02.1;06.1;08.1;08.2;08.3

Синтез композитных Si@C-наночастиц для анодных материалов в циклическом реакторе сжатия

© Б.С. Ездин¹, С.А. Васильев¹, А.В. Окотруб², В.В. Каляда¹, С.Г. Столярова², В.Е. Федоров²

¹ Новосибирский государственный университет, Новосибирск, Россия

² Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: s.vasilev3@nsu.ru

Поступило в Редакцию 10 февраля 2023 г. В окончательной редакции 30 марта 2023 г. Принято к публикации 2 мая 2023 г.

Пиролиз смеси моносилана с легкими углеводородами в атмосфере аргона в циклическом реакторе сжатия применялся для синтеза наночастиц с ядром из кристаллического кремния и углеродной оболочкой. Полученные порошки тестировались в качестве анодного материала литий-ионных аккумуляторов. Показано, что максимальная обратимая электрохимическая емкость составляет 603 и 242 mA · h/g при плотностях тока 0.05 и 2 A/g соответственно.

Ключевые слова: композитные нанопорошки Si@C, химический реактор сжатия, анодные материалы, литий-ионные аккумуляторы.

DOI: 10.21883/PJTF.2023.12.55573.19528

Применение кристаллического кремния в качестве анодного материала литий-ионных аккумуляторов рассматривается как перспективное направление ввиду его высокой теоретической удельной емкости: 3579 mA · h/g против 372 mA · h/g для графитовых анодов [1]. Однако в процессе заряда кремний увеличивается в объеме более чем на 300%. Структура частиц кремния при этом разрушается, и анодный материал быстро деградирует в течение нескольких первых циклов заряда-разряда [2]. Для предотвращения механических разрушений кремниевых кристаллических структур предлагаются различные подходы, один из которых предполагает применение структур ядро-оболочка с кремниевым ядром и углеродной оболочкой [3]. Углеродная оболочка, состоящая из графеновых листов, не препятствует доступу ионов лития к кремнию, но позволяет удерживать кремниевое ядро от разрушения при циклах заряда-разряда. Авторы работы [1] для создания структуры ядро-оболочка Si@C с кремниевым ядром и углеродной оболочкой подвергали кремниевый кристаллический порошок обработке фенольной смолой в растворителе с последующим отжигом. Они сообщают о достижении удельной емкости такого анодного материала литий-ионных аккумуляторов 3092 mA · h/g на первом цикле, что близко к теоретическому значению. В [3] для создания структуры ядро-оболочка Si@C также использовались кремниевые наночастицы. Для создания углеродной оболочки графит электролитически расслаивался на графеновые листы в расплаве LiCl, куда затем добавлялись кремниевые наночастицы. Авторы этой работы также достигли высоких значений электрохимической емкости (около 2000 mA · h/g). Однако такие многоэтапные методы синтеза структур Si@C довольно дорогие и трудоемкие. Они предполагают использование дорогого кремниевого материала и проведение дополнительных термических, химических и электрохимических процедур.

В настоящей работе для синтеза структур Si@C использован циклический реактор сжатия, в котором производился совместный пиролиз моносилана и легких углеводородов [4]. Реактор, представляющий собой систему поршень-цилиндр, показал свою эффективность при пиролизе моносилана и получении кремниевых наночастиц [5]. Рабочий объем реактора составляет 0.31, частота хода поршня 10 Hz, диаметр поршня 40 mm. Вблизи верхней мертвой точки (ВМТ) положения поршня в объеме реактора создаются высокие давление и температура. Максимальное давление в ВМТ составляет 12 МРа. Для повышения показателя адиабаты и соответственно температуры пиролиз осуществляется в атмосфере аргона. При пиролизе моносилана с углеводородами диапазон давлений составил 3.5-8.5 МРа, что несколько выше, чем для пиролиза моносилана (2-5 MPa) [5].

Электрохимические свойства образцов исследовались в ячейках типа "таблетка" формфактора CR2032 с литиевым противоэлектродом. Рабочие электроды были изготовлены методом прокатки электродного материала. Образцы (80 mass%), super P (10 mass%) и поливинилиденфторид (10 mass%) смешивали с N-метил-2пирролидиноном и полученную суспензию наносили на медную фольгу диаметром 14 mm и толщиной 0.02 mm, а затем сушили при 100° C в течение 12 h в вакууме. Электролитом служил 1.0 M раствор LiPF₆ в смеси этиленкарбонат/диметилкарбонат (1:1 по объему). Полученные ячейки тестировались в гальваностатическом режиме на зарядно-разрядной станции NEWARE CT-3008 в диапазоне от 0.01 до 2.5 V при плотностях тока 0.05-2 A/g.

Рис. 1. ПЭМ-изображения наночастиц с наноразмерными кристаллитами Si и SiC, покрытыми графеновыми слоями. *a* — образец № 4, *b* — образец № 3.

Номер образца	Состав газовой смеси	Давление в ВМТ, МРа
1	SiH ₄ — 5%, C ₂ H ₄ — 5%, Ar — 90%	3.5-4.0
2	SiH ₄ — 5%, C ₂ H ₄ — 5%, Ar — 90%	5.0-5.5
3	SiH ₄ — 5%, C ₂ H ₄ — 5%, Ar — 90%	8.0-8.5
4	SiH ₄ — 8%, C ₃ H ₈ — 17%, Ar — 75%	7.0

Таблица 1. Условия синтеза кремний-углеродных нанопорошков

На полученных методом просвечивающей электронной микроскопии (ПЭМ) изображениях, представленных на рис. 1, можно видеть, что наночастицы образцов № 3 и 4 (табл. 1) имеют кристаллические ядра и углеродную оболочку. Межплоскостные расстояния 3.12 и 3.06 Å соответствуют межплоскостному расстоянию кремния (d₁₁₁), а 2.49 и 2.5 Å — карбида кремния (d111). Также имеют место чисто углеродные наночастицы. Спектроскопия комбинационного рассеяния света образцов на спектрометре T64000 (Horiba Jobin Yvon) с установкой микрокомбинационного рассеяния на базе оптического микроскопа BX41 (Olympus, Япония) показала наличие пиков кремния $(500 \,\mathrm{cm}^{-1})$, карбида кремния $(920 \,\mathrm{cm}^{-1})$ и так называемых пиков $D \,(1340 \,\mathrm{cm}^{-1})$ и G (1590 cm⁻¹), соответствующих углероду в основном в *s p*²-гибридизации. Рентгенофазовый анализ (РФА) с использованием автоматического дифрактометра Philips РW 1830/1710 (излучение СиКа, графитовый монохроматор) выявил наличие кристаллического Si и SiC (табл. 2).

На рис. 2, *a*, *b* приведены кривые заряда-разряда на первых трех циклах. Видно, что образцы № 1 и 2 имеют близкую форму кривых, при этом кривая, соответствующая первому циклу литирования, является невоспроизводимой, что, скорее всего, связано с образованием поверхностного электролитного интерфейса (SEI) [6]. В процессе литирования обнаружены два плато (при 0.75 и 0.35 V). На первом цикле делитирования для обоих образцов присутствуют три плато (при 1.3, 0.7 и 0.35 V).

Электрохимическое циклирование образцов при различных плотностях тока (рис. 3) показало, что образец № 3 обладает самой низкой емкостью. Это может быть связано с высоким содержанием карбида кремния в образце, который не взаимодействует с литием.

Образцы № 1 и 2 демонстрируют сравнимые значения удельной емкости при плотности тока 0.05 А/g, что можно связать с близким содержанием кремния. После образования SEI в течение первых пяти циклов емкость обоих образцов является воспроизводимой. Однако при бо́льших плотностях тока емкость образца № 1 составила 242 mA · h/g против 111 mA · h/g для образца № 2. Изменение емкости в 2 раза указывает на различия структурных параметров углеродной фазы, которая обеспечивает накопление лития не только за счет реакции интеркаляции, но и за счет сорбции/десорбции лития на дефектах.

Таким образом, варьирование параметров синтеза позволяет влиять на процессы взаимодействия с литием за счет изменения состава и дефектности материала

Рис. 2. Зарядно-разрядные кривые на первых трех циклах при плотности тока 0.05 А/g для образцов № 1 и 2. Номера кривых соответствуют номерам циклов.

Таблица 2. Относительное содержание кремния и карбида кремния по данным РФА и электрохимические свойства образцов

Номер образца	Si, %	SiC, %	Удельная емкость, mA · h/g	
			при токе 0.05 A/g	при токе 2 А/g
1	55	45	603	242
2	44 24	56 76	552 90	111
2 3	44 24	56 76	552 90	3

Рис. 3. Зависимость удельной емкости от номера цикла заряда-разряда при плотностях тока 0.05-2 A/g для образцов N $_{2}$ 1-3.

Si/SiC/C. Электрохимическое тестирование полученных материалов в литий-ионной ячейке показало, что материалы, полученные при более высоких давлениях и температурах, быстро деградируют при циклировании, что может быть связано с образованием жесткой графи-

Письма в ЖТФ, 2023, том 49, вып. 12

товой оболочки и карбида кремния. Высокое содержание SiC приводит к значительным потерям емкости за счет необратимой сорбции лития.

Кремний-углеродный композиционный материал, полученный в мягких условиях синтеза с максимальным давлением 3.5-4.0 MPa, демонстрирует стабильную циклируемую емкость 603 и 242 mA · h/g при плотностях тока 0.05 и 2 А/g, что значительно больше, чем у графитовых анодных материалов. Значительно меньшие емкости по сравнению с теоретическими мы связываем с большим содержанием чисто углеродной фазы и фазы, содержащей карбид кремния. Подбор оптимальных режимов синтеза, включая давление и стехиометрический состав газовой смеси, позволит существенно улучшить характеристики анодного материала. Разделение, очистка и обогащение синтезируемого продукта, например, гравиметрическими методами позволит получить анодный материал с электрохимическими характеристиками, приближенными к теоретически возможным.

Благодарности

Авторы благодарят Министерство науки и высшего образования РФ.

В экспериментах использовано оборудование ЦКП "Прикладная физика" НГУ. Измерения проведены на оборудовании ЦКП "Высокие технологии и аналитика наносистем" Аналитического и технологического исследовательского центра НГУ.

Финансирование работы

Эксперименты выполнены при финансовой поддержке Министерства науки и высшего образования РФ (проект № FSUS-2020-0039).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J. Hwang, M. Jung, J.-J. Park, E.-K. Kim, G. Lee, K.J. Lee, J.-H. Choi, W.-J. Song, Nanomaterials, **12** (10), 1649 (2022). DOI: 10.3390/nano12101649
- [2] A.F. Gonzalez, N.-H. Yang, R.-S. Liu, J. Phys. Chem. C, 121 (50), 27775 (2017). DOI: 10.1021/acs.jpcc.7b07793
- [3] A.R. Kamali, H.-K. Kim, K.-B. Kim, R.V. Kumar, D.J. Fray, J. Mater. Chem. A, 5 (36), 19126 (2017). DOI: 10.1039/C7TA04335J
- [4] B. Ezdin, D. Yatsenko, V. Kalyada, A. Zarvin, A. Ichshenko,
 A. Nikiforov, P. Snytnikov, Data Brief, 28, 104868 (2020).
 DOI: 10.1016/j.dib.2019.104868
- [5] B.S. Ezdin, V.V. Kalyada, D.A. Yatsenko, A.V. Ischenko, V.A. Volodin, A.A. Shklyaev, Powder Technol., 394, 996 (2021). DOI: 10.1016/j.powtec.2021.09.032
- [6] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, J. Power Sources, 257, 421 (2014). DOI: 10.1016/j.jpowsour.2013.11.103