реализации метода резонансного вывода ионов на границе устойчивости Матье могут использоваться ИОС с двух- и трехмерным квадратичным распределением потенциала с элементами наложения на них однородных

возбуждающих полей. Простейший вариант приложения к противоположным электродам возбуждающих потенциалов $\pm U_{\rm exc}$ образует поле с большими отклонениями от однородного. Для повышения линейности распределения потенциала по оси Z по границам гиперболических электродов трехмерной ловушки устанавливаются корректирующие электроды в форме усеченных конусов. При оптимальных постоянных и ВЧ потенциалах на корректирующих электродах погрешности линейных и квадратичных распределений потенциалов не превышают величин $\delta \varphi_l < 2 \cdot 10^{-3}$ и $\delta \varphi_{sq} < 10^{-4}$, что соответствует достижимой разрешающей способности $R > 10^3$.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- P.H. Dawson. Quadrupole Mass Spectrometry and its Applications (AIP, NY, 1995)
- [2] D.J. Douglas, N.V. Konenkov. Rapid Communications in Mass Spectrometry, 28, 430 (2014). DOI: 10.1002/rcm.6795
- [3] Е.В. Мамонтов, Р.Н. Дятлов. Радиотехника и электроника, 67 (1), 78 (2022). DOI: 10.31857/S0033849422010065
 [E.V. Mamontov, R.N. Dyatlov. J. Commun. Technol. Electron., 67 (1), 88 (2022). DOI: 10.1134/S1064226922010065]
- [4] Н.В. Мак-Лахлан. Теория и приложения функций Матье (ИИЛ., М., 1953)
- [5] R.E. March, R.J. Hughes. *Quadrupole Storage Mass Spectrometry* (Wiley, NY, 1989)
- [6] Л.Д. Ландау, Е.М. Лифшиц. Механика (Физматлит, М., 2001)
- [7] E.V. Mamontov, R.N. Dyatlov, A.A. Dyagilev, O.V. Melnik. 9th Mediterranean Conference on Embedded Computing (MECO) (Budva, Montenegro, 2020), p. 1–4. DOI: 10.1109/MECO49872.2020.9134193
- [8] М. Абрамовиц, И. Стиган (ред.) Справочник по специальным функциям с формулами, графиками и математическими таблицами (Наука, М., 1979)