02

Селективная лазерная спектроскопия примесных центров ионов Ho³⁺ в кристалле SrY₂O₄

© С.И. Никитин, Е.М. Куташова, Р.В. Юсупов, Р.Г. Батулин, А.Г. Киямов, И.Э. Мумджи, Б.З. Малкин

Казанский федеральный университет, 420008 Казань, Россия e-mail: sergey.nikitin@kpfu.ru

Поступила в редакцию 17.11.2022 г. В окончательной редакции 26.11.2022 г. Принята к публикации 28.11.2022 г.

> Методом селективной лазерной спектроскопии проведены детальные исследования спектров люминесценции и возбуждения люминесценции примесных центров ионов Ho^{3+} в кристалле SrY₂O₄. На основе полученных данных построена структура энергетических уровней мультиплетов ${}^{5}I_{8}$, ${}^{5}I_{7}$, ${}^{5}I_{6}$, ${}^{5}S_{2}$ и ${}^{5}F_{4}$ двух структурно неэквивалентных примесных центров ионов Ho^{3+} в позициях Y1 и Y2 кристаллической решетки. Наблюдаемые спектры хорошо описываются в рамках теории кристаллического поля (КП), определены параметры кристаллических полей симметрии C_{s} в позициях Y1 и Y2. На основе полученных параметров кристаллического поля рассчитаны параметры спектров ЭПР, которые полностью согласуются с экспериментальными значениями.

Ключевые слова: кристаллическое поле, редкоземельные ионы, селективная лазерная спектроскопия.

DOI: 10.21883/OS.2023.04.55546.77-22

Введение

Спектроскопическим исследованиям соелинений SrY₂O₄, активированных редкоземельными (P3) ионами (Sm³⁺, Eu³⁺, Dy³⁺, Tb³⁺, Er³⁺), посвящено большое число работ. Интерес к исследованиям данных соединений обусловлен в первую очередь перспективностью их применения в качестве люминофоров для плоских дисплеев и светоизлучающих устройств. Достаточно полный обзор результатов исследований в этом направлении представлен в [1]. Необходимо отметить, что данные исследования, как и исследования других перспективных люминофоров, посвящены изучению свойств микро- и нанокристаллических порошков, синтезированных химическими методами, с акцентом на их светоизлучающие свойства при комнатной и более высоких температурах. Спектры, приведенные в большинстве работ, были измерены с низким спектральным разрешением, анализ центрового состава, штарковской структуры мультиплетов примесных РЗ ионов и идентификация оптических переходов практически не представляются возможными.

Вторым чрезвычайно интересным и актуальным направлением исследований двойных оксидов стронцияредких земель является изучение с использованием методов магнитометрии и нейтронной спектроскопии необычных низкотемпературных магнитных свойств концентрированных соединений SrRE₂O₄, где RE — P3 ион. В частности, было обнаружено сосуществование магнитоупорядоченной и неупорядоченной подсистем ионов эрбия ($T_{\rm N} = 0.75$ K) [2], гольмия ($T_{\rm N} = 0.62$ K) [3,4] и неодима [5]. Показано, что в кристаллах SrDy₂O₄ отсутствует дальний магнитный порядок при охлажде-

нии вплоть до температуры 0.02 К [6,7]. Антиферромагнитная неколлинеарная магнитная структура в плоскости отражения кристаллической решетки ($T_{\rm N} = 0.95$ K) обнаружена в SrYb₂O₄ [8], фазовые переходы, индуцированные внешним магнитным полем, наблюдались в SrHo₂O₄ [9], SrDy₂O₄ [10] и SrEr₂O₄ [11]. Многообразие зарегистрированных магнитных структур обусловлено квазиодномерной структурой кристаллической решетки орторомбической симметрии с пространственной группой *Pnam* (N62, D_{2h}^{16}) [12], четырьмя магнитнонеэквивалентными позициями P3 ионов, конкуренцией одноионной магнитной анизотропии с анизотропными обменными и дипольными взаимодействиями между P3 ионами.

Соединения $SrRE_2O_4$ принадлежат к магнетикам с трехмерными геометрическими фрустрациями смешанного типа, решетка содержит скошенные лестницы (зигзагообразные цепочки), распространяющиеся вдоль оси с, и сотовую структуру в плоскостях **ab** (рис. 1).

Элементарная ячейка изоструктурного кристалла SrY₂O₄ содержит 4 иона Sr²⁺, 16 ионов O²⁻ и 8 ионов Y³⁺ в позициях Вайкоффа 4с. Ионы Y³⁺ образуют две подсистемы Y1 и Y2, каждая из которых содержит 4 кристаллографически эквивалентные подрешетки с радиусами-векторами, $\mathbf{r}_{1,\lambda} = [ax_{\lambda}, by_{\lambda}, 0.25c]$, $\mathbf{r}_{2,\lambda} = [a(0.5-x_{\lambda}), b(y_{\lambda}-0.5), 0.75c]$, $\mathbf{r}_{3,\lambda} = -\mathbf{r}_{1,\lambda}$, $\mathbf{r}_{4,\lambda} = -\mathbf{r}_{2,\lambda}$, где a, b и c — параметры кристаллической решетки, $\lambda = Y1, Y2, x_{\lambda}$ и y_{λ} — безразмерные структурные параметры. Постоянная решетки $c \sim 0.34$ nm примерно в три раза меньше, чем постоянные решетки $a \sim 1$ nm и $b \sim 1.2$ nm, каждая подрешетка представляет собой цепочку вдоль оси **с**. Цепочки ионов Y³⁺ в

Рис. 1. Фрагменты структуры кристалла SrY₂O₄: (*a*) подрешетки Y1 и Y2, (*b*, *c*) ближайшее кислородное окружение ионов иттрия.

позициях с базисными векторами $\mathbf{r}_{1,\lambda}$ и $\mathbf{r}_{3,\lambda}$ ($\mathbf{r}_{2,\lambda}$ и $\mathbf{r}_{4,\lambda}$) образуют лестницы вдоль оси *c* и сдвинуты друг относительно друга на *c*/2. Эти лестницы можно рассматривать как зигзагообразные цепочки с немного отличающимися расстояниями между первыми (~ 0.35 nm и ~ 0.355 nm в цепочках ионов Y1 и Y2 соответственно) и вторыми (постоянная решетки *c* во всех цепочках) соседями. Кристаллическая структура содержит два типа лестниц (позиции $\mathbf{r}_{1,\lambda}$, $\mathbf{r}_{3,\lambda}$ и $\mathbf{r}_{2,\lambda}$, $\mathbf{r}_{4\lambda}$), их плоскости развернуты вокруг оси *c* относительно друг друга на угол ~ $\pi/3$. Ионы Y³⁺ находятся в искаженных кислородных октаэдрах, точечная группа симметрии C_s для обеих позиций Y1 и Y2 (рис. 1, *b*, *c*). РЗ ионы в позициях с базисными векторами $\mathbf{r}_{1,\lambda}$ и $\mathbf{r}_{3,\lambda}$ ($\mathbf{r}_{2,\lambda}$ и $\mathbf{r}_{4,\lambda}$) магнитно-эквивалентны.

Первым шагом в построении микроскопической модели магнитных свойств P3 соединения является определение спектра возбуждений электронной подсистемы и симметрии волновых функций подуровней основного мультиплета P3 иона в кристаллическом поле (КП). Для решения этой задачи в случае многоцентровой системы ионов гольмия в кристалле SrHo₂O₄ в настоящей работе выполнено исследование спектральных характеристик изоструктурных диамагнитных кристаллов SrY₂O₄ с низкими концентрациями примесных ионов Ho³⁺, замещающих ионы Y³⁺, методом оптической селективной лазерной спектроскопии.

Следует отметить, что ранее оценки энергий ряда электронных возбуждений в кристалле $SrHo_2O_4$ были получены в измерениях спектров неупругого рассеяния нейтронов [13,14]. Спектры субмиллиметрового ЭПР примесных ионов Ho³⁺ в монокристаллах SrY_2O_4 были измерены в работе [15].

Образцы и методика измерений

Монокристаллы SrY_2O_4 , допированные ионами Ho^{3+} , были выращены методом оптической зонной плавки аналогично [16]. Применение данного метода обусловлено высокой температурой плавления (2170°С) кристаллов SrY₂O₄. В качестве исходных материалов использовались SrCO₃ (Alfa Aesar, 99.99%), Y₂O₃ (Alfa Aesar, 99.99%) и Ho₂O₃ (Alfa Aesar, 99.9%), концентрация ионов Ho³⁺ в исходной шихте составляла 0.2 at.%. На первом этапе осуществлялся твердофазный синтез. Тщательно перемолотый стехиометрический состав отжигался при температуре 1050°C в течение 8 h. Результат синтеза контролировался методом рентгеноструктурного анализа на дифрактометре Bruker D8 ADVANCE. Результаты измерений показали, что синтезированный порошок является однофазным, параметры решетки и пространственная группа симметрии соответствуют соединению SrY₂O₄. Из полученного порошка в гидростатическом прессе формировалась цилиндрическая заготовка диаметром 5 mm и длиной 70 mm. Рост кристаллов осуществлялся в потоке воздуха (расход воздуха 0.51/min) на установке оптической зонной плавки FZT-4000-H-VII-VPO-PC (Crystal Systems Corp., Japan). Скорость протягивания через зону расплава составляла 3 mm/h. Для обеспечения однородности зоны расплава нижняя и верхняя части выращиваемого кристалла (относительно зоны расплава) вращались в противоположных направлениях со скоростью 15 rot/min.

Выращенные кристаллы были прозрачными и не имели окраски. Рентгеноструктурный анализ показал, кристаллы также являются однофазными, и что ИХ структура соответствует соединению SrY₂O₄. Постоянные решетки a = 1.007437 nm, b = 1.19116 nm, c = 0.3407 nm и координаты атомов в элементарной ячейке определены при комнатной температуре, в частности, $x_{Y1} = 0.42312$, $y_{Y1} = 0.11043$, $x_{Y2} = 0.42346$, $y_{Y2} = 0.61229$, $x_{\rm O1} = 0.21379,$ $y_{01} = 0.17172$ $x_{\rm O3} = 0.51025,$ $x_{O2} = 0.12494,$ $y_{O2} = 0.47966,$ $y_{03} = 0.78370, x_{04} = 0.42429, y_{04} = 0.42568.$ Образцы для исследований вырезались выращенных ИЗ кристаллов в форме параллелепипеда и имели размеры 3 × 3 × 4 mm. Для проведения оптических измерений образцы не ориентировались относительно

Рис. 2. Селективно возбуждаемые спектры люминесценции примесных ионов Ho^{3+} (${}^{5}S_{2} \rightarrow {}^{5}I_{8}$) в кристалле SrY₂O₄: Ho (0.2 at.%), T = 4.2 K. (a) Энергия возбуждения $\nu_{\text{exc}} = 18572.7 \text{ cm}^{-1}$, люминесценция соответствует переходам с уровней нижнего квазидублета ($\Gamma_{1}, \Gamma_{2}, -18337.9$ и 18341.7 cm⁻¹) мультиплета ${}^{5}S_{2}$ ионов Ho1. На вставке показана трансформация коротковолновой части спектра люминесценции при понижении температуры до 2.5 K. (b) Энергия возбуждения 18644.7 cm⁻¹, излучение соответствует переходам с нижнего квазидублета ($\Gamma_{1}, \Gamma_{2}, 18365.5$ cm⁻¹) мультиплета ${}^{5}S_{2}$ ионов Ho2.

кристаллографических осей, грани параллелепипеда были отполированы.

Для проведения измерений методами селективной лазерной спектроскопии в качестве источника возбуждения люминесценции использовался импульсный лазер на растворе красителя Coumarin-153, ширина линии излучения составляла 0.4 Å. Накачка осуществлялась третьей гармоникой лазера на YAG: Nd (LQ129, Solar LS). Длина волны и ширина линии лазерного излучения определялись широкодиапазонным измерителем длины волны (SHR, Solar LS). В системе регистрации люминесценции использовались монохроматор МДР-23, охлаждаемые фотоэлектронные умножители ФЭУ-106 (термоэлектрическое охлаждение) и ФЭУ-83 (охлаждение парами жидкого азота), работающие в режиме счета фотонов. Измерение кинетики люминесценции осуществлялось с помощью многоканального накопителя Turbo MCS. Исследуемый образец помещался в гелиевый заливной криостат и находился в парах гелия при температуре 4.2 К, в ряде экспериментов температура образца понижалась примерно до 2.5 К путем откачки паров гелия.

Экспериментальные результаты

Согласно рентгеноструктурным данным, при активации кристаллов SrY₂O₄ P3 ионами могут образовываться, как минимум, два типа структурно неэквивалентных примесных центров, соответствующих замещению ионов Y³⁺ P3 ионами. Возбуждение люминесценции осуществлялось в мультиплеты ${}^{5}S_{2}$, ${}^{5}F_{4}$. Люминесценция исследуемого образца наблюдалась в широком спектральном диапазоне и соответствовала следующим переходам ионов Ho³⁺: ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$, ${}^{5}S_{2} \rightarrow {}^{5}I_{7}$, ${}^{5}S_{2} \rightarrow {}^{5}I_{6}$, ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$, ${}^{5}I_{5} \rightarrow {}^{5}I_{8}$, ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$. Наиболее интенсивная люминесценция соответствовала переходам из мультиплета ⁵S₂. При подборе длины волны возбуждения в наблюдаемых спектрах люминесценции удалось выделить спектры преимущественно двух различных по структуре уровней центров ионов Но³⁺. Необходимо отметить, что наблюдались и другие спектры люминесценции ионов Но³⁺, но их интенсивность люминесценции была более чем на два порядка меньше. На рис. 2 показаны спектры люминесценции двух примесных центров ионов Но³⁺. На основании всей совокупности экспериментальных данных, представленных в работе, теоретических расчетов и данных, полученных методом ЭПР, достигнута однозначная интерпретация наблюдаемых спектров люминесценции и возбуждения люминесценции. По этой причине на данном рисунке и далее в работе введены обозначения центров Но1 и Но2, соответствующие примесным центрам ионов Но³⁺ в позициях У1 и У2 соответственно. На рис. 2 буквами обозначены штарковские подуровни мультиплета ${}^{5}I_{8}$, соответствующие обозначениям, приведенным в табл. 1. Аналогичные обозначения представлены и на других рисунках.

В спектре люминесценции центра Ho1, представленном на рис. 2, наблюдается структура линий, обусловленная расщеплением мультиплета ${}^{5}S_{2}$, расщепление нижнего квазидублета составляет 3.8 cm^{-1} . Данный вывод подтверждается трансформацией спектра люминесценции при понижении температуры до 2.5 K — интенсивности линий, соответствующих переходам с верхнего подуровня квазидублета, уменьшаются (см. вставку на рис. 2, *a*). Энергетический зазор между линиями *A* и *B* (4.3 cm⁻¹) соответствует расстоянию между нижними

25+1	T	Ho1			Ho2		
$L^{23+1}L_J$		Г	Эксперимент	Теория	Γ	Эксперимент	Теория
${}^{5}I_{8}$	Α	2	0	0	1	0	0
	В	2	4.3	4.35	2	< 2.5	1.64
	С	1	14.7	14.3	2	62.1	62.9
	D	1	25.6	24.7	2	67.7	67.7
	Ε		39.5	38.4	1	85.3	86.5
F		1	61.3	59.4	1	95.8	97.7
	G	2	324	325.8	2	311	315.8
	Η	1	335.6	331.5	1	327	317.7
	Ι	2	341	347.0	2	369.5	369.4
	J	1	357	378.7	2	389.8	384.2
	K	2	389	381.7	1	407.4	408.4
	L	1	398.8	390	2	—	418.2
	М	1	423.8	420.6	1	429.5	418.5
	Ν	2	431	431.8	1	449.9	442.4
	0	2	445.7	443.2	1	466.3	463.1
	Р	1	—	446.2	2	—	487.5
	Q	1	460.3	457.8	1	504	490.2
${}^{5}I_{7}$	Α	2	5167.4	5165.3	2	5143.4	5142.9
В		2	—	5166.0	1	_	5143
	С	1	5172.4	5169.9	2	5219.1	5220.3
	D	2	5176.9	5176.1	1	5224.4	5223
	Ε	1	5179.8	5177.5	2	—	5225.5
	F	1	5185.4	5183.7	1	5231.3	5230
	G	2	5319.9	5314.9	2	5312.4	5308.8
	H	2	5333.5	5330.5	1	—	5315.8
	Ι	1	—	5337.1	2	5369.2	5368.4
	J	1	5355.5	5352.5	1	—	5371.4
	K	2	5357.3	5355.8	1	5387.5	5389.1
	L	1	5380.3	5368.1	2	5400.2	5392.9
	М	2	5415.1	5408.6	2	5421.6	5421.4
	Ν	2	5444.6	5429.7	1	_	5461.3
	0	1	5446.7	5430.7	2	5483.5	5465.5
${}^{5}I_{6}$	Α	1	8678.2	8679.9	2	8662	8661.6
	В	2	8681.2	8682.8	1	8664.3	8663.1
	С	1	8685.7	8683.2	1	8721.2	8722.6
	D	1	8699	8694.9	2	8727.7	8729
	Ε	2	8705.4	8703.6	1	8744.5	8743.4
	F	2	8751.7	8759.5	2	8782.4	8790.1
	G	1	8787.9	8799.7	1	8797.6	8802.7
	Η	1	8791.2	8804.8	2	8832.7	8823.4
	Ι	2	8796.7	8808.8	1	8849.7	8845.6
	J	1	8822.5	8825.4	2	8854.6	8852.2
	K	2	8844.1	8849.2	1	—	8866.3
	L	2	8904.6	8895.3	2	8950.3	8932.8
÷	М	1	8914.2	8912.8	1	8956.1	8941.6
${}^{5}S_{2}$	Α	1	18337.9	18339	1	18365.5	18364
	В	2	18341.7	18341	2	—	18366
	С	2	—	18371	2	18414.8	18413
	D	1	18373.3	18375	1	—	18413
	Ε	1	18384.9	18381	1	18418.8	18417

Таблица 1. Измеренные и вычисленные энергии (cm^{-1}) штарковских подуровней мультиплетов примесных ионов Ho³⁺ в SrY₂O₄

Таблица 1. Продолжение

2S+1 T	Ho1				Ho2		
L_J	Γ	Эксперимент	Теория	Γ	Эксперимент	Теория	
${}^{5}F_{4}$ a	2	18453.1	18454	1	18479.7	18493	
b	1	18481.7	18479	2	_	18496	
С	1	—	18512	2	18536.4	18539	
d	2	18524.9	18529	1	18547.9	18551	
е	2	18534.7	18535	1	18560.1	18569	
f	1	18538.7	18557	2	18595.3	18599	
g	2	18572.7	18564	1	18613.1	18600	
h	1	18580.1	18573	2	18634.3	18627	
i	1	18598.5	18581	1	18647.7	18647	

Рис. 3. Кинетика люминесценции ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ центров Ho1 (П — возбуждение люминесценции $\nu_{exc} = 18572.7 \,\mathrm{cm^{-1}}$, регистрация люминесценции $\nu_{reg} = 18014 \,\mathrm{cm^{-1}}$) и Ho2 (• — $\nu_{exc} = 18634.3 \,\mathrm{cm^{-1}}$, $\nu_{reg} = 17862.4 \,\mathrm{cm^{-1}}$), $T = 4.2 \,\mathrm{K}$.

штарковскими подуровнями мультиплета ${}^{5}I_{8}$. В спектре люминесценции центра Ho2 резонансная линия $(A, B \ 18 \ 365 \ {\rm cm}^{-1})$, соответствующая переходам между нижними штарковскими подуровнями мультиплетов ${}^{5}I_{8}$ и ${}^{5}S_{2}$, примерно в 2 раза шире по сравнению с рядом расположенными линиями с меньшей энергий $(C, D, E \ {\rm u} \ F,$ рис. 2, *a*), дополнительная структура не наблюдается. Это свидетельствует о малой величине расщепления основного квазидублета мультиплета ${}^{5}I_{8}$, расщепление нижнего штарковского подуровня мультиплета ${}^{5}S_{2}$ в спектре люминесценции не наблюдается.

Кинетика люминесценции примесных центров Ho1 и Ho2, соответствующая переходам между мультиплетами ${}^{5}S_{2}$ и ${}^{5}I_{8}$, показана на рис. 3. Для обоих центров кинетика люминесценции является одноэкспоненциальной, перенос энергии электронного возбуждения между ионами Ho³⁺ не наблюдается. Данный факт позволяет успешно применять методику селективного лазерного возбуждения для разделения спектров лю-

Рис. 4. Спектры возбуждения люминесценции, соответствующие люминесценции с мультиплета ${}^{5}S_{2}$ кристалла SrY₂O₄:Ho³⁺ (0.2 at.%), T = 4.2 K: (*a*) спектр возбуждения ионов Ho1 при регистрации люминесценции на $v_{reg} = 9632.5$ cm⁻¹, (*b*) спектр возбуждения ионов Ho2 при регистрации на $v_{reg} = 9510.4$ cm⁻¹.

минесценции структурно неэквивалентных примесных центров ионов Ho³⁺. Времена жизни люминесценции ионов Ho1 и Ho2 с мультиплета 5S_2 равны $225 \pm 1 \,\mu$ s и $257 \pm 1 \,\mu$ s соответственно. Данные значения времени жизни использовались при проверке соотнесения линий в спектрах люминесценции с мультиплета 5S_2 центрам ионов Ho1 и Ho2.

Спектры возбуждения люминесценции с мультиплета ${}^{5}S_{2}$ были измерены при регистрации люминесценции, соответствующей переходам между мультиплетами ${}^{5}S_{2}$ и ${}^{5}I_{6}$ (рис. 4). В этом случае длины волн возбуждения и регистрации сильно отличаются (для центров Ho1 регистрации люминесценции на $v_{\rm reg} = 9632.5 \,{\rm cm}^{-1}$, для центров Ho2 регистрации люминесценции на $v_{\rm reg} = 9510.4 \,{\rm cm}^{-1}$), что позволило измерить неперекрывающиеся спектры возбуждения обоих примесных центров ионов Ho³⁺. На рис. 4 обозначения линий соответствуют данным, приведенным в табл. 1.

В спектре возбуждения центра Ho1 наблюдаются линии, соответствующие переходам как с основного, так и с первого возбужденного штарковских подуровней мультиплета ${}^{5}I_{8}$. Для выделения линий, соответствующих переходам с первого возбужденного подуровня, энергия которого равна 4.3 сm⁻¹, были проведены измерения соответствующего спектра возбуждения люминесценции при 2.5 К. Линии на рис. 4, *a*, которые обозначены буквами согласно табл. 1, соответствуют переходам с основного штарковского подуровня мультиплета ${}^{5}I_{8}$.

В отличие от спектра возбуждения люминесценции ионов Ho1 все линии в спектре возбуждения ионов Ho2 имеют существенно большую ширину. Так, резонансная линия в спектре ионов Ho2 имеет ширину около 4.5 cm⁻¹, что в три раза превышает ширину резонансной линии в спектре возбуждения ионов Ho1. Отметим, что ширины резонансной линии в спектрах люминесценции (рис. 2, b) и возбуждения люминесценции практически совпадают. Данный факт можно объяснить только наличием расщепления, меньшего ширины линии (< 2.5 cm⁻¹) основного квазидублета мультиплета ⁵*I*₈. Линия на частоте $\nu = 18479.7 \,\mathrm{cm}^{-1}$ (линия *a*, *b*, рис. 4, *b*) имеет ширину около $5.8 \, \text{cm}^{-1}$, что почти в 1.5 раза больше ширины линии с частотой $\nu = 18\,536.4\,\mathrm{cm}^{-1}$ (ширина линии $\approx 4\,\mathrm{cm}^{-1}$), которая соответствует переходу на штарковский подуровень мультиплета ${}^{5}F_{4}$ с большей энергией. Таким образом, можно предположить, что ширина линии а, b обусловлена переходами на штарковские подуровни мультиплета ${}^{5}F_{4}$, энергетический зазор между которыми меньше наблюдаемой ширины линии. Сделанные в рамках анализа спектра возбуждения люминесценции ионов Но2 предположения о структуре мультиплетов ${}^{5}S_{2}$, ${}^{5}F_{4}$ и ${}^{5}I_{8}$ очень хорошо совпали с расчетами, детали которых обсуждаются в следующем разделе (табл. 1).

На рис. 5 представлены спектры люминесценции ионов Но1 и Но2, соответствующие переходам ${}^{5}S_{2} \rightarrow {}^{5}I_{7}$. В спектре люминесценции центра Но1 (рис. 5, *a*), как и в спектре люминесценции, соответствующем переходам на подуровни мультиплета ${}^{5}I_{8}$ (рис. 2, *a*), наблюдаются линии, обусловленные переходами с верхнего подуровня квазидублета с энергией 18 341.7 сm⁻¹. В спектре люминесценции, измеренном при температуре 2.5 К, интенсивность данных линий уменьшалась. Линии, соответствующие переходам с нижнего подуровня квазидублета с энергией 18 337.9 сm⁻¹, обозначены на рис. 5, *а* буквами согласно табл. 1.

В спектре люминесценции $({}^{5}S_{2} \rightarrow {}^{5}I_{7})$ примесных центров ионов Но2 (рис. 5, *b*) резонансная линия на

Рис. 5. Спектры люминесценции примесных ионов Ho^{3+} (${}^{5}S_{2} \rightarrow {}^{5}I_{7}$) в кристалле $\text{SrY}_{2}\text{O}_{4}$: Ho (0.2 at.%), T = 4.2 K. (*a*) Энергия возбуждения $v_{\text{exc}} = 18453.1 \text{ cm}^{-1}$, люминесценция соответствует переходам с уровней нижнего квазидублета ($\Gamma_{1}, \Gamma_{2} - 18337.9$ и 18341.7 cm⁻¹) мультиплета ${}^{5}S_{2}$ ионов Ho1; (*b*) энергия возбуждения 18634.3 cm⁻¹, излучение соответствует переходам с нижнего квазидублета ($\Gamma_{1}, \Gamma_{2}, 18365.5$ cm⁻¹) мультиплета ${}^{5}S_{2}$ ионов Ho2.

частоте 13 221.6 ст $^{-1}$ (линия A, B на рисунке) имеет ширину $\approx 3.6 \,\mathrm{cm}^{-1}$, которая в 1.5 раза больше ширин близко расположенных линий (С, D и F). Можно сделать вывод, что данная линия соответствует переходам на расщепленный нижний квазидублет мультиплета ${}^{5}I_{7}$ (расщепление которого меньше 1 сm⁻¹). Линии с энергиями 13170.6 и 13158.2 ст⁻¹, наблюдаемые с коротковолновой стороны линии С, обусловлены люминесценцией дополнительных центров ионов Но³⁺, концентрация которых мала (интенсивность наблюдаемых линий примерно в 30 раз меньше интенсивности линии С), с энергиями оптических переходов, существенно отличающимися от энергий переходов в центрах Ho1 и Но2. Кинетики люминесценции при регистрации на линиях 13 170.6 и 13 158.2 ст⁻¹ одноэкспоненциальные, времена жизни практически одинаковы и равны 243 ± 1 и $239 \pm 1\,\mu s$ соответственно и заметно отличаются от времени жизни люминесценции с мультиплета ⁵S₂ центров Ho1 и Ho2 (225 ± 1 и $257 \pm 1 \mu s$ соответственно). Спектры возбуждения люминесценции при регистрации на данных линиях также заметно отличаются от спектров возбуждения ионов Но1 и Но2. Таким образом, линии с энергиями 13 170.6 и 13 158.2 cm⁻¹ относятся к двум различным центрам ионов Ho³⁺, концентрация которых существенно меньше концентрации центров Но1 и Но2. Вследствие перекрывания спектров возбуждения люминесценции данных центров со спектром возбуждения ионов Но2 подобрать условия возбуждения люминесценции, при которых линии с той же частотой не наблюдались бы в спектре люминесценции ${}^5S_2 \rightarrow {}^5I_7$ ионов Но2, не удалось. На рис. 5, b линии люминесценции ионов Но2 обозначены согласно табл. 1.

При возбуждении люминесценции с мультиплетов ${}^{5}S_{2}$ и ${}^{5}F_{4}$ обоих центров Ho1 и Ho2 наблюдались

малоинтенсивные спектры люминесценции, соответствующие переходам ${}^{5}I_5 \rightarrow {}^{5}I_8$, ${}^{5}I_6 \rightarrow {}^{5}I_8$ и ${}^{5}F_5 \rightarrow {}^{5}I_8$. Совокупность экспериментальных данных об энергиях штарковских подуровней мультиплета ${}^{5}I_8$ центров Но1 и Но2, полученная из анализа данных спектров люминесценции, полностью соответствует значениям энергий штарковских подуровней мультиплета ${}^{5}I_8$, приведенным в табл. 1.

Моделирование измеренных спектров и обсуждение результатов

Анализ построенной на основе выполненных измерений штарковской структуры спектров ионов Ho^{3+} был выполнен с использованием гамильтониана, определенного в полном пространстве 1001 состояний основной электронной конфигурации $4f^{10}$,

$$H = H_{\rm F1} + H_{\rm CF},\tag{1}$$

где оператор

$$H_{F1} = \xi \sum_{k} \hat{\mathbf{l}}_{k} \hat{\mathbf{s}}_{k} + \alpha \hat{\mathbf{L}}^{2} + \beta \hat{G}(G_{2}) + \gamma \hat{G}(R_{7}) + \sum_{q} (F^{q} \hat{f}_{q} + P^{q} \hat{p}_{q} + T^{q} \hat{t}_{q} + M^{q} \hat{m}_{q})$$
(2)

— записанный в стандартном виде гамильтониан свободного иона [17], который содержит энергии спинорбитального взаимодействия (\mathbf{l}_k и \mathbf{s}_k — орбитальный и спиновый моменты 4f-электронов соответственно), электростатических взаимодействий между 4f-электронами (пронумерованных индексом k) и дополнительные слагаемые, соответствующие релятивистским

взаимодействиям и смешиванию основной и возбужденных электронных конфигураций, L — полный орбитальный момент электронов. Операторы \hat{G} , \hat{f} , \hat{p} , \hat{t} , \hat{m} приведены в литературе [17]. В расчетах спектров были использованы начальные величины параметров оператора (2) из работы [18], они были скорректированы на основе измеренных энергий центров тяжести мультиплетов; полученные в результате варьирования параметры равны (в сm⁻¹)

$$F_{2} = 93128 \pm 50, \ F_{4} = 66972 \pm 25, \ F_{6} = 51860,$$

$$\xi = 2132, \ \alpha = 18.9, \ \beta = -618, \ \gamma = 1840 \pm 15,$$

$$P_{2} = 605, \ P_{4} = 302.5, \ P_{6} = 210.5,$$

$$M_{0} = 2.79, \ M_{2} = 0.56 M_{0}, \ M_{4} = 0.38 M_{0},$$

$$T_{2} = 400, \ T_{3} = 37, \ T_{4} = 107, \ T_{6} = -264,$$

$$T_{7} = 316, \ T_{8} = 354 \pm 18.$$

При моделировании спектров были получены различные величины параметров F_2 , F_4 , γ и T_8 , верхний и нижний знаки в символе \pm определяют параметры ионов гольмия в позициях Y1 и Y2 соответственно.

Оператор H_{CF} определяет энергию локализованных 4f-электронов в статическом КП симметрии C_s в декартовой системе координат с осями x, y, z вдоль кристаллографических осей **а**, **b**, **c** соответственно:

$$H_{\rm CF} = B_2^0 O_2^0 + B_2^2 O_2^2 + B_2^{-2} O_2^{-2} + B_4^0 O_4^0 + B_4^2 O_4^2 + B_4^{-2} O_4^{-2} + B_4^4 O_4^4 + B_4^{-4} O_4^{-4} + B_6^0 O_6^0 + B_6^2 O_6^2 + B_6^{-2} O_6^{-2} + B_6^4 O_6^4 + B_6^{-4} O_6^{-4} + B_6^6 O_6^6 + B_6^{-6} O_6^{-6}.$$
(3)

Здесь операторы O_p^q — линейные комбинации компонент сферических тензорных операторов $C_q^{(p)}$ и $C_{-q}^{(p)}$ [19], B_p^q — параметры КП. В расчетах спектров использованы два независимых набора параметров КП для ионов гольмия Но1 и Но2 в структурно неэквивалентных позициях Y1 (подрешетки с векторами базиса $\mathbf{r}_{m,Y1}$, m = 1, 2, 3, 4) и Y2 (подрешетки $\mathbf{r}_{m,Y2}$). Параметры КП B_p^q для ионов Но1 (Но2) в подрешетках $\mathbf{r}_{m,Y1}$ ($\mathbf{r}_{m,Y2}$) имеют одинаковые абсолютные величины, но параметры B_p^{-q} (q > 0) для ионов в подрешетках $\mathbf{r}_{1,\lambda}$, $\mathbf{r}_{3,\lambda}$ и $\mathbf{r}_{2,\lambda}$, $\mathbf{r}_{4,\lambda}$ имеют противоположные знаки.

Начальные величины параметров КП были вычислены в рамках модели обменных зарядов [16,20] и затем варьировались с целью описания измеренной штарковской структуры мультиплетов и спектров ЭПР, представленных ранее в [15]. При моделировании спектров ЭПР оператор Гамильтона (1) был дополнен операторами взаимодействия иона гольмия с внешним магнитным полем $B(H_z)$, операторами магнитного дипольного ($H_{\rm HFM}$) и электрического квадрупольного ($H_{\rm HFQ}$) сверхтонкого взаимодействия:

$$H_Z = \mu_{\rm B} \sum_j (\mathbf{I}_j + 2\mathbf{s}_j) \mathbf{B} - \gamma_{\rm Ho} \hbar \mathbf{I} \mathbf{B}, \qquad (4)$$

$$H_{\rm HFM} = 2\mu_{\rm B}\gamma_{\rm Ho}\hbar \left\langle \frac{1}{r^3} \right\rangle_{4f} \sum_{k} \left\{ \mathbf{II}_{k} + \frac{\sqrt{6}}{2} \left[\frac{2}{\sqrt{6}} C_{0,k}^{(2)} \right] \right. \\ \left. \times \left(3s_{kz}I_{z} - \mathbf{s}_{k}\mathbf{I} \right) + \left(C_{2,k}^{(2)} + C_{-2,k}^{(2)} \right) (s_{kx}I_{x} - s_{ky}I_{y}) \right. \\ \left. - i(C_{2,k}^{(2)} - C_{-2,k}^{(2)}) (s_{kx}I_{y} + s_{ky}I_{x}) \right. \\ \left. - \left(C_{1,k}^{(2)} - C_{-1,k}^{(2)} \right) (s_{kx}I_{z} + s_{kz}I_{x}) \right. \\ \left. + i(C_{1,k}^{(2)} + C_{-1,k}^{(2)}) (s_{kz}I_{y} + s_{ky}I_{z}) \right] \right\},$$
(5)

$$H_{\rm HFQ} = \frac{e \ Q(1 - \gamma \infty)}{4I(2I - 1)} \sum_{L} \frac{q_L}{r_L^5} \left[(3z_L^2 - r_L^2)I_0 + 3(x_L^2 - y_L^2)I_2 + 6x_L y_L I_{-2} \right] - \frac{\sqrt{6}e^2 Q(1 - R_Q)}{4I(2I - 1)} \left\langle \frac{1}{r^3} \right\rangle_{4f} \\ \times \sum_{k} \left[\frac{\sqrt{6}}{3} C_{0,k}^{(2)} I_0 + (C_{2,k}^{(2)} + C_{-2,k}^{(2)})I_2 - i(C_{2,k}^{(2)} - C_{-2,k}^{(2)})I_{-2} - (C_{1,k}^{(2)} - C_{-1,k}^{(2)})I_1 + i(C_{1,k}^{(2)} + C_{-1,k}^{(2)})I_{-1} \right].$$
(6)

В формулах (4)-(6) $\mu_{\rm B}$ — магнетон Бора, e заряд протона, **r** — радиус-вектор 4*f*-электрона, $\langle r^{-3} \rangle_{4f} = 9.7$ at.units [21], I = 7/2 — спин ядра гольмия, $\gamma_{\rm Ho}/2\pi = 8.98 \,\text{MHz/T}$ — ядерное гиромагнитное отношение и $Q = 2.394 \cdot 10^{-28} \text{ m}^2$ — квадрупольный момент ядра 165 Но, $\gamma_{\infty} = -80$ и $R_Q = 0.1$ — факторы антиэкранирования и экранирования Стернхаймера соответственно [22], $I_0 = 3I_z^2 - I(I+1)$, $I_1 = I_x I_z + I_z I_x$, $I_{-1} = I_z I_v + I_v I_z, I_2 = I_x^2 - I_v^2, I_{-2} = I_x I_v + I_v I_x.$ Верхняя строчка в (6) определяет энергию взаимодействия квадрупольного момента ядра с градиентом электрического поля ионной решетки, суммирование проводится методом Эвальда по ионам решетки с номинальными зарядами eq_L $(q_{\rm Sr}=2, q_{\rm Y}=3, q_{\rm O}=-2)$ и радиусамивекторами \mathbf{r}_L относительно позиции рассматриваемого иона гольмия. Вычисленные решеточные суммы равны $(B nm^{-3}):$

$$\sum_{L} q_L (3z_L^2 - r_L^2) / r_L^5 = -14.4 \text{ и } 36.4,$$
$$\sum_{L} q_L (x_L^2 - y_L^2) / r_L^5 = -7.32 \text{ и } 74.0,$$
$$\sum_{L} q_L x_L y_L / r_L^5 = 1.24 \text{ и } -1.55$$

для ионов Но1 и Но2 соответственно.

В кубическом КП правильного кислородного октаэдра основной мультиплет ${}^{5}I_{8}$ иона Ho³⁺ расщепляется на две группы подуровней, разделенных щелью порядка 200 сm⁻¹ при полном расщеплении 500 сm⁻¹ (нижняя

Оптика и спектроскопия, 2023, том 131, вып. 4

р	k	Ho1	Er1 [16]	Ho2	Er2 [16]
2	0	200.3	188	-8	17
2	2	143.1	137.5	-748	-744
2	-2	-142.6	-171.2	-133	-125
4	0	-59.45	-57.3	-63	-60.2
4	2	-1068.3	-1066.2	1100	1033.2
4	-2	1186.6	1165.2	-981	-977.8
4	4	-62.4	-86.9	408	430.2
4	-4	-942	-972.3	-715	-685.6
6	0	-40.95	-38	-36.9	-35.2
6	2	-22.1	-22.3	-70	-68.4
6	-2	23.1	22.8	-37.4	-42.8
6	4	3.8	30.1	-73	-80.2
6	-4	-151.1	-115.2	-208	-191.4
6	6	-155.7	-162.2	-115	-119.6
6	-6	-99.3	-84	95	80.5

Таблица 2. Параметры КП (cm^{-1}) в двух неэквивалентных позициях Y1 и Y2 примесных P3 ионов в SrY₂O₄

группа подуровней содержит 6 электронных состояний: дублет Γ_3 , триплет Γ_5 и синглет Γ_1). В КП деформированных октаэдров симметрии C_s в позициях Ho1 и Ho2 в кристалле SrY₂O₄ вырождение дублетов и триплетов снимается, однако, как следует из измеренных спектров люминесценции (рис. 2 и табл. 1), качественно штарковская структура основного мультиплета сохраняется, наблюдаются 6 нижних синглетов в интервале энергий меньше 100 cm⁻¹, а энергии возбужденных подуровней превышают 300 cm⁻¹, что свидетельствует о доминирующей роли кубической компоненты КП по сравнению с ромбической в обоих позициях Ho1 и Ho2 примесных ионов гольмия.

Магнитные моменты квазидублетов, образованных синглетами одинаковой симметрии (Γ_1 или Γ_2), направлены вдоль оси с, но в случае двух близко расположенных синглетов разной симметрии (Γ_1 и Γ_2) магнитный момент соответствующего квазидублета лежит в плоскости аb. Как следует из расчетов спектров с использованием полученных в настоящей работе параметров КП (табл. 2), в позициях Но1 основной квазидублет содержит синглеты симметрии Г2, вычисленный g-фактор g_{cc} = 15.65 хорошо согласуется с измеренным (g_{cc} = 15.71) в [15]. Основной квазидублет в позиции Но2 содержит синглеты симметрии Г₁ и Г₂, вычисленные величины g-факторов вдоль осей a и b равны g_{aa} = 2.764 и g_{bb} = 19.205. Таким образом, главное значение g-фактора равно $g_{\perp} = 19.4$, а соответствующее направление в плоскости **ab** составляет угол $\varphi = 8.2^{\circ}$ с осью b, что согласуется с данными измерений ЭПР [15] $(g_{\perp} = 19.31, \varphi = 8.5^{\circ}).$

Отметим, что неразрешенная в оптических спектрах сверхтонкая структура основного квазидублета ионов Ho2, содержащая 8 электронно-ядерных дублетов в интервале энергий 0–2.1 cm⁻¹, существенно уширяет линии оптических переходов, в которых участвует основное состояние ионов Ho2.

Заключение

На основе исследований, выполненных методом селективной лазерной спектроскопии, определена штарковская структура мультиплетов ${}^{5}I_{8}$, ${}^{5}I_{7}$, ${}^{5}I_{6}$, ${}^{5}S_{2}$ и ${}^{5}F_{4}$ двух структурно неэквивалентных примесных центров ионов Но³⁺ в кристалле SrY₂O₄. Сравнение величин начальных расщеплений основных квазидублетов мультиплета ${}^{5}I_{8}$, полученных методами ЭПР в субмиллиметровом диапазоне [15] (Δ (Ho1) = 4.303 cm⁻¹, $\Delta(\text{Ho2}) = 1.667 \,\text{cm}^{-1})$ и оптической спектроскопии (табл. 1), позволило однозначно идентифицировать измеренные спектры как спектры ионов Но³⁺ в позициях кристаллической решетки У1 и У2. Расчеты, выполненные в рамках теории КП, подтверждают данное заключение и хорошо описывают как штарковскую структуру уровней энергии, так и g-факторы основных квазидублетов ионов Но1 и Но2.

Полученные в работе [13] из измерений спектра неупругого рассеяния нейтронов в кристалле $SrHo_2O_4$ энергии трех нижних подуровней основного мультиплета ионов гольмия отличаются от наших результатов не более чем на 2.3 cm^{-1} , что свидетельствует о незначительных изменениях КП в позициях ионов Ho^{3+} при замещении значительной части магнитных ионов диамагнитными ионами иттрия.

Результаты настоящей работы открывают возможность развития микроскопической теории магнитных свойств магнитно-концентрированного фрустрированного квазиодномерного магнетика SrHo₂O₄ и определения механизма формирования сосуществующих упорядоченной и неупорядоченной магнитных фаз, которые наблюдались при низких температурах в работах [3,4,9].

Благодарности

Авторы благодарны О.А. Петренко и О. Юнг за обсуждения результатов работы.

Финансирование работы

Работа поддержана грантом Российского научного фонда № 19-12-00244.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 Ruby Priya, Sandeep Kaur, Utkarsh Sharma, O.P. Pandey, Sanjay J. Dhoble. J. Mater. Science: Materials in Electronics, **31** (16), 13011 (2020). DOI: 10.1007/s10854-020-03930-6

449

- [2] T.J. Hayes, G. Balakrishnan, P.P. Deen, P. Manuel, L.C. Chapon, O.A. Petrenko. Phys. Rev. B, 84, 174435 (2011).
 DOI: 10.1103/PhysRevB.84.174435
- [3] O. Young, A.R. Wildes, P. Manuel, B. Ouladdiaf, D.D. Khalyavin, G. Balakrishnan, O.A. Petrenko. Phys. Rev. B, 88, 024411 (2013). DOI: 10.1103/PhysRevB.88.024411
- [4] J.-J. Wen, W. Tian, V.O. Garlea, S.M. Koohpayeh, T.M. McQueen, H.-F. Li, J.-Q. Yan, J.A. Rodriguez-Rivera, D. Vaknin, C.L. Broholm. Phys. Rev. B, 91, 054424 (2015). DOI: 10.1103/PhysRevB.91.054424
- [5] N. Qureshi, A.R. Wildes, C. Ritter, B. Fåk, S.X.M. Riberolles, M. Ciomaga Hatnean, O.A. Petrenko. Phys. Rev. B, 103, 134433 (2021). DOI: 10.1103/PhysRevB.103.134433
- [6] Thomas J. Hayes, Olga Young, Geetha Balakrishnan, Oleg A. Petrenko. J. Phys. Soc. Jpn., 81, 024708 (2012). DOI: 10.1143/JPSJ.81.024708
- T.H. Cheffings, M.R. Lees, G. Balakrishnan, O. A. Petrenko. J. Phys.: Condens. Matter, 25, 256001 (2013).
 DOI: 10.1088/0953-8984/25/25/256001
- [8] D.L. Quintero-Castro, B. Lake, M. Reehuis, A. Niazi, H. Ryll, A.T.M.N. Islam, T. Fennell, S.A.J. Kimber, B. Klemke, J. Ollivier, V. Garcia Sakai, P.P. Deen, H. Mutka. Phys. Rev. B, 86, 064203 (2012). DOI: 10.1103/PhysRevB.86.064203
- Olga Young, Geetha Balakrishnan, Pascal Manuel, Dmitry D. Khalyavin, Andrew R. Wildes 3, Oleg A. Petrenko. Crystals, 9, 488 (2019). DOI: 10.3390/cryst9100488
- [10] O.A. Petrenko, O. Young, D. Brunt, G. Balakrishnan, P. Manuel, D.D. Khalyavin, C. Ritter. Phys. Rev. B, 95, 104442 (2017). DOI: 10.1103/PhysRevB.95.104442.
- [11] N. Qureshi, O. Fabelo, P. Manuel, D.D. Khalyavin, E. Lhotel, S.X.M. Riberolles, G. Balakrishnan, O.A. Petrenko. SciPost Physics, 11, 007 (2021). DOI: 10.21468/SciPostPhys.11.1.007
- H. Karunadasa, Q. Huang, B.G. Ueland, J.W. Lynn, P. Schiffer,
 K.A. Regan, R.J. Cava. Phys. Rev. B, 71, 144414 (2005).
 DOI: 10.1103/PhysRevB.71.144414
- S. Ghosh, H.D. Zhou, L. Balicas, S. Hill, J.S. Gardner, Y. Qiu, C.R. Wiebe. J. Phys.: Condens. Matter., 23, 164203 (2011).
 DOI: 10.1088/0953-8984/23/16/164203
- [14] A. Fennell, V.Y. Pomjakushin, A. Uldry, B. Delley, B. Prevost,
 A. Desilets-Benoit, A.D. Bianchi, R.I. Bewley, B.R. Hansen,
 T. Klimczuk, R.J. Cava, M. Kenzelmann. Phys. Rev. B, 89, 224511 (2014). DOI: 10.1103/PhysRevB.89.224511
- [15] Г.С. Шакуров, Б.З. Малкин, Р.Г. Батулин, А.Г. Киямов. Опт. и спектр., **130** (1), 28 (2022).
 - DOI: 10.21883/OS.2022.01.51886.24-21
- [16] B.Z. Malkin, S.I. Nikitin, I.E. Mumdzhi, D.G. Zverev, R.V. Yusupov, I.F. Gilmutdinov, R. Batulin, B.F. Gabbasov, A.G. Kiiamov, D.T. Adroja, O. Young, O A. Petrenko. Phys. Rev. B, 92, 094415 (2015). DOI: 10.1103/PhysRevB.92.094415
- [17] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana. J. Chem. Phys., 90, 3443 (1989). DOI: 10.1063/1.455853
- [18] M. Mazzera, R. Capelletti, A. Baraldi, N. Magnani, M. Bettinelli. J. Phys.: Condens. Matter., 24, 205501 (2012). DOI: 10.1088/0953-8984/24/20/205501
- [19] V.V. Klekovkina, A.R. Zakirov, B.Z. Malkin, L.A. Kasatkina.
 J. Phys.: Conf. Ser., **324**, 012036 (2011). DOI: 10.1088/1742-6596/324/1/012036
- [20] B.Z. Malkin. In: Spectroscopy of Solids Containing Rare Earth Ions, ed. by A.A. Kaplyanskii, R.M. Macfarlane (North-Holland, Amsterdam, 1987), ch. 2, 13–50.
- 29 Оптика и спектроскопия, 2023, том 131, вып. 4

- [21] A. Abragam, B. Bleaney. *Electron Paramagnetic Resonance* of *Transition Ions* (Oxford Univ. Press, Oxford, 1970).
- [22] M.A.H. McCausland, I.S. Mackenzie. Adv. Phys., 28, 305 (1979). DOI: 10.1080/00018737900101385