02

Моделирование кристаллического поля, магнитоупругих взаимодействий и случайных деформаций решетки в пирохлоре Pr₂Zr₂O₇

© В.В. Клековкина, Н.М. Абишев

Казанский федеральный университет, 420008 Казань, Россия

e-mail: vera.klekovkina@gmail.com

Поступила в редакцию 03.11.2022 г. В окончательной редакции 03.11.2022 г. Принята к публикации 17.11.2022 г.

> Представлены результаты моделирования спектральных и термодинамических свойств кристаллов Pr₂Zr₂O₇ с использованием функции распределения случайных деформаций, индуцированных точечными дефектами в упруго-анизотропном континууме.

Ключевые слова: редкоземельные пирохлоры, случайные деформации.

DOI: 10.21883/OS.2023.04.55552.65-22

Введение

Редкоземельные оксиды с общей формулой $RE_2M_2O_7$ (где RE — редкоземельный (P3) ион, М — четырёхвалентный ион металла) изоструктурны минералу пирохлору. Пирохлор имеет кубическую гранецентрированную решетку (пространственная группа Fd3m). В пирохлорах подрешетка P3 ионов образует сетку соединенных вершинами тетраэдров. Четыре P3 иона, находящихся в вершинах одного такого тетраэдра, являются кристаллографически эквивалентными, но магнитнонеэквивалентными. Такие соединения являются геометрически фрустрированными магнетиками и показывают широкое разнообразие магнитного поведения при низких температурах, благодаря чему привлекают внимание научного сообщества.

Магнитные свойства этих соединений (в случае, если ион металла является немагнитным) определяются магнитными обменными и дипольными взаимодействиями между РЗ ионами и взаимодействием РЗ ионов с кристаллическим полем (КП). РЗ ионы координированы восемью ионами кислорода, которые находятся в вершинах искаженного куба.

Основной мультиплет ${}^{3}H_{4}$ иона \Pr^{3+} в тригональном КП совершенного кристалла со структурой пирохлора расщепляется на 3 дублета Γ_{3}^{+} и 3 синглета $2\Gamma_{1}^{+} + \Gamma_{2}^{+}$ (указаны соответствующие неприводимые представления точечной группы симметрии D_{3d} в позиции ионов празеодима). В КП цирконата празеодима, как было показано в работе [1], основным электронным состоянием иона \Pr^{3+} является некрамерсов дублет. Первое возбужденное состояние (синглет) имеет энергию порядка 110 К [1]. Моделирование магнитных свойств цирконата празеодима при низких температурах, как правило, выполняют, используя эффективный спин-гамильтониан,

действующий в пространстве состояний основного дублета.

В экспериментальных температурных зависимостях теплоемкости $Pr_2Zr_2O_7$ [1–4] наблюдается аномалия Шоттки вблизи температуры 2 К, что указывает на расщепление основного дублета иона Pr³⁺. На наличие расщепления основного дублета и случайный характер его величины указывают наблюдаемые при низких температурах максимумы интенсивности неупругого рассеяния нейтронов в низкоэнергетической части спектра [4]. Природа взаимодействий, приводящих к этому расщеплению, не была объяснена до настоящего времени. Моделирование свойств Pr₂Zr₂O₇ с учетом расщепления основного дублета было выполнено в работах [5-7]. Величина расщепления предполагалась постоянной [5] или случайной с одномерной функцией распределения [6,7]. Тем не менее оба этих предположения не имеют какоголибо физического обоснования.

Характерной особенностью кристаллов со структурой пирохлора является их нестехиометричность [8], которая возникает при замещении части ионов металла M^{4+} P3 ионами (при этом образуются дополнительные вакансии в анионной кислородной подрешетке) и при замещении части P3 ионов RE^{3+} ионами металла M^{4+} . В общем виде формулу кристаллов со структурой пирохлора (в том числе кристаллов, которые синтезируются изначально как стехиометрические) можно записать в виде $RE_{2+x}M_{2-x}O_{7-x/2}$ (модель "stuffed pyrochlore").

В работе [9] были выполнены измерения теплоемкости и магнитной восприимчивости $Pr_2Zr_2O_7$ для серии образцов, полученных при разных условиях синтеза (скорости роста, времени отжига). Обнаруженная зависимость данных измерений от образца указывает на присутствие дефектов. О локальных искажениях кубической кристаллической решетки пирохлора свидетельствует наблюдаемая слабая анизотропия магнитной восприимчивости при низких температурах [10]. В спектроскопических экспериментах, выполненных на изоструктурных соединениях [11], наблюдалось нарушение правил отбора.

Теория случайных деформаций, обусловленных точечными дефектами решетки, была построена в работе [12]. В работе [13] было выполнено моделирование спектральных свойств цирконата празеодима, основанное на функции распределения случайных деформаций для изотропного континуума [12] и феноменологической модели электрон-деформационного взаимодействия.

В настоящей работе мы провели моделирование спектральных и термодинамических свойств $Pr_2Zr_2O_7$, предполагая присутствие точечных дефектов решетки, которые индуцируют случайные деформации. В расчетах мы использовали функцию распределения случайных деформаций, построенную с учетом упругой анизотропии кристаллической решетки [14].

Результаты и обсуждение

При наличии дефектов кристаллической решетки основной электронный дублет Γ_3^+ иона \Pr^{3+} в решетке $\Pr_2 Zr_2 O_7$ расщепляется вследствие локального понижения симметрии. Величина расщепления определяется локальной деформацией, которая носит случайный характер и зависит от концентрации и типа дефектов, и параметрами электрон-деформационного взаимодействия.

Функция распределения случайных деформаций, обусловленных точечными дефектами кристаллической решетки, с учетом упругой анизотропии представляет собой обобщенное распределение Лоренца для шести независимых компонент тензора деформаций кубического кристалла [14]:

$$g(e) = \frac{15\xi}{8\pi^{3}\gamma_{A}\gamma_{E}^{2}\gamma_{F}^{3}} \left\{ \gamma_{A}^{-2}e(A_{1g})^{2} + \gamma_{E}^{-2}\sum_{\lambda=1}^{2}e_{\lambda}(E_{g})^{2} + \gamma_{F}^{-2}\sum_{\lambda=1}^{3}e_{\lambda}(F_{2g})^{2} + \xi^{2} \right\}^{-7/2}.$$
(1)

Здесь $e_{\lambda}(\Gamma)$ — линейные комбинации компонент тензора деформаций $e_{\alpha\beta}$ в декартовой системе координат с осями X, Y, Z вдоль тетрагональных осей симметрии кубической решетки, преобразующиеся по строке λ неприводимого представления Г:

$$e_{1}(A_{1g}) = (e_{XX} + e_{YY} + e_{ZZ})/\sqrt{6},$$

$$e_{1}(E_{g}) = (2e_{ZZ} - e_{XX} - e_{YY})/\sqrt{12},$$

$$e_{2}(E_{g}) = (e_{XX} - e_{YY})/2,$$

$$e_{1}(F_{2g}) = (2e_{XY} - e_{ZX} - e_{YZ})/\sqrt{6},$$

$$e_{2}(F_{2g}) = (e_{XZ} - e_{YZ})/\sqrt{2},$$
(2)

$$e_3(F_{2g}) = \left(e_{XY} + e_{XZ} + e_{YZ}\right)/\sqrt{3}.$$

Значения параметров $\gamma_A = 0.92$, $\gamma_E = 33.01$, $\gamma_F = 34.47$, характеризующие различие ширины функции распределения для деформаций, преобразующихся по неприводимым представлениям A_{1g} , E_g и F_{2g} кубической группы соответственно, были вычислены нами согласно описанной в [14] методики с использованием упругих постоянных кристалла La₂Zr₂O₇ [15].

Параметр $\xi = |\Omega_0|C_d/48\pi$ характеризует ширину функции распределения, которая пропорциональна концентрации дефектов C_d и "силе"дефектов (отношению изменения объема элементарной ячейки ν к числу дефектов) $\Omega_0 = \nu^{-1} d\nu/dC_d$, $\nu = a^3/4$, a — параметр ячейки. Параметр ξ рассматривался нами в качестве варьируемого подгоночного параметра.

Наблюдаемые физические величины $\langle A(T) \rangle$ вычислялись следующим образом: квантово-механические и квантово-статистические средние значения A(T, e) вычислялись для фиксированных значений компонент тензора деформаций *е* и температуры *T* и далее усреднялись с функцией распределения случайных деформаций:

$$\langle A(T) \rangle = \int A(T, e)g(e)de.$$
 (3)

В расчетах использовался следующий гамильтониан иона Pr³⁺:

$$H = H_0 + H_{\rm CF} + H_Z + H_{\rm el-def},\tag{4}$$

где H_0 — гамильтониан свободного иона, $H_{\rm CF}$ — гамильтониан иона в кристаллическом поле совершенного кристалла, H_Z — энергия взаимодействия электронов с локальным магнитным полем, $H_{\rm el-def}$ — гамильтониан взаимодействия 4f-электронов с деформациями решетки.

Гамильтониан H_0 свободного иона \Pr^{3+} был записан в пространстве 91 состояния основной электронной конфигурации $4f^2$ и включал энергию электростатического взаимодействия между 4f-электронами, энергию спинорбитального взаимодействия и взаимодействия спинчужая орбита, энергию межконфигурационного взаимодействия [16].

Гамильтониан H_{CF} в локальной системе координат с тригональной осью симметрии *z*, направленной из центра тетраэдра, образованного P3 ионами, которому принадлежит рассматриваемый ион Pr³⁺, к соответствующей вершине, определяется шестью параметрами КП B_p^{h} :

$$H_{\rm CF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_4^3 O_4^3 + B_6^0 O_6^0 + B_6^3 O_6^3 + B_6^6 O_6^6,$$
(5)

где O_p^k — линейные комбинации сферических тензорных операторов, аналогичные операторам Стивенса [17] в базисе собственных функций углового момента.

В литературе было предложено несколько наборов параметров КП на и
оне Pr^{3+} в решетке $Pr_2Zr_2O_7\ [1,18,19]$

Кристалл	B_{2}^{0}	B_{4}^{0}	B_{4}^{3}	B_{6}^{0}	B_{6}^{3}	B_{6}^{6}	Ссылка
$Pr_2Zr_2O_7$	355	397	-3233	87.5	-301	574	[1]
	255	466	-3979	143	1359	1197	[18]
	193	369	-5336	62.3	475	-429	[19]
	252	355	-5122	32.3	-193	-252	[19]
	157	428	-4335	79.4	1140	1235	Настоящая работа
$Pr_2Sn_2O_7$	233	436	-3835	72.7	1109	1471	[22]
$Pr_2Hf_2O_7$	136	429	-4592	83.2	1154	1367	[23]
	138	406	-4070	74.1	1102	1189	[24]

Таблица 1. Параметры КП на ионе Pr^{3+} в кристалле $Pr_2Zr_2O-7(cm^{-1})$. Для сравнения приведены параметры КП на ионе Pr^{3+} в изоструктурных соединениях $Pr_2Hf_2O_7$ и $Pr_2Sn_2O_7$

Таблица 2. Вычисленные и измеренные значения уровней энергии основного мультиплета ${}^{3}H_{4}$ иона Pr_{3+} (cm⁻¹)

Расчет		Эксперимент					
	Pr ₂ Zr ₂	O ₇		$Pr_2Sn_2O_7$	$Pr_2Hf_2O_7$		
Настоящая работа		[1]	[20]	[22]	[24]		
Γ_3^+	0	0	0	0	0		
Γ_1^+	81.0	76.5	76.6	144	74.2		
Γ_3^+	453	460	442, 460	466	431		
Γ_1^+	671	660	662	663	634		
Γ_3^+	758	751	761	806	721		
Γ_2^+	875	878	879	927	836		

(табл. 1). Мы не использовали предложенные ранее наборы параметров КП, поскольку они были получены либо при рассмотрении оператора $H_{\rm CF}$ в усеченном базисе основного мультиплета без учета перемешивания волновых функций основного и возбужденных мультиплетов, либо путем подгонки вычисленных уровней энергии к экспериментальным методом наименьших квадратов и имеют физически необоснованные значения (в частности, знаки, противоположные результатам расчетов), либо предсказывают неправильные значения эффективного магнитного момента и *g*-фактора. Расчеты, выполненные в работах [1,18], предсказывают структуру энергетического спектра, не согласующуюся с данными спектроскопии комбинационного рассеяния света [20].

Мы вычислили параметры КП на ионе Pr3+ в решетке $Pr_2Zr_2O_7$ в рамках полуфеноменологической модели обменных зарядов [21]. Полученный набор параметров затем корректировался путем анализа спектров неупругого рассеяния нейтронов [1] и спектров комбинацион-

ного рассеяния света [20]. Набор параметров КП для иона \Pr^{3+} в локальной системе координат с осью *z* вдоль тригональной оси симметрии [111] кубической решетки и осью *x* вдоль вектора $\mathbf{z} \times (-\mathbf{X} + \mathbf{Y})$, использованный при проведении дальнейших расчетов, приведен в табл. 1.

Вычисленные нами энергии подуровней основного мультиплета сравниваются с экспериментальными данными в табл. 2. В табл. 2 указаны неприводимые представления точечной группы симметрии D_{3d}, по которым преобразуются соответствующие волновые функции. Наблюдаемый в спектре комбинационного рассеяния квазидублет с частотами 442 и 460 ст-1 [20] обусловлен квазирезонансным взаимодействием электронного возбуждения ионов Pr³⁺ из основного состояния на первый возбужденный дублет $(\Gamma_3^+ \to \Gamma_3^+)$ с активным в спектре комбинационного рассеяния оптическим фононом симметрии F_{2g} с частотой 450 сm⁻¹ [15]. Вычисленные значения эффективного магнитного момента $\mu_{\rm eff} = 2.49 \, \mu_{\rm B}$ и продольной компоненты g-тензора основного состояния (дублет Γ_3^+) $g_{||} = 4.75$ находятся в согласии со значениями $\mu_{\text{eff}} = 2.45\,\mu\text{B}$ [4] и $g_{||} = 4.78$ [23], определенными из экспериментов.

Полученные в результате значения полуфеноменологических параметров модели обменных зарядов использовались при расчете параметров электрондеформационного взаимодействия (ЭДВ). Гамильтониан ЭДВ РЗ иона имеет вид

$$H_{\text{el-def}} = \sum_{\Gamma,\lambda} V_{\lambda}(\Gamma) e_{\lambda}(\Gamma), \qquad (6)$$

где $V_{\lambda}(\Gamma) = B_{p,\lambda}^{k}(\Gamma)O_{p}^{k}$ — электронные операторы. Процедура расчета параметров ЭДВ описана в работе [25]. Набор из 30 независимых параметров $B_{p,\lambda}^{k}(\Gamma)$ для $\Pr_{2}Zr_{2}O_{7}$ незначительно отличается от соответствующего набора для ионов тербия в кристалле Tb₂Ti₂O₇, который приведен в [25].

В рамках эффективного спинового гамильтониана (S = 1/2) вклад ЭДВ описывается гамильтонианом $H_{\text{el-def}} = V\sigma_+ + \text{h.c.}$, где $\sigma_+ = (\sigma_x + \sigma_y)/2$, σ_α — матрицы Паули. Линейная функция компонент тензора деформации

$$V = V(E_g) \Big(e_1(E_g) - i e_2(E_g) \Big) + V(F_{2g}) \Big(e_1(F_{2g}) + i e_2(F_{2g}) \Big)$$
(7)

определяется двумя параметрами (матричными элементами соответствующих операторов $V_{\lambda}(\Gamma)$ на волновых функциях основного дублета), значения которых $V(E_g) = 242 \text{ cm}^{-1}$ и $V(F_{2g}) = 1386 \text{ cm}^{-1}$ были нами получены в рамках микроскопической модели КП с шестью параметрами, приведенными в табл. 1. Величина расщепления основного дублета, обусловленного дефор-

Рис. 1. Измеренная (символы) и вычисленная (линия 3) интенсивность рассеяния нейтронов как функция энергии переноса, T = 1.4 К. Линиями 1 и 2 показаны упругий и неупругий вклады соответственно. Экспериментальные точки были оцифрованы по данным измерений в работе [7].

мациями, равна

$$\Delta(e) = 2\left\{ \left[-V(E_g)e_1(E_g) + V(F_{2g})e_1(F_{2g}) \right]^2 + \left[V(E_g)e_2(E_g) + V(F_{2g})e_2(F_{2g}) \right]^2 \right\}^{1/2}.$$
 (8)

Празеодим имеет стабильный изотоп ¹⁴¹ Pr с ядерным спином I = 5/2 (естественное содержание 100%). При расчете ядерного вклада в теплоемкость в гамильтониан (4) иона Pr_{3+} включался также оператор сверхтонкого взаимодействия $H_{\rm HF}$, явный вид которого приведен в [12].

Мы получили оценку ширины функции распределения случайных деформаций на основе анализа экспериментальных данных о неупругом рассеянии нейтронов. Положение линии, наблюдаемой в низкоэнергетической части спектра неупругого рассеяния нейтронов в отсутствие внешнего магнитного поля, зависит от образца и лежит в области $2-3 \text{ cm}^{-1}$ [4,7,13]. Форма линии интенсивности рассеяния при низких температурах может быть описана как сумма интенсивности упругого рассеяния, аппроксимированной гауссовой форм-функцией $I_{\text{elast}}(E) \sim \exp(-E^2/2\delta^2)$ со стандартным отклонением $\delta = 0.376 \text{ cm}^{-1}$, и интенсивности неупругого рассеяния $I_{\text{inelast}}(E)$, усредненной по расщеплениям $\Delta(e)$ основного дублета, индуцированным случайными деформациями:

$$I_{\text{inelast}}(E) \sim \int \exp\left[-\left(E - \Delta(e)\right)^2 / 2\delta^2\right] g(e) de.$$
(9)

На рис. 1 представлены результаты моделирования огибающей спектра неупругого рассеяния нейтронов

при температуре 1.4 К с учетом случайных деформаций. Видно, что расчеты хорошо воспроизводят наблюдаемый профиль интенсивности рассеяния нейтронов при значении варьируемого параметра $\xi = 2 \cdot 10-5$. Это значение дает оценку параметра ξ сверху, поскольку мы пренебрегали магнитными и квадрупольными взаимодействиями между ионами Pr^{3+} . Пик в профиле интенсивности (линия *3* на рис. 1) возникает как следствие специфической структуры многомерной функции распределения деформаций.

Сравнение экспериментальных зависимостей теплоемкости кристалла $Pr_2Zr_2O_7$ [1–4,9] доказывает влияние дефектов кристаллической решетки на его термодинамические свойства. На рис. 2 и 3 представлены результаты моделирования температурных зависимостей теплоемкости. Расчеты, результаты которых представлены на рис. 2 и 3, были проведены с параметром $\xi = 2 \cdot 10^{-5}$, определенным из анализа спектров неупругого рассеяния нейтронов. Теплоемкость кристалла $Pr_2Zr_2O_7$ была вычислена как сумма магнитного и решеточного вкладов, последний полагался равным теплоемкости немагнитного изоструктурного соединения $La_2Zr_2O_7$ [2]. Магнитный вклад в теплоемкость был вычислен по формуле

$$C_{p,\text{mag}} = \frac{N_{\text{A}}}{k_{\text{B}}T^2} \left\langle \text{Tr}[H_s^2 \rho] - \left(\text{Tr}[H_s \rho]\right)^2 \right\rangle, \quad (10)$$

где ρ — матрица плотности иона \Pr^{3+} с оператором Гамильтона $H_s = H_0 + H_{CF} + H_{el-def} + H_{HF}$, N_A — число Авогадро, k_B — постоянная Больцмана. Видно, что применение теории случайных деформаций позволяет качественно описать аномалию Шоттки, наблюдаемую вблизи 2 К.

На рис. 3 показана теплоемкость $Pr_2Zr_2O_7$ в низкотемпературной области ($T\sim 0.1\,{\rm K}$). Расчеты теплоем-

Рис. 2. Измеренная (символы) и вычисленная (кривая 1 — совершенная кристаллическая решетка, 2 — решетка со случайными дефектами) теплоемкость как функция температуры. Экспериментальные данные взяты из [2] (квадраты) и [4] (кружки).

Рис. 3. Измеренная (символы) температурная зависимость теплоемкости и вычисленная сумма магнитного и ядерного вкладов в теплоемкость (кривая *1* — совершенная кристаллическая решетка, *2* — решетка с дефектами). Экспериментальные данные взяты из [1].

кости для совершенного кристалла (линия 1 на рис. 3) предсказывают в этой области аномалию Шоттки, обусловленную сверхтонкой структурой основного некрамерсовского дублета, с максимумом при температуре, значительно превышающей температуру этого максимума по данным измерений (символы на рис. 3). Взаимодействие ионов Pr^{3+} со случайными деформациями подавляет сверхтонкое взаимодействие и существенно смещает соответствующую аномалию Шоттки в область сверхнизких температур (линия 2 на рис. 3).

Таким образом, использование теории случайных деформаций позволило нам качественно воспроизвести низкоэнергетический профиль спектра неупругого рассеяния нейтронов и особенности в температурных зависимостях теплоемкости цирконата празеодима при низких температурах.

Для того чтобы оценить концентрацию точечных дефектов, которая соответствует полученному значению ширины функции распределения деформаций, можно воспользоваться моделью "stuffed pyrochlore" ($\Pr_{2+x} Zr_{2-x} O_{7-x/2}$) и рентгеноструктурныданными. В рамках данной модели получа-ΜИ $|\Omega_0|C_d = (3|x|/a)da/dx$, где a = 10.677 Å [10], ем da/dx = 0.37 Å [9], тогда $\xi \approx 7 \cdot 10^{-4} \cdot |x|$. Подставив значение ширины функции распределения $\xi = 2 \cdot 10^{-5}$, которое было определено нами из сравнения результатов расчетов и экспериментальных данных, получим оценку $|x| \approx 0.03$, что соответствует концентрации дефектов порядка 1.5%. В литературе отмечается, что для РЗ пирохлоров достаточно качественными считаются образцы с отклонением от стехиометричности меньше 2%. Таким образом, применение теории случайных деформаций позволило нам косвенно оценить качество образцов посредством определения ширины функции распределения деформаций из моделирования доступных экспериментальных данных.

Выводы

Выполненные нами расчеты показывают важность учета случайных деформаций, обусловленных дефектами кристаллической решетки, при исследовании свойств пирохлоров с некрамерсовскими ионами при низких температурах. Требуют дополнительного изучения эффекты, обусловленные влиянием смещений подрешеток кислорода, соответствующих колебаниям решетки симметрии F_{2g} , активным в спектре комбинационного рассеяния света, на параметры связи электронной подсистемы с макроскопическими деформациями. Кроме того, дополнительно могут быть существенными эффекты, обусловленные мультипольными взаимодействиями между РЗ ионами через поле фононов и двухчастичными слагаемыми в электрон-деформационном взаимодействии. С точки зрения экспериментального исследования представляют интерес измерения скорости звука и вынужденной магнитострикции при низких температурах и в слабых магнитных полях для пирохлоров, содержащих некрамерсовские ионы Pr³⁺ и Tb³⁺. Анализ данных этих измерений позволит скорректировать набор параметров электрон-деформационного взаимодействия для дальнейшего изучения влияния дефектов на свойства пирохлоров, содержащих некрамерсовские РЗ ионы.

Благодарности

Авторы благодарны Б.З. Малкину за научное руководство, обсуждения полученных результатов и редактирование рукописи статьи.

Финансирование

Работа поддержана грантом Российского научного фонда №19-12-00244.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K. Kimura, S. Nakatsuji, J.-J Wen, C. Broholm, M.B. Stone, E. Nishibori, H. Sawa. Nat. Commun., 4, 1934 (2013). DOI: 10.1038/ncomms2914
- [2] K. Matsuhira, C. Sekine, C. Paulsen, M. Wakeshima, Y. Hinatsu, T. Kitazawa, Y. Kiuchi, Z. Hiroi, S. Takagi. J. Phys.: Conf. Ser., 145, 012031 (2009). DOI: 10.1088/1742-6596/145/1/012031
- [3] K. Kimura, S. Nakatsuji. JPS Conf. Proc., 3, 014027 (2014).
 DOI: 10.7566/JPSCP.3.014027

- S. Petit, E. Lhotel, S. Guitteny, O. Florea, J. Robert, P. Bonville, I. Mirebeau, J. Ollivier, H. Mutka, E. Ressouche, C. Decorse, M. CiomagaHatnean, G. Balakrishnan. Phys. Rev. B, 94, 165153 (2016). DOI: 10.1103/PhysRevB.94.165153
- P. Bonville, S. Guitteny, A. Gukasov, I. Mirebeau, S. Petit, C. Decorse, M. Ciomaga Hatnean, G. Balakrishnan. Phys. Rev. B, 94, 134428 (2016). DOI: 10.1103/PhysRevB.94.134428
- [6] O. Benton. Phys. Rev. Lett., **121**, 037203 (2018).
 DOI: 10.1103/PhysRevLett.121.037203
- J.-J. Wen, S.M. Koohpayeh, K.A. Ross, B.A. Trump, T.M. McQueen, K. Kimura, S. Nakatsuji, Y. Qiu, D.M. Pajerowski, J.R.D. Copley, C.L. Broholm. Phys. Rev. Lett., 118, 107206 (2017).
 DOI: 10.1103/PhysRevLett.118.107206
- [8] L.G. Shcherbakova, L.G. Mamsurova, G.E. Sukhanova. Russian Chem. Rev., 48, 423 (1979).
 DOI: 10.1070/RC1979v048n03ABEH002319
- [9] S.M. Koohpayeh, J.-J. Wen, B.A. Trump, C.L. Broholma, T.M. McQueen. J. Cryst. Growth, 402, 291 (2014).
 DOI: 10.1016/j.jcrysgro.2014.06.037
- [10] M.C. Hatnean, C. Decorse, M.R. Lees, O.A. Petrenko, D.S. Keeble, G. Balakrishnan. Mater. Res. Express, 1, 026109 (2014). DOI: 10.48550/arXiv.1404.6437
- [11] T.T. Lummen, I.P. Handayani, M.C. Donker, D. Fausti, G. Dhalenne, P. Berthet, A. Revcolevschi, P.H.M. van Loosdrecht. Phys. Rev. B, 77, 214310 (2008). DOI: 10.1103/PhysRevB.77.214310
- [12] B.Z. Malkin, D.S. Pytalev, M.N. Popova, E.I. Baibekov, M.L. Falin, K.I. Gerasimov, N.M. Khaidukov. Phys. Rev. B, 86, 134110 (2012). DOI: 10.1103/PhysRevB.86.134110
- N. Martin, P. Bonville, E. Lhotel, S. Guitteny, A. Wildes, C. Decorse, M. Ciomaga Hatnean, G. Balakrishnan, I. Mirebeau, S. Petit. Phys. Rev. X, 7, 041028 (2017). DOI: 10.1103/PhysRevX.7.041028
- B.Z. Malkin, N.M. Abishev, E.I. Baibekov, D.S. Pytalev,
 K.N. Boldyrev, M.N. Popova, M. Bettinelli. Phys. Rev. B, 96, 014116 (2017). DOI: 10.1103/PhysRevB.96.014116
- [15] Guoqiang Lan, Bin Ouyang, Jun Song. Acta Materialia, 91, 304 (2015). DOI: 10.1016/j.actamat.2015.03.004
- [16] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana. J. Chem. Phys., 90, 3443 (1989). DOI: 10.1063/1.455853
- [17] V.V. Klekovkina, A.R. Zakirov, B.Z. Malkin, L.A. Kasatkina. J. Phys.: Conf. Ser., **324**, 012036 (2011). DOI: 10.1088/1742-6596/324/1/012036
- [18] J. Alam, Y.M. Jana, A. Ali Biswas. J. Magn. Magn. Mat., 416, 391 (2016). DOI: 10.1016/j.jmmm.2016.05.030
- P. Bonville, S. Guitteny, A. Gukasov, I. Mirebeau, S. Petit, C. Decorse, M. Ciomaga Hatnean, G. Balakrishnan. Phys. Rev. B, 94, 134428 (2016). DOI: 10.1103/PhysRevB.94.134428
- Y. Xu, H. Man, N. Tang, S. Baidya, H. Zhang, S. Nakatsuji,
 D. Vanderbilt, N. Drichko. Phys. Rev. B, 104, 075125 (2021).
 DOI: 10.1103/PhysRevB.104.075125
- [21] B.Z. Malkin. Crystal Field and Electron-Phonon Interaction in Rare-Earth Ionic Paramagnets in Spectroscopy of Solids Contaning Rare Earth Ions (North-Holland, Amsterdam, 1987), ch. 2, p. 13.
- [22] A.J. Princep, D. Prabhakaran, A.T. Boothroyd, D.T. Adroja.
 Phys. Rev. B, 88, 104421 (2013).
 DOI: 10.1103/PhysRevB.88.104421
- [23] V.K. Anand, L. Opherden, J. Xu, D.T. Adroja, A.T.M.N. Islam, T. Herrmannsdörfer, J. Hornung, R. Schönemann, M. Uhlarz, H. C. Walker, N. Casati, B. Lake. Phys. Rev. B, 94, 144415 (2016). DOI: 10.1103/PhysRevB.94.144415

- [24] R. Sibille, E. Lhotel, M.C. Hatnean, G. Balakrishnan, Björn Fåk, N. Gauthier, T. Fennell, M. Kenzelmann. Phys. Rev. B, 94, 024436 (2016). DOI: 10.1103/PhysRevB.94.024436
- [25] V.V. Klekovkina, B.Z. Malkin, Opt. Spectrosc., 116, 849 (2014). DOI: 10.1134/S0030400X14060137