04.1

Исследование относительной реакционной способности паров алкилацетатов по отношению к компонентам плазмы импульсного разряда в воздухе

© И.Е. Филатов, В.В. Уварин, Д.Л. Кузнецов

Институт электрофизики УрО РАН, Екатеринбург, Россия E-mail: fil@iep.uran.ru

Поступило в Редакцию 27 февраля 2023 г. В окончательной редакции 5 апреля 2023 г. Принято к публикации 11 апреля 2023 г.

Проведено исследование относительной реакционной способности паров ряда эфиров уксусной кислоты (алкилацетатов) по отношению к компонентам плазмы импульсного коронного разряда с напряжением 100 kV и длительностью 40 ns. Для модельных смесей на основе метил-, этил-, пропил-, изопропил, изобутил-, бутил- и винилацетата с содержанием 250–500 ppm в воздухе и азоте получены параметры относительной реакционной способности. Реакционная способность эфиров уксусной кислоты растет с увеличением числа атомов углерода углеводородного заместителя. Высокая реакционная способность винилацетата обусловлена реакцией двойной связи с озоном.

Ключевые слова: коронный разряд, эфиры уксусной кислоты, алкилацетаты, винилацетат, неравновесная плазма атмосферного давления, очистка воздуха, летучие органические соединения.

DOI: 10.21883/PJTF.2023.11.55534.19540

Эфиры уксусной кислоты (алкилацетаты) — летучие органические соединения (ЛОС), широко использующиеся в различных отраслях промышленности в качестве растворителей, а также в органическом синтезе. Разрабатываются методы, использующие неравновесную плазму электрических разрядов различного типа для очистки воздуха от паров ЛОС [1-5], в том числе от паров этилацетата [5,6]. Важно исследовать влияние структуры на реакционную способность определенных классов ЛОС, чтобы делать выводы для предсказания поведения сложных смесей соединений по отношению к плазме. Ранее определена относительная реакционная способность растворителей широкого применения [7,8], непредельных [8] и ароматических [8,9] соединений. Использование смесей соединений родственных классов позволяет получать относительные параметры реакционной способности ЛОС с высокой точностью [7-9]. Эти величины необходимы для сравнения альтернативных плазмохимических методов на основе различных видов разряда.

В настоящей работе представлены результаты исследования относительной реакционной способности ряда алкилацетатов, широко используемых как растворители, таких как метилацетат (AcOMe), этилацетат (AcOEt), пропилацетат (AcOPr), изопропилацетат (AcOPrⁱ), бутилацетат (AcOBu) и изобутилацетат (AcOBuⁱ). Для сравнения также использовался винилацетат (AcOVi) относительно токсичный мономер, применяемый для получения поливинилацетата. Для исследований применялись модельные смеси. Измерение относительных параметров компонентов в смесях позволяет скомпенсировать ряд погрешностей определения энерговклада, отбора пробы, температуры и т.п. и получать параметры относительной реакционной способности с высокой точностью, при этом скорость процессов может быть оценена путем сравнения с помощью точного, но небыстрого метода газожидкостной хроматографии (ГЖХ) [8]. В каждом процессе измерялось содержание озона как важного продукта воздействия неравновесной плазмы на смеси, содержащие кислород.

Методика эксперимента и установка подробно описаны в [7]. Генератор импульсов высокого напряжения SM-2 был построен по схеме с использованием SOSкоммутаторов [10]. Разряд имел следующие параметры: напряжение амплитудой 100 kV, ток амплитудой 150 A, длительность импульса на полувысоте 40 ns, частота следования импульсов 10 Hz. Разрядная часть плазмохимического реактора (ПХР) состояла из цилиндра из нержавеющей стали с внутренним диаметром 110 mm и длиной 56 cm, вдоль оси которого был натянут потенциальный электрод из стальной струны диаметром $0.24 \,\mathrm{mm}$. Объем газовой системы установки $V = 26 \,\mathrm{dm}^3$. Энергия импульса измерялась как среднее значение за серию импульсов с помощью осциллограмм и составляла 0.10-0.18 J (энергия разряда за импульс уменьшается при наработке озона в газовой смеси из-за его электроотрицательных свойств). Газовая смесь обрабатывалась серией импульсов разряда в течение 2-5 min, после чего во время паузы 3 min проводились анализ состава газовой смеси методом ГЖХ и анализ содержания озона спектрометрическим методом в области 255 nm. Погрешность метода ГЖХ не превышала 4%, погрешность измерения содержания озона была не более 5%. В качестве смеси, моделирующей воздух, использовалась

Рис. 1. a — изменение концентраций $[X_i]$ и $[O_3]$ в зависимости от удельной энергии E в воздухе для AcOMe (1), AcOEt (2), AcOPr (3) и AcOBu (4), озона в чистом воздухе (5), озона в воздухе с примесями (6). b — аналогичные зависимости для азота. Символы — эксперимент, линии — аппроксимация полиномом третьей степени для примесей (1-4) и шестой степени для озона (6).

Рис. 2. a — изменение концентраций $[X_i]$ и $[O_3]$ в зависимости от удельной энергии E в воздухе для AcOMe (1), AcOPrⁱ (2), AcOBuⁱ (3) и AcOBu (4), озона в чистом воздухе (5), озона в воздухе с примесями (6). b — аналогичные зависимости для азота. Символы — эксперимент, линии — аппроксимация полиномом третьей степени для примесей (1-4) и шестой степени для озона (6).

коммерческая газовая смесь "Синтетический воздух" с составом $N_2: O_2 = 80: 20$ (по объему). Перед проведением экспериментов осуществлялась наработка озона в чистой воздушной смеси. Это служило тестом стабильности параметров эксперимента и способствовало кондиционированию стенок ПХР для минимизации их влияния на процесс.

На рис. 1, а показаны концентрационные зависимости смеси ацетатов: AcOMe (1), AcOEt (2), AcOPr (3), AcOBu (4) с концентрацией по 250 ppm (частей на миллион) в зависимости от удельной энергии E — количества энергии, вкладываемой в единицу объема газовой смеси. В ходе процесса также измерялась концентрация озона [O₃], представленная зависимостью 6. Для сравнения показана наработка озона в воздухе без примесей (кривая 5). На рис. 1, *b* показаны анало-

гичные зависимости для газовой смеси в виде азота. При этом содержание озона измерялось, но не было обнаружено в значимых количествах, поэтому график его наработки не приводится. Для сравнения энергетической эффективности процессов показана зависимость наработки озона в воздухе (кривая 5) при предварительном кондиционировании камеры ПХР. На рис. 2 приведены аналогичные зависимости от Е для другой смеси ацетатов: AcOMe (1), AcOPrⁱ (2), AcOBuⁱ (3), АсОВи (4) с концентрацией по 250 ррт. Концентрация озона [О₃] представлена зависимостью 6. Для сравнения показана наработка озона в воздухе без примесей (кривая 5). В азоте образования озона не происходит, поэтому его наработка не приводится. На рис. 3, а показано исследование смеси ацетатов, где одним из компонентов был винилацетат: AcOVi (1), AcOEt (2),

Puc. 3. a — изменение концентраций $[X_i]$ и $[O_3]$ в зависимости от удельной энергии E в воздухе для AcOVi (1), AcOEt (2), AcOPr (3) и AcOBu (4), озона в чистом воздухе (5), озона в воздухе с примесями (6). b — изменение в зависимости от удельной энергии E концентрации AcOVi (1), озона в чистом воздухе (2), озона в присутствии AcOVi (3). Символы — эксперимент.

АсОРг (3), АсОВи (4) с концентрацией по 250 ppm, в зависимости от удельной энергии. АсОVi — вещество, являющееся одновременно и непредельным соединением, т.е. имеющее повышенную реакционную способность по отношению к озону, как показано ранее [8]. Для выявления влияния озона на процесс удаления проведено исследование отдельно взятого AcOVi в концентрации 500 ppm в воздушной среде. Изменение его концентрации в зависимости от *E* представлено кривой *I* на рис. 3, *b*, показана также наработка озона в чистом воздухе (кривая 2) и в воздухе, содержащем AcOVi (кривая 3).

Для описания основных закономерностей, представленных на рис. 1-3, вычислялись значения, характеризующие энергетические параметры процессов, и факторы относительной реакционной способности компонентов с помощью метода конкурирующих реакций, подробно описанного в [8]. Данные аппроксимировались полиномами третьей степени. Плазмохимический выход удаления примеси $i - G_{X_i} [mol/100 \, eV]$ — может быть вычислен из наклонов зависимостей, приведенных на рисунках, с учетом коэффициента пересчета размерностей: $1 \text{ ppm} \cdot 1 \cdot \text{J}^1 = 0.433 \text{ mol}/100 \text{ eV}$. Плазмохимический выход озона для чистого воздуха обозначается как G_{Ω_2} , а для воздуха, содержащего примеси X_i , — как $G_{O_3+X_i}$. G_{O3} используется для характеристики энергоэффективности генератора с ПХР [11]. G_{X_i} характеризуется отрицательной величиной, в то время как GO3 имеет положительное значение. Энергетическая эффективность метода характеризуется суммарной величиной $G = \sum G_{X_i}$. Константы, характеризующие реакционную способность компонента *i*, вычислялись по формуле $k_i = G_{X_i} / [X_i]$. Для сравнения реакционных способностей использовалось выражение $k_i/k_i = G_{X_i}[X_i]/(G_{X_i}[X_i])$, вычисленное в начальной области, для $E = 100 \,\text{J/dm}^3$. В качестве компонента сравнения использовался АсОВи, для которого принято $k_i = k_{AcOBu}$, факторы относительной реакционной способности относительно него $k_{i,ACOBu} = k_i/k_{ACOBu}$. Обобщенные данные представлены в таблице. Относительная реакционная способность является целью исследования. С учетом усреднения реакционная способность k_{i.AcOBu} в воздухе для AcOMe составляет 0.15, для AcOEt — 0.44, для AcOPr — 0.66, для AcOPrⁱ — 0.70, для AcOBu — 1.00, для AcOBuⁱ — 1.12, для AcOVi — 56. В случае азота $k_{i,ACOBu}$ для AcOMe составляет 0.47, для AcOEt — 0.74, для AcOPr — 0.78, для AcOPrⁱ — 0.79, для AcOBu — 1.00, для AcOBuⁱ — 1.61. Видно, что относительные реакционные способности ацетатов различаются для воздушной и азотной плазмы, что может свидетельствовать о разных механизмах участия активных форм азота и кислорода в процессе удаления ацетатов. Важно, что относительная реакционная способность компонентов постоянна и сохраняет свою величину в смесях другого состава. Так, в сложных смесях растворителей реакционные способности в воздухе AcOEt и AcOBu соотносятся как 0.43:1 [7] и 0.45:1 [8], что очень близко к найденным значениям 0.44:1, несмотря на то что эти компоненты входили в состав разных смесей. Следует подчеркнуть, что суммарный выход процесса удаления ацетатов $\sum G_{X_i}$ по абсолютной величине в воздухе меньше, чем в азоте, при проведении реакции в одном ПХР в сравнимых условиях. Процессы с участием активных форм азота при удалении ацетатов с простыми алифатическими заместителями имеют важное значение аналогично ароматическим соединениям [12]. Это указывает на то, что механизмы с участием активных форм кислорода не являются здесь превалирующими. Нельзя утверждать, что органические ацетаты однозначно подвергаются окислению в воздушной среде под действием плазмы импульсного разряда. Это в значительной мере находится в противоречии со множеством работ и требует специального исследования. АсОVi отличается повышенной реакционной способностью по отношению к

Источник информации	Компонент <i>X</i> i	Газ	$G, \text{ mol}/100 \text{ eV} (100 \text{ J/dm}^3)$				
			G_{O_3}	$G_{\mathrm{O}_3+X_i}$	$-G_{X_i}$	$-\sum G_{X_i}$	$k_{i, AcOBu}$
Рис. 1, <i>а</i>	AcOMe AcOEt AcOPr AcOBu	Воздух	4.85	3.31	0.073 0.200 0.301 0.410	0.984	0.130 0.415 0.671 1.000
Рис. 1, b	AcOMe AcOEt AcOPr AcOBu	N_2	4.95*	0.0	0.213 0.284 0.292 0.344	1.13	0.484 0.743 0.780 1.000
Рис. 2, а	AcOMe AcOPr ⁱ AcOBu ⁱ AcOBu	Воздух	4.85	2.35	0.069 0.263 0.340 0.366	1.04	0.162 0.710 1.116 1.000
Рис. 2, b	AcOMe AcOPr ⁱ AcOBu ⁱ AcOBu	N_2	4.95*	0.0	0.230 0.290 0.433 0.333	1.29	0.467 0.794 1.161 1.000
Рис. 3, <i>а</i>	AcOVi AcOEt AcOPr AcOBu	Воздух	4.80	4.30	3.21** 0.208 0.283 0.386	0.876	56** 0.457 0.653 1.000

Плазмохимические выходы и относительная реакционная способность исследованных алкилацетатов

* Получено при кондиционировании ПХР обработкой воздушной смеси разрядом.

** При $E = 20 \text{ J/dm}^3$.

компонентам воздушной плазмы. Как видно из рис. 3, *a*, озон начинает нарабатываться только после полного удаления AcOVi. На рис. 3, *b* показаны результаты специального эксперимента при начальной концентрации AcOVi 500 ppm в воздухе, которые демонстрируют, что за время проведения эксперимента озон количественно взаимодействует с AcOVi и G_{X_i} для последнего практически соответствует G_{O_3} . Скорость реакции AcOVi с O₃ имеет константу $k = 2.30 \cdot 10^{18} \text{ cm}^3 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$ [13] и характерные времена порядка нескольких секунд. Это обусловлено наличием в субстрате двойной связи, обладающей повышенной реакционной способностью по отношению к озону.

Таким образом, определены относительные реакционные способности летучих органических ацетатов по отношению к плазме импульсного коронного разряда и показано принципиальное отличие механизма удаления винилацетата. Метод конкурирующих реакций позволяет выявлять различные механизмы удаления ЛОС разной химической структуры из воздуха с помощью плазмохимических методов. Найденные закономерности будут полезны при разработке новых плазмохимических технологий очистки воздуха.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.M. Vandenbroucke, R. Morent, N. De Geyter, C. Leys, J. Hazard. Mater., **195** (15), 30 (2011). DOI: 10.1016/JJHAZMAT.2011.08.060
- [2] S. Li, X. Dang, X. Yu, G. Abbas, Q. Zhang, L. Cao, Chem. Eng. J., 388, 124275 (2020). DOI: 10.1016/j.cej.2020.124275
- [3] W.C. Chung, D.H. Mei, X. Tu, M.B. Chang, Catal. Rev. Sci. Eng., 61 (2), 270 (2019).
- DOI: 10.1080/01614940.2018.1541814 [4] C. Du, X. Gong, Y. Lin, J. Air Waste Manage. Assoc., **69** (8),
- 879 (2019). DOI: 10.1080/10962247.2019.1582441 [5] T. Guo, G. Cheng, G. Tan, L. Xu, Z. Huang, P. Cheng,
- Z. Zhou, Chemosphere, **264** (Pt 1), 128430 (2021). DOI: 10.1016/j.chemosphere.2020.128430
- [6] C. Qin, M. Guo, C. Jiang, R. Yu, J. Huang, D. Yan, S. Li, X. Dang, Sci. Total Environ., 782, 146931 (2021). DOI: 10.1016/j.scitotenv.2021.146931
- [7] И.Е. Филатов, В.В. Уварин, Д.Л. Кузнецов, ЖТФ, 88 (5), 702 (2018). DOI: 10.21883/JTF.2018.05.45898.2421
 [I.E. Filatov, V.V. Uvarin, D.L. Kuznetsov, Tech. Phys., 63 (5), 680 (2018). DOI: 10.1134/S1063784218050079].
- [8] I.E. Filatov, V.V. Uvarin, V.V. Nikiforova, D.L. Kuznetsov, J. Phys.: Conf. Ser., 2064, 012094 (2021).
 DOI: 10.1088/1742-6596/2064/1/012094
- [9] И.Е. Филатов, В.В. Уварин, Д.Л. Кузнецов, Письма в ЖТФ, 47 (22), 9 (2021). DOI: 10.21883/PJTF.2021.22.51718.18924
 [I.E. Filatov, V.V. Uvarin, D.L. Kuznetsov, Tech. Phys. Lett., 48 (14), 51 (2022). DOI: 10.21883/TPL.2022.14.55118.18924].

- [10] S.N. Rukin, Rev. Sci. Instrum., **91** (1), 011501 (2020). DOI: 10.1063/1.5128297
- [11] И.Е. Филатов, Ю.С. Сурков, Д.Л. Кузнецов, Письма в ЖТФ, 48 (13), 28 (2022).
 DOI: 0.21883/PJTF.2022.13.52741.19210 [I.E. Filatov, Yu.S. Surkov, D.L. Kuznetsov, Tech. Phys. Lett., 48 (7), 25 (2022). DOI: 10.21883/TPL.2022.07.54032.19210].
- T. Shou, N. Xu, Y. Li, G. Sun, M.T. Bernards, Y. Shi,
 Y. He, Plasma Chem. Plasma Process., **39** (4), 863 (2019).
 DOI: 10.1007/s11090-019-09986-5
- [13] I. Al Mulla, L. Viera, R. Morris, H. Sidebottom, J. Treacy, A. Mellouki, ChemPhysChem, 11 (18), 4069 (2010).
 DOI: 10.1002/cphc.201000404