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Spontaneous four-photon mixing in ghost imaging
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A generalization of the calculation of the formation of ghost images in the course of backward four-photon mixing

to the real situation of non-planar spatially limited pumping, which has a Gaussian profile of the fundamental laser

mode, is developed, taking into account the specifics of the formation of phantom images. Computer images have

been obtained that make it possible to estimate the spatial resolution of the systems. A relatively simple equivalent

scheme for describing the process is proposed, which shows that the effect of diffraction in nonlinear systems is

similar to its role in ordinary linear optics with a limited aperture. A fiber-optic version of the formation of ghost

images is proposed, suitable for the study of hard-to-reach cavities and organs of the human body, which allow the

introduction of a thin fiber bundle there.
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Introduction

Recently, there has been a significant increase in interest

in systems for obtaining and forming phantom images [1–
36]. This is due to a number of their advantages

over conventional images, especially when working with

biological objects, when a gentle mode of irradiation of

the studied living beings is important. There are also

interesting options for exploring hard-to-reach areas, for

example, closed cavities, using fiber optics, if it is possible

to launch a fiber bundle there [11–30].
In the recent paper [10] it is shown that when forming

quantum phantom images, the use of counter four-photon

mixing can give significant advantages compared to the

traditionally used three-photon process [1]. This is due to

the fact that due to the possible isotropy of the nonlinear

medium, diffraction restrictions are removed due to the

condition of phase synchronism and the corresponding limit

of the angular aperture of light beams. A small aperture

destructively affects the quality of images due to their

diffraction blurring.

In the mentioned paper [10], the constancy of the gain

increment for a wide angular spectrum of light beams

involved in the formation of phantom images during a

counter four-photon process is demonstrated, but only in

the approximation of plane pumping. At the same time, a

logical question arises: what will happen in the real case of

Gaussian laser pumping? Therefore, we tried to solve this

problem. The results are described below.

1. Setup scheme

In Fig. 1, a nonlinear medium with cubic nonlinearity

from above and below is irradiated by oncoming laser

pumping beams p and q. The signal and idle beams

generated in this case s and i also have strictly opposite

directions and illuminate the object O and the CCD

photodetector matrix. Working in parallel beams of rays

avoids a number of aberrations due to the symmetry of

the optical system at a single, or rather minus a single,

magnification of [8]. But at the same time it is necessary

to install two identical lenses L, focusing the generated

radiation. In Fig. 1, they are symbolically shown as convex

spherical lateral surfaces of a nonlinear medium.

The signal beam illuminates the CCD, and the idle —
integrating single-pixel BD detector, which captures all

photons penetrating the object, regardless of their localiza-

tion, of course, taking into account its quantum efficiency

and the transparency of the object O. The coincidence

scheme C highlights only simultaneous detection in the

photon counting mode. These signals, taking into account

the spatial position of the triggered detector of the CCD

matrix, are sent to the computer forming the image of the

object, and thus the standard algorithm for constructing

phantom images [31] is implemented.

2. General relations

To obtain quantum equations describing a counter four-

photon process, we use the field momentum operator by

analogy with how it is done in [37] for three-photon

parametric interaction. In our case it is equal to

Ĝ =

∫ (

−i~χ(3)Ap(r)Aq(r)Â
†
s (r)Â

†
i (r) + H.c.

+
~

2k

∑

j=i,s

∂Â†
j (r)

∂r⊥

∂Â j(r)

∂r⊥

)

dr⊥,

56



Spontaneous four-photon mixing in ghost imaging 57

O

BD

i

p

x

q
y

s

CCD

z

C

Figure 1. Phantom image formation scheme: p and q —
counter laser pumping beams in a nonlinear medium with cubic

nonlinearity (in center), s and i — signal and idle beams, O —
partially transparent investigated object, BD — integrating detector

that does not have spatial resolution, CCD — photodetector matrix

operating in photon counting mode, like BD, C — a coincidence

circuit connected to a computer that reproduces the image of the

object O.

where H.c. = i~χ(3)A∗
p(r)A

∗
q (r)Âi(r)Âs(r) — Hermitian

conjugation. Field operators

Â j(r⊥, z ) =

∞
∫

−∞

â j(k j , z ) exp[irk⊥]d2k⊥,

Â†
j (r⊥, z ) =

∞
∫

−∞

â†
j(k⊥, z ) exp[−irk⊥]d2k⊥,

where â j and â†
j — respectively, the photon destruction

and generation operators in the Heisenberg representa-

tion, integration is carried out in the transverse plane

r⊥ = {x , y}, z — longitudinal coordinate, k j — wave

number, we consider the degenerate case ks = k i = k ,
χ(3) — coefficient proportional to cubic nonlinearity. The

last term of the momentum operator describes diffraction.

An approximation of a given classical pump is used — its

counter beams are marked with indices p, q, and Ap(r),
Aq(r) — classical complex amplitudes. The indices s, i
correspond to the signal and idle wave, k⊥ = (kx , ky ) —
the transverse component of the wave vector.

Let us write the derivatives in the direction r⊥ = r(x , y)
using the definition

∂Â j(r⊥)

∂r⊥
= (∇⊥Â jer⊥),

∂Â†
j (r⊥)

∂r⊥
= (∇⊥Â†

j er⊥).

Then

Ĝ =

∫ (

− i~χ(3)Ap(r)Aq(r)Â
†
s (r)Â

†
i (r) + H.c.

+
~

2k

∑

j=i,s

(∇⊥Â†
j er⊥)(∇⊥Â jer⊥)

)

dxdy.

Taking into account the evolution equation:

i~
∂Âs ,i(r)

∂z
= [Ĝ, Âs ,i(r)]

and the switching relations:

[Â†
j (r), Âl(r

′)] = −δ jlδ(r− r′), [Â j(r), Âl(r
′)] = 0

we obtain

{

∂Âs (r)
∂z + i

2k 1⊥Âs = χ(3)Ap(r)Âq(r)Â†
i (r),

∂Â†

i (r)

∂z − i
2k 1⊥Âi = −χ(3)Ap(r)Âq(r)Âs (r).

(1)

Intermediate transformations are used here:

i~
∂Âs

∂z
=

∫ (

−i~χ(3)[ApAqÂ†
s Â†

i , Âs ] + [H.c., Âs ]

+
~

2k

∑

j=i,s

[(∇⊥Â†
s er′⊥)(∇⊥Âser′

⊥
), Âs ]

)

dr′⊥

= i~χ(3)ApAqÂ†
i +

~

2k
1⊥Âi .

System of equations (1) was also used in the paper [10], but
was given there without a conclusion by analogy with the

system of classical equations for complex amplitudes [38].
Given the small thickness of the nonlinear medium

compared to the optical path of the signal and idle beams,

the diffraction term i
2k 1⊥canbeneglectedÂi, i.e.

{

∂Âs
∂z = χ(3)ApAqÂ†

i ,
∂Âi
∂z = χ(3)ApAqÂ†

s .
(2)

Pumping usually has a Gaussian profile. Again, due to

the small size of the nonlinear medium, it can be considered

cylindrical:

Ap,q(r) = Ap,q(x , y, z ) = A exp

[

−
(

y2

2σ 2
y

+
z 2

2σ 2
z

)]

,

where σ — defines the beam width.

2.1. Matrices of operators Â† and Â

Let us define the vacuum state as a set of all possible

plane modes: |0〉 =
∏

k⊥
|0〉k⊥ . Then for field operators

Â†(r⊥, z )|0〉 =

∞
∫

−∞

â†(k⊥, z )

× exp[−ir⊥k⊥]d2k⊥
∏

k⊥

|0〉k⊥ = |1〉,

where is the tensor product of k⊥, and by |1〉 we mean the

entire last integral. One can also complete a definition:

Â†(r⊥, z )|0〉 =
√
1|1〉, Â(r⊥, z )|1〉 =

√
1|0〉,
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so, by analogy with [39], construct matrices of operators Â†,

Â and state vectors |0〉, |1〉:

Â =

(

0
√
1

0 0

)

, Â†

(

0 0√
1 0

)

, |0〉 =

(

1

0

)

, |1〉 =

(

0

1

)

.

Or for matrix elements:

(Â) jk =

{√
1, k − j = 1

0, k − j 6= 1
,

(Â†) jk =

{√
1, j − k = 1

0, j − k 6= 1
, j, k = 1, 2,

|n〉 j =

{

1, j = n + 1

0, j 6= 0 + 1
, j = 1, 2.

2.2. General Hilbert space

The state vectors of the bundles s and i are denoted by

|n〉s , |m〉i . The total Hilbert space H is defined by the tensor

product H = Hs ⊗ Hi .

Let us consider |nm〉 = |n〉s ⊗ |m〉i and write down the

lower states:

|00〉 =









1

0

0

0









, |01〉 =









0

1

0

0









, |10〉 =









0

0

1

0









, |11〉 =









0

0

0

1









,

(3)
for matrix elements

|nm〉 j =

{

1, j = 2n + m + 1

0, j 6= 2n + m + 1
, j = 1, 4.

In general Hilbert space:

Âs = (Âs ⊗ Î i) =









0 0
√
1 0

0 0 0
√
1

0 0 0 0

0 0 0 0









,

Â†
i = (Îs ⊗ Âi)

† =









0 0 0 0√
1 0 0 0

0 0 0 0

0 0
√
1 0









, (4)

or for matrix elements:

(Âs)
jk =

{√
1, k − j = 2

0, k − j 6= 2
, j, k = 1, 4,

(Â†
s )

jk =

{√
1, j − k = 2

0, j − k 6= 2
, j, k =

√

1, 4,

(Âi)
jk =

{√
1, k − j = 1 and k mod 2 = 0

0, k − j 6= 1 or k mod 2 6= 0
, j, k = 1, 4,

(Â†
i )

jk =

{√
1, j − k = 1 and j mod 2 = 0

0, j − k 6= 1 or j mod 2 6= 0
, j, k = 1, 4.

2.3. Averaging over the initial vacuum state

The correlation function of the amplitudes of the signal

and idle beams has the form

〈Es (r⊥)Ei(r
′
⊥)〉 = N2〈00|Â(out)

s (r⊥)Â(out)
i (r′⊥)|00〉, (5)

where N — is a constant coefficient, and

Â(out)
s (r⊥) · Â(out)

i (r′⊥) — the usual product of operators.

The same correlation function was used in [9] to evaluate

the quality of phantom images in the case of a three-photon

process.

From (3) and (5) it turns out that to solve the problem

you need to find only one matrix element ( j, k) = (1, 1):

〈

Â(out)
s (r⊥)Â(out)

i (r′⊥)〉 =
(

Â(out)
s (r⊥)Â(out)

i (r′⊥)
)11

=

4
∑

k=1

(A(out)
s )1k(A(out)

i )k1 =

4
∑

k=1

(A(out)
s )1k(A†(out)

i )1k . (6)

Let us write down a system of equations (2) for matrix

elements:
{

∂A jk
s

∂z = χ(3)Ap(r)Aq(r)(A
†
i )

jk ,
∂(A†

i ) jk

∂z = −χ(3)Ap(r)Aq(r)A
jk
s , j, k = 1, 4.

The initial conditions are matrix elements of operators (4).
It follows from (6) that it is necessary to find solutions

for the first rows of matrices, and from (4) it is clear that

only two systems of differential equations need to be solved,

since the systems of equations for other matrix elements

have trivial solutions:






















∂A13
s

∂z = χ(3)Ap(r)Aq(r)(A
†
i )

13,
∂(A†

i )13

∂z = −χ(3)Ap(r)Aq(r)A13
s ,

A13
s |z=−lz = 1,

(A†
i )

13|z=lz = 0,























∂A21
s

∂z = χ(3)Ap(r)Aq(r)(A
†
i )

21,
∂(A†

i )21

∂z = −χ(3)Ap(r)Aq(r)A21
s ,

A21
s |z=−lz = 0,

(A†
i )

21|z=lz = 1.

(7)

Then the expression (6) is converted to the form

〈Â(out)
s (r⊥)Â(out)

i (r′⊥)〉 = A13
s |z=lz (A

†
i )

13|z=−lz

+ A21
s |z=lz (A

†
i )

21|z=−lz . (8)

The correlation function of the amplitudes of the signal

and idle beams, which determines the phantom image, in

the case of neglect of diffraction in a nonlinear medium is

equal to

G(r⊥, r
′
⊥) = N4

∣

∣

∣

∫

h1(r
′
⊥, r

′′
⊥)h2(r⊥, r

′′
⊥)

× 〈Â(out)
s (r′′⊥)Â(out)

i (r′′′⊥)〉δ(r′′⊥ − r′′′⊥ )dr′′⊥dr′′′⊥

∣

∣

∣

2

.
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Figure 2. A phantom image of a standard test target with the fol-

lowing parameter values: σy = σz = 2mm, χ(3)ApAq = 0.3mm−1,

lx = ly = lz = 3mm, f = 1m. The distance between the slits is

from 0.02 to 0.08mm in increments of 0.004mm. The wavelength

is 0.702 µm. The test target size is 6× 6mm.

Channel propagators, in contrast to [9], will be written

in the Kirchhoff approximation, since we assume to work

with relatively large numerical apertures when the Fresnel

approximation may become inadequate:

h1(r
′
⊥, r

′′
⊥) =

k
2πi

T (r′)
exp[ik

√

‖r′⊥ − r′′⊥‖2 + f 2]
√

‖r′⊥ − r′′⊥‖2 + f 2

× exp

[

− ik‖r′′⊥‖2
2 f

]

,

h2(r⊥, r
′′
⊥) =

k
2πi

exp[ik
√

‖r⊥ − r′′⊥‖2 + f 2]
√

‖r⊥ − r′′⊥‖2 + f 2

× exp

[

− ik‖r′′⊥‖2
2 f

]

.

Here T (r′) — the amplitude transmission function of the

object, f — the focal length of the lenses L.

3. Calculation results

To analyze the phantom image, we took a standard

test target as an object. It represents contrasting black

and white strokes of different frequency and direction.

By which squares of strokes are distinguishable in the

image, the quality of the latter is determined. Unit of

measurement — number of distinguishable strokes per mm.

Different directions of strokes are important for assessing

the possible astigmatism of the optical system under study.

O

D

L
CCD

L

Figure 3. Equivalent linear optical system.

In our case, as follows from Fig. 2, it appears due to

unequal numerical apertures in the meridional and sagittal

planes, since the orientation of the pump is such that the

numerical aperture in one plane is determined by the size of

the nonlinear medium, and in the other by the cross-section

of the pump. We did not take into account vignetting at

the edges of the field. This does not matter in principle,

since our goal was to test the operability of our algorithm,

although it is not difficult to take into account the decrease

in the numerical aperture of inclined beams.

Using this reference image, it is easy to determine the

spatial resolution of the system and evaluate its quality

accordingly. In our case, this is approximately 23mm−1

in the meridional plane and 19mm−1 in the sagittal plane.

Since the aperture in the meridional and sagittal planes has

a different shape — rectangular and Gaussian, the ratio of

these numbers does not correspond to the ratio of their

linear dimensions.

4. Equivalent scheme for image quality
assessment

Consider the optical scheme in Fig. 3. It is an analog of

the section of Fig. 1 by the sagittal plane. The situation is

as if the image of an object is simply constructed by a lens

system and an ordinary linear transparent medium instead

of a nonlinear one on the surface of the photodetector

matrix. We will take into account the limited size of

the pump by introducing a diaphragm D with a Gaussian

amplitude transmission profile D. Moreover, this diaphragm

is stretched across the width of the transparent medium,

since the cylindrical pumping completely penetrates it in

the transverse direction.

Let the object be illuminated by incoherent light. It is

necessary to find the response of the optical system of the

form

G(r, r′) ∝
∣

∣

∣

∫

h1(r
′
⊥, r

′′
⊥)h2(r⊥, r

′′
⊥)D(r′′)dr′′⊥

∣

∣

∣

2

,

where the propagators

h1(r
′
⊥, r

′′) =
k

2πi
T (r′)

exp[ik‖r′ − r′′‖]
‖r′ − r′′‖ exp

[

− ik‖r′′⊥‖2
2 f

]

,
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Figure 4. The test target image by an equivalent linear optical

system.

h2(r⊥, r
′′) =

k
2πi

exp[ik‖r′ − r′′‖]
‖r′ − r′′‖ exp

[

− ik‖r′′⊥‖2
2 f

]

.

The calculation results for an equivalent classical scheme

with the same parameters are similar to the results for a

four-photon system, and are shown in Fig. 4.

It can be seen that the resolution for vertical slits is less

than for horizontal ones, as in the original scheme for the

same reason. We also did not take into account vignetting

for inclined beams.

In the equivalent scheme, the calculations are much

simpler, and the result is almost the same. This is a

somewhat unexpected result. It proves the equivalence

of phantom nonlinear and ordinary linear optical imaging

systems in terms of their quality and can be used in practical

calculations.

5. Scheme with nonlinear fiber bundle

Let us consider another interesting variant of the forma-

tion of phantom images using counter four-photon mixing in

a nonlinear fiber bundle (Fig. 5). In its middle, the braid is

partially removed and it is irradiated by a transverse pump

beam. The fibers can be, for example, made of fused quartz.

Since the efficiency of the nonlinear transformation is small,

almost all fibers will be equally illuminated. The spatial

correlation of the signal and idle beams required for the

formation of phantom images is achieved by the fact that

the same number of photons will always go to both sides of

the bundle due to the simultaneous birth of the signal and

idle.

The right end of the harness is closely connected to the

photodetector matrix, and the image of the left one with the

projection lens L is formed on the object under study O,

through which photons are recorded by the integrating

detector BD. Thus, an algorithm for the formation of

phantom images is constructively implemented, based on

the spatial correlation of the transverse coordinates of the

photons of the two illuminators of the object O and BD.

What are the advantages of this scheme? The quality

of the images generated by it is fundamentally limited

only by the pixel size, i.e. the diameter of the fiber and

the corresponding size of the photodetectors in the CCD

matrix. The quality of the optical system, of course, is

also important, but projection systems of this class, working

with a single magnification, can technically be ideal. Both

ends of the light guide always provide identical illumination

of both the object and the CCD photodetector matrix.

There are also no diffraction distortions, because there are

no fundamental limitations of the lens aperture L. All this

makes the proposed scheme very attractive.

In addition, the fiber bundle can be passed into cavities

that are difficult to access for direct observation, for exam-

ple, the internal organs of a person. And the integrating

detector can be located outside, since soft tissues are

partially transparent to the red radiation of a helium-neon

gas laser. The advantages of phantom images, consisting in

a gentle observation mode, are fully realized at the same

time.

6. Conclusion

The main result of our work is a theoretical study of the

formation of phantom images in the most realistic conditions

of Gaussian limited laser pumping. The results are brought

to the production of computer images of objects, which can

be used to assess the quality and spatial resolution, which

is perhaps the main criterion for the applicability of optical

systems in general. Nevertheless, it is quite obvious that the

algorithm we have proposed is very complex. Therefore, for

the initial evaluation analysis, we considered a simpler linear

system for which, with the same initial data, we obtained

O

BD

L

CCD

C

Ap

Aq As

Ai

Figure 5. Scheme for the formation of phantom images using a

fiber bundle.
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similar computer images, thereby proving its equivalence in

terms of the quality of information transmission.

Moreover, it seems to us that the use of counter

four-photon mixing in the fiber-optic version has certain

prospects. Here, the advantages of phantom images can

be realized in full, guaranteeing both a gentle mode of

observation of the objects under study and the potential

possibility of penetration into cavities that are difficult to

directly observe.
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